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Abstract: Obstacle detection is an essential process in Autonomous mobility systems such as driverless car and drone for delivery, 

and it has become a popular topic in this decade with the blooming of various object detection algorithms and the enhancement of 

sensor quality. On top of that, the problem of improvement ability of sensor fusion with regard to clutter and miss detection based 

on the incoming measurements from several type of sensors on autonomous mobility system are critical for those systems to track 

the final position of the obstacle accurately. To solve the problem in computationally efficient way, this paper presents the 

integration techniques and the performance of heterogeneous sensor fusion with Gaussian mixture probability hypothesis density 

(GMPHD) in the application of mobility systems or driverless system. We introduce the concept of integrating GMPHD to 

heterogeneous sensor fusion with three architectures, Track-to-Track-Fusion (T2TF), Measurement-to-Track-Fusion (M2TF) and 

Track-to-Association-Fusion (T2AF) and further evaluate their performance respectively in terms of fusion improvement ability 

with the simulation dataset that reproduces normal condition and poor condition with the degradation of sensors’ performance.  
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1. Introduction     

In autonomous driving, the full and precise comprehension of 

obstacle position is of paramount importance for autonomous 

mobility systems to make a proper driving decision to maneuver 

the car safely to a destination. To strengthen the obstacle detection 

dedicated for autonomous vehicle under adverse circumstances 

that worsen some sensors’ detection ability, the standard sensor 

system with several type of sensors including camera, Lidar and 

millimeter wave Radar has been proposed in the past to 

compensate for the deficiencies of each sensor and fulfil the 

detection requirement accordingly [1], [2] Even though such 

system with heterogeneous sensors could well assist itself to 

acquire necessary measurements for detecting the surrounding 

obstacle, the perfect comprehension of the obstacle with such 

deployment has been more challenging when the performance of 

sensors are subject to the environmental influence and it becomes 

unreliable due to the existence of clutter, scattering miss detection 

and other restraints of sensors’ abilities such as the measurement 

error and narrow Field of View (FOV). In other words, the 

reliability of those collected datasets for the system is lower and 

there are still several arduous issues to deal with and enhance the 

reliability such as adapting moving environment in mobility 

system, reducing the false alarm, estimating the accurate positions 

of the objects as well as interpolating the missed detection. 

Therefore, sensor fusion with heterogenous sensors has become a 

prominent subject to resolve the association between incoming 

measurements from diverse types of sensor for tolerance of sudden 

change of sensor properties due to environmental influence. 

In this decade, several researches regarding sensor fusion with 

Gaussian mixture probability hypothesis density (GMPHD) are 

ongoing to solve the above detection reliability problem. [3], [12] 

GMPHD is attributed to a new emerging paradigm of Random 

Finite Set (RFS) based on the rigorous mathematical foundation 

for stochastic multi-object problems—point process theory [4]. 
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Among all prevalent RFS-based algorithms, GMPHD demands 

relatively low computational load and does not require data 

association techniques to obtain a closed-form PHD recursion.[5] 

Thus, it was chosen as our primary approach to developing multi-

object tracking based sensor fusion. Our contribution in this paper 

is to propose architectures with integrating GMPHD to address 

those heterogenous senor fusion problems in application of 

mobility system with a significant improvement to perceive the 

correct position of obstacle and counteract the fault of each sensor 

under adverse environments which lower detection rates of some 

sensors for autonomous mobility systems. And we further study its 

applicability to heterogeneous sensor fusion in mobility system at 

different moving speed to find out if they could enhance the 

detection performance with our approaches in terms of 

improvement rate in three architectures with GMPHD. 

The aim of this paper is to present the integration architecture of 

heterogeneous sensor fusion with GMPHD in the application of 

mobility systems. In section 2, the selection of tracking algorithm 

for sensor fusion and theory of GMPHD are presented. In section 

3, the detailed problems to the heterogeneous sensor fusion are 

illustrated to emphasize the challenges which our sensor fusion in 

mobility system might suffer. In section 4, three proposed 

architectures with GMPHD integration for heterogeneous sensor 

fusion are explained in terms of their implementations to unravel 

the fusion problem. In section 5, the simulations of different 

environments for mobility systems are described and the 

improvement effectiveness of three architectures for sensor fusion 

under suggested environmental influence are examined 

respectively. In section 6, related work to the problem of sensor 

fusion and GMPHD are presented. 

2. Gaussian Mixture Probability Hypothesis 

Density for sensor fusion 

2.1 The selection of tracking Algorithms for sensor fusion 

There are several popular data association approaches for 
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tracking algorithms available in the past. The general ways include 

Global nearest neighbor (GNN), joint probability data association 

(JPDA) and Multiple hypothesis tracking (MHT). Despite the 

availability of the existing association approaches, the 

computational cost and the tracking performance are the concerned 

issues that we are facing, and many researchers tried to solve the 

problem by balancing these two aspects. For instances, classical 

MHT demands enormous computational resource due to 

accumulation of hypothesis from pedigree even though it has more 

superior performance than JPDA and GNN and comparable to 

state-of-the-art methods in recent years [16]. As a result, 

considerable techniques to handle its computational problem in 

MHT had been proposed. For examples, Fast MHT algorithm [17] 

endeavored to resolve the computational intractability issue in 

MHT, the rollout algorithm [18] tried to overpass the time 

efficiency of MHT, Tabu search and Gibbs sampling [19] enhanced 

the tracking performance and improved the computational 

efficiency in MHT. The similar problem also happens in JPDA 

even though JPDA is considered as the approach which has worse 

tracking performance but better computational efficiency due to its 

fewer combinatorial complexity than MHT. One of the papers 

proposed a JPDA embedment with simple tracking framework to 

reduce its processing time [20]. For GNN, it requires the least 

computational cost, but it could only perform well in less clutter 

environment. Therefore, GNN data association are only adopted 

for simple case with few clutters from the data measurements and 

some researchers proposed Suboptimal Nearest Neighbor (SNN) 

to improve the tracking performance of GNN-based method [21]. 

As data association involves the tradeoff between computational 

cost and implementation complexity, the tracking algorithm with 

good balance are therefore the critical criteria for our selection of 

sensor fusion algorithm to support large amount of incoming 

measurements. On the other hand, the approaches of those 

associations require the presumed number of targets to estimate the 

object position accurately. Because of that, we only focus on RFS-

based GMPHD algorithm prominent in this decade without the 

need of providing unknown object numbers in this paper. 

2.2 The theory of Gaussian Mixture Probability Hypothesis 

Density for sensor fusion 

  GMPHD is an analytic solution to the PHD recursion under 

Gaussian assumption and PHD is an approximation to multitarget 

Bayes filter with the first order statistical moment of the multi-

target posterior density [22]. The derivation of PHD filter is at first 

provided to understand its fundamental concept before moving on 

to its approximation in the view of computational tractability. 

Suppose the random finite set for multi-target (estimation target) 

set 𝑋𝑘  and multi-target observation (measurement) set 𝑍𝑘  at 

time k are as follows [6], 

𝑋𝑘 = { 𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝑀(𝑘)} 𝜖 ℱ(𝜒) (1) 

𝑍𝑘 = { 𝑧𝑘,1, 𝑧𝑘,2, … , 𝑧𝑘,𝑁(𝑘)} 𝜖 ℱ(𝒵) (2) 

where ℱ(𝜒) is the collections of all finite subsets of target states 

𝜒  with M(k) states and ℱ(𝒵)  is the collections of all finite 

subsets of observation states 𝒵  with N(k) states. Each target 

𝑥𝑘−1,∙  in multi-target set 𝑋𝑘−1  generates a Bernoulli RFS 

𝑆𝑘|𝑘−1(𝑥𝑘−1) at time k with survival probability 𝑝𝑆,𝑘(𝑥𝑘−1) and 

new targets at time k are modeled by an RFS of spontaneous births 

Γ𝑘 . Hence, the multi-target state 𝑋𝑘  at time k according to the 

previous state 𝑋𝑘−1 [5], [6], 

𝑋𝑘 =  ⋃ 𝑆𝑘|𝑘−1(𝑥𝑘−1)  ∪ Γ𝑘  

𝑥𝑘−1∈𝑋𝑘−1

 (3) 

Similarly, each measurement 𝑧𝑘,∙  in observation set 𝑍𝑘  is 

generated by Bernoulli RFS 𝐷𝑘(𝑥𝑘)  with detection probability 

𝑝𝐷,𝑘(𝑥𝑘)  based on each target 𝑥𝑘   in the set 𝑋𝑘  at time k and 

spurious measurement set 𝐹𝑘 [5], [6], 

𝑍𝑘 =  ⋃ 𝐷𝑘(𝑥𝑘)  ∪ 𝐹𝑘  

𝑥𝑘∈𝑋𝑘

 (4) 

Based on the theory of Bayes recursion with multi-target set 𝑋𝑘 

and multi-target observation set 𝑍𝑘  at time k, the optimal 

multitarget Bayes filter is derived given by the recursion as follows, 

𝑝𝑘|𝑘−1(𝑋𝑘|𝑍1:𝑘−1)

=  ∫ 𝑓𝑘|𝑘−1(𝑋𝑘|𝑋)𝑝𝑘−1(𝑋|𝑍1:𝑘−1)𝜇𝑠(𝑑𝑋) 
(5) 

𝑝𝑘(𝑋𝑘|𝑍1:𝑘) =
𝑔𝑘(𝑍𝑘|𝑋𝑘)𝑝𝑘|𝑘−1(𝑋|𝑍1:𝑘−1)

∫ 𝑔𝑘(𝑍𝑘|𝑋)𝑝𝑘|𝑘−1(𝑋|𝑍1:𝑘−1)𝜇𝑠(𝑑𝑋)
  (6) 

where𝑝𝑘(∙ |𝑍1:𝑘)  is the multi-target posterior density, 𝑝𝑘|𝑘−1(∙

| ∙)  is the multi-target prior density 𝑓𝑘|𝑘−1(∙ | ∙)  is the multi-

target transition density, 𝑔𝑘|𝑘−1(∙ | ∙)  is the multi-target 

likelihood and 𝜇𝑠  is an appropriate reference measure on the 

subset 𝐹𝑘 [6], [23]. 

However, multi-target Bayes filter is computationally 

intractable and it only works when the number of target is small 

[6], [24], various approximations such as Sequential Monte Carlo 

(SMC), Cardinalized probability hypothesis density (CPHD), 

multi-Bernoulli, PHD and Dynamic factorization have been 

proposed in the past [23], [25], [26]. As PHD is more mature, 

swifter and more computationally efficient compared to the rest of 

other existing approximation tactics [5], [23], [25], [27], we only 

remark this filter and further elaborate it under the linear Gaussian 

multi-target model. 

  The PHD filter propagates a first order of statistical moment of 

the multi-target posterior [22] with the theory of finite-set statistics 

(FISST) to approximate the optimal multitarget Bayes filtering in 

the recursion (5) and (6). FISST is a systematic, unified and 

intuitive approach to multi-sensor-multi-target detection, tracking 

and information fusion based on the mathematical foundation for 

stochastic multi-object problems, point process theory [4], [28]. 

Thus, the following approximated intensities ν𝑘 and ν𝑘|𝑘−1 are 

approximated with the first moment of multi-target posterior 

density p𝑘 from equation (6) and multi-target predicted density 

p𝑘|𝑘−1 from equation (5) respectively through PHD recursion, 

𝑣𝑘|𝑘−1(𝑥) =  ∫ 𝑝𝑆,𝑘(𝑥𝑘−1)𝑓𝑘|𝑘−1(𝑥𝑘|𝑥𝑘−1)𝑣𝑘−1𝑑𝑥𝑘−1

+ 𝛾𝑘(𝑥𝑘) 

(7) 

𝑣𝑘(𝑥)

= [1 − 𝑝𝐷,𝑘(𝑥𝑘)]𝑣𝑘|𝑘−1(𝑥𝑘)

+ ∑
𝑝𝐷,𝑘(𝑥𝑘)𝑔𝑘(𝑧|𝑥𝑘)𝑣𝑘|𝑘−1(𝑥𝑘)

𝜅𝑘(𝑧) + ∫ 𝑝𝐷,𝑘(𝑥𝑘−1)𝑔𝑘(𝑧|𝑥𝑘−1)𝑣𝑘|𝑘−1(𝑥𝑘−1)𝑑𝑥𝑘−1
𝑧∈𝑍𝑘

  

(8) 

where 𝑓𝑘|𝑘−1(∙ | ∙)  is the multi-target transition density, 

𝑔𝑘|𝑘−1(∙ | ∙)  is the multi-target likelihood, 𝑝𝑆,𝑘(𝑥𝑘−1)  is a 

survival probability at time k given state x at previous time k-1, 
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𝑝𝐷,𝑘(𝑥) is a detection probability given state x at time k,  𝜅𝑘(𝑧) 

is an intensity of clutter RFS 𝐹𝑘 and 𝛾𝑘(𝑥) is an intensity of the 

birth RFS Γ𝑘  [5] , [6]. From equations (7) and (8), its 

approximation based on FISST demonstrates the computationally 

cheaper approach without combinatorial computations from 

unknown association of the Bernoulli RFS [6]. However, PHD 

filter does not offer any closed-form solution and suffers curse of 

dimensionality due to complexity of numerical integration [6], [29]. 

  To obtain the closed form solution, particle PHD filters such as 

Auxiliary particle PHD filter [30] and SMC-PHD filter are 

developed in the past. They suffer from demanding computational 

cost even though they support highly nonlinear problems. For this 

reason, we rule out the approach of particle PHD filters and adopt 

GMPHD which is closed form solution to PHD recursion under the 

linear Gaussian multitarget model. Equations (9) and (10) shows 

the Gaussian approximation of equations (7) and (8). 

𝑣𝑘−1(𝑥) =  ∑ 𝑤𝑘−1
(𝑖)

𝑁(𝑥; 𝑚𝑘−1
𝑖 , 𝑃𝑘−1

(𝑖)
)

𝐽𝑘−1

𝑖=1

 (9) 

𝑣𝑘(𝑥) = ∑ 𝑤𝑘−1
(𝑖)

𝑁(𝑥; 𝑚𝑘|𝑘−1
𝑖 , 𝑃𝑘|𝑘−1

(𝑖)
)

𝐽𝑘−1

𝑖=1

  (10) 

Where, w is the weight of Gaussian distribution and N(∙   m, P) 

represents a Gaussian density with mean m and covariance P and 

J is the number of components of the intensity. For simplicity, 

standard Kalman filter with both linear prediction model and linear 

update model for each sensor is exploited in this paper to acquire 

the closed form solution of Bayes filtering recursion under the 

assumption of linear Gaussian model for equations (9) and (10). 

3. Problem formulation 

  This section presents the existing issues for the development of 

multi-target tracking-based heterogeneous sensor fusion. In 

section 3.1, we define the system requirements of heterogenous 

senor fusion to explain the goal of desirable sensor fusion. In 

section 3.2, the problems in heterogeneous Sensor fusion 

architectures with GMPHD are explained. 

3.1 The requirements of heterogeneous sensor fusion  

3.1.1 Improvement ability of sensor fusion in mobility system 

  The tracking-based algorithm in the local tracking and sensor 

fusion layer function as a role of jointly estimating the number of 

targets and recovering their trajectories from sensor data [5] so as 

to enhance detection rate and distinguish true object targets from a 

set of spurious measurements. Focusing on GMPHD strategy with 

heterogeneous sensor fusion on mobility systems, the requirement 

for the sensor fusion is that it could still maintain the fair 

improvement ability of any erroneous detection in the higher speed 

environment of mobility system. 

3.1.2 Adaptivity to adverse scenario 

  In mobility systems, the illumination of environment fluctuates 

due to bad weather and operation area. This issue leads to the 

degradation of some optical sensor performance. As the sensor 

properties cannot be stably controlled and change unpredictably in 

reality due to the adverse influence from surrounding environment, 

this become our concerned problem for the improvement ability of 

heterogenous sensor fusion with default GMPHD and pre-defined 

model for the sudden sensor properties change. For example, the 

camera on mobility systems often cannot work well in dark tunnel 

but radioactive sensors such as radar and lidar usually function 

well instead. We would like our sensor fusion is still able to 

improve the detection error effectively under adverse condition. 

3.2 Problems in heterogeneous Sensor fusion architectures 

For multi-sensor fusion, the fusion architectures do not only 

influence the communication efficiency owing to the bandwidth 

requirement but also error certainty estimation and information 

correlation between measurements. There are two mainstream 

architecture of sensor fusion in the past, Centralized fusion 

architectures and Hierarchical fusion architectures. Centralized 

fusion architectures transmit the raw measurements from each 

deployed sensor directly to a global fusion node. (shown in figure 

1) They provide local stovepiped processing centers that limit 

network-centric development [15].  

 

Figure 1. the structure of centralized fusion architecture 

Hierarchical architectures combine all the track estimates from 

each local centralized fusion processing nodes, forming a 

subordinate–superior relationship [15]. (shown in Figure 2) This 

relationship forms the robust technique which further abates the 

estimation error and enhance the tracking performance. 

 

Figure 2. the structure of hierarchical fusion architecture 

Despite the availability of these architectures’ foundation, the 

first challenging problem is to handle the problem of adaptive 

architecture for heterogeneous sensors fusion with GMPHD in 

mobility systems due to operation speed and adverse scenario 

mentioned in 3.1. As the velocity of the first appearance object is 

far from zero for the problem of mobility speed, GMPHD models 

from the majority of existing methods such as [13] for stationary 

environment is no longer sensitive and with default setups from the 

current literature. 

For the proposed methods with GMPHD in the past with only 

homogenous sensor required, only same prediction models and 

update models are needed usually without any change. Therefore, 

no special arrangement in such architecture is indispensable for 

better fusion performance as same models could cater well for only 

single sensor with the good consistency in local and global track 

estimation. However, the problem become tremendously 

challenging when it comes to heterogenous sensors and no current 

works address the architecture problem for heterogenous sensor 

with GMPHD. For the case of heterogenous sensors, the 

composition of architecture to satisfy different properties of 

sensors becomes complicated because of same global fusion track 

with incoming raw measurements or local track from the different 

types of sensors with variant FOV, clutter rate, error covariance 

and detection rate. Furthermore, the synchronization fusion order 

for those different prediction and update models based on sensor 
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properties in the architecture is also the issue that influentially 

worsen the detection performance. 

Therefore, opting the most proper architecture and the 

techniques of the fusion management are significant issues to 

enhance the fusion performance of the tracking estimation and 

address the adaptability of operation speed and adverse scenario. 

4. Proposed architectures for the integration of 

GMPHD to heterogeneous sensor fusion 

  In this section, the details and the implementation concerns of 

three proposed architectures M2TF, T2TF and T2AF based on the 

fundamental fusion architectures with the integration of GMPHD 

in Kalman filter to heterogeneous sensors are presented. In each 

GMPHD with Kalman filter, the dedication of designing Gaussian 

components in two models based on equations (9) and (10), 

prediction and update models, are especially focused in this section. 

4.1 Measurement-to-track heterogeneous sensor fusion 

(M2TF) with GMPHD integration 

The structure of measurement-to-track fusion (M2TF) is 

illustrated in Figure 4 based on Centralized fusion architectures 

with GMPHD algorithm. In this architecture, the raw 

measurements from each type of sensor at each time step are 

sequentially fed into GMPHD algorithm. 

 
Figure 4. the structure of measurement-to-track fusion with 

GMPHD integration 

  Since this architecture with GMPHD does not require data 

association to group the corresponding measurements for each of 

the same target object, the asynchronistic models are exploited and 

the raw measurements from each type of sensor at each time step 

update the global fusion track sequentially as shown in Figure 5. 

 

 

Figure 5. the measurement management of measurement-to-

track fusion with GMPHD integration 

  In M2TF architecture, only single GMPHD for global fusion is 

required. The challenging part of this architecture is to build up 

two essential models for accurate global fusion with the 

implementation of GMPHD for heterogeneous sensors on non-

stationary mobility system, global prediction model based on 

equation (9) and global update model based on equation (10).  

For global prediction modeling, birth gaussian components 

based on the corresponding sensors’ FOV of incoming 

measurement are appended into global track. The velocity of each 

birth component should be same as the speed of mobility systems 

when the first appearance point is most likely to vary based on 

current velocity of mobility system. The survival rate and 

prediction error covariance remain the same throughout the whole 

estimation. However, survival rate should not be too low, and the 

target states are supposed to survive for certain period even though 

other types of sensors might not successfully capture the object due 

to small area of FOV. In other words, only birth model change is 

conducted based on the sensor type of incoming measurements for 

each prediction step in recursion. 

For global update model, the global track is retrieved for the 

fusion with incoming measurements. Based on the sensor type of 

incoming measurements, the corresponding detection rate, density 

of Poisson false alarm and error covariance are applied to each 

measurement point and update the target state correspondingly. 

In this architecture, the computational requirement is lower as 

only single GMPHD is required to estimate all the incoming 

measurement from disparate sensors and no extra data association 

and clustering are needed. 

4.2 Track-to-Track heterogeneous sensor fusion (T2TF) with 

GMPHD integration 

The structure of track-to-track fusion (T2TF) is illustrated in 

Figure 6 based on Hierarchical fusion architectures with GMPHD 

algorithm. In this architecture, the raw measurements from each 

sensor at each time step are pre-filtered with local tracking in 

advance given that the raw measurements are the point object. 

 

Figure 6. the structure of track-to-track fusion with GMPHD 

integration 

Since this architecture with GMPHD does not require data 

association to group the corresponding measurement for the same 

object as M2TF structure does, the asynchronistic models are 

exploited and the filtered measurements from each type of sensor 

at each time step sequentially update the global fusion track as 

shown in Figure 7. 

 

 

Figure 7. the measurement management of track-to-track 

fusion with GMPHD integration 

In T2TF architecture for heterogeneous sensors on mobility 

system, GMPHD for local tracking and global fusion are required. 

In other words, the challenging part of this architecture is not only 

to build up prediction and update models for accurate global fusion 

as M2TF illustrates but also the prediction and update models in 

local tracking for each sensor before fusion. 

For each local prediction model, birth gaussian components 
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based on the corresponding sensors’ FOV of incoming 

measurement are appended into local track for each sensor and the 

velocity of each component in first appearance tend to be the same 

as the speed of mobility systems. This technique further 

distinguishes the clutters which potentially have unalike velocity. 

The survival rate and prediction error covariance remain the same. 

For each local update model, the local track from each sensor is 

retrieved for the fusion with incoming measurements. Based on the 

sensor type of incoming measurement, the corresponding density 

of Poisson false alarm and error covariance are applied to each 

measurement point and update the target state correspondingly. 

For global prediction model, all the parameters are the same as 

the local prediction model based on the sensor type of incoming 

dataset and the speed of the mobility systems. However, more 

different configurations are required in the global update model. 

As we noticed that the local tracking dedicated for each sensor has 

already enhanced the local estimate track by reducing clutter and 

improved detection rate, the corresponding detection rate would be 

therefore higher and the density of Poisson false alarm relatively 

decreases in the global update model to update the global track 

with incoming filtered local track from respective heterogenous 

sensors for fusion. 

This architecture could further swiftly weed out the random 

clutter because of the involvement of two-step filtering and 

therefore we assume this architecture perform well in high Signal 

Noise Ratio environment. 

4.3 Track-to-Association heterogeneous sensor fusion 

(T2AF) with GMPHD integration 

  The structure of track-to-association fusion (T2AF) is 

illustrated in Figure 8 based on Hierarchical fusion architectures 

with GMPHD and global fusion with data association. In this 

architecture, the raw measurements from each sensor at each time 

step are first filtered with local tracking given that the raw 

measurements are the point object which indicates single point per 

object and then sequentially fed into data association algorithm for 

the fusion step. 

 
Figure 8. the structure of track-to-association fusion with 

GMPHD integration 

  Since this architecture with GMPHD requires data association 

in the final fusion step to group the corresponding measurement 

for the same target object, the synchronistic data association 

models are exploited and the filtered measurements from each type 

of sensor at each time step collectively update the global fusion 

track with data association as shown in Figure 9. 

 

 

Figure 9. the measurement management of track-to-

association fusion with GMPHD integration 

The challenging part is to develop two models, local prediction 

model and local update model, for local tracking in respective 

heterogeneous sensors with the implementation of GMPHD. 

The local prediction models are specifically built for each type 

of sensor. For each prediction model in local tracking in each 

sensor, the birth models based on FOV of respective sensors and 

velocity of mobility system are added to the existing local track. 

For each update model in local tracking of each sensor, the 

detection rate, the clutter rate based on density of Poisson false 

alarm and error covariance for local tracking are set up to update 

the local track as per the sensor properties. As for the global fusion, 

GNN is the suggested data association approach to associate the 

points in high Signal noise ratio environment and we assume 

GMPHD algorithm has already efficiently tackled almost all 

clutters and miss-detection issues beforehand. 

The architecture requires low computational resource provided 

that the cheaper data association is utilized. Nevertheless, GMPHD 

in local tracking from each sensor plays a key role for dealing with 

the problem of miss detection and clutter in this architecture. 

5. Simulation and Performance evaluation 

5.1 Simulation environment 

To determine the suitability whether our three sensor fusion 

architectures with GMPHD are applicable to the mobility systems, 

various scenarios for sensor measurements are simulated through 

our scripted simulation based on the consideration of these three 

aspects, 1. speeds of mobility system from 0km/h to 90 km/h based 

on the standard braking distance and the existing laws for train 

speed [31], [32], [33], [34] 2. natures of target obstacles with initial 

origins from respective sensor FOV and velocities with different 

directions and 3. sensor properties with camera and 2 non-optical 

sensors based on the prototype system in our setup. 

5.2 Performance evaluation for sensor fusion 

In our evaluation, generalized optimal sub-pattern assignment 

(GOSPA) was utilized as an indicator to evaluate the performance 

of tracking algorithm. The metric enables the researchers to 

express the penalty as an optimization over assignments instead of 

permutations between estimation set and ground truth compared to 

traditional optimal sub-pattern assignment (OSPA) [35]. As missed 

target and false target are the most concerned attributes for the 

performance of our algorithms, we decide to use GOSPA to 

determine how our sensor fusion architecture improves the 

detection performance. 

Let 𝑋 be ground truth set, 𝑋̂ be the estimated set from sensor 

fusion and 𝜏  be the possible assignment set between 𝑋  and 𝑋̂ 

with combinatorial optimization algorithm such as Hungarian 

algorithm or auction algorithm, the GOSPA metric for 𝛼 = 2 

which  determines the error due to cardinality mismatch is 

formulated as follows, 

𝑑𝑝
(𝑐,2)

(𝑋, 𝑋̂ ) = [min
𝛾∈𝜏

( ∑ 𝑑(𝑋, 𝑋̂)
𝑝

(𝑖,𝑗)∈𝛾

+  
𝑐𝑝

2
(|𝑋| + |𝑋̂| − 2|𝛾|))]

1
𝑝 (12) 
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Where p represents the dimension of the L-norm and c is the 

maximum allowable localization error [35]. In our performance 

evaluation of our sensor fusion algorithms, we assigned value p as 

2 and value c as 10. 

  To illustrate the improvement rate after sensor fusion, minimum 

GOSPA with less error among all the tracking results from each 

sensor before fusion is obtained. The improvement rate is the 

reduction of GOSPA in tracking result after sensor fusion over the 

minimum GOPSA among all sensors before fusion. 

5.3 Simulation Dataset and Results 

For our simulation dataset, the environment is in fulfillment of 

three criteria, 1. speed of mobility system, 2. moving nature of 

target objects and 3. sensor properties as mentioned in section 5.1. 

In this section, three cases with only camera detection properties 

change for four different speeds of mobility systems are evaluated 

to examine the improvement ability of the proposed architectures 

for sensor fusion with GMPHD. We selected the cases with camera 

detection properties change because the detection property of 

optical sensor is always subject to illumination and the mobility 

systems frequently encounter dark environments. Moreover, three 

objects are set up to move with constant velocity model and the 

assumption of those objects’ properties for all the simulation 

scenes are shown as follows, 

Table 1. The assumption of Objects’ properties 

 Initial position (m) Velocity (m/s) 

Object 1 (250, 1) (-0.9, 0.5) 

Object 2 (100, 4) (-0.5, -1) 

Object 3 (150, -6) (-3, 0.7) 

5.3.1 Evaluation of Normal case 

For normal case, we consider that all the sensors perform 

normally and excel its general functions without any substantial 

influence from the surrounding environment, the parameter 

configurations with detection rate, FOV distance and clutter rate 

for each single sensor are detailed in the table 2 shown below. 

Table 2. Configuration of sensor properties in normal case 

 Detectio

n rate 

FOV 

distance 

Clutter rate 

(clutter/frame) 

Error covariance 

(x, y, 𝒗𝒙, 𝒗𝒚) 

Camera 95% 300m 1 (10, 1, 3, 1) 

Sensor 1 85% 100m 1 (3, 1, 2, 1) 

Sensor 2 90% 150m 3 (3, 1, 2, 1) 

 

Figure 10. GOSPA performance evaluation for tracking and 

fusion at different speeds in normal case 

In the results shown in figure 10, we found that the architecture 

M2TF performs superiorly compared to the rest of two 

architectures and has a significant improvement in GOSPA. To 

focus on its improvement rate to the tracking result from the 

smallest GOSPA before fusion, the architecture GOPSA values in 

M2TF for the mobility systems speed at 0 km/h, 20km/h, 60 km/h 

and 90 km/h decreases by around 37.27%, 51.82%, 44% and 

48.95% respectively. In other words, the sensor fusion architecture 

M2TF remarkably reduces the localization error, the number of 

false detection as well as the number of miss detection compared 

to the ground truth data.  

Overall, the architecture M2TF which perform better among all 

architectures has 45.5% GOSPA improvement in average from 

5.00 to 2.83 to the relatively good tracking performance when 

T2AF and T2AF have 34.38% improvement from 5.00 to 3.34 and 

0% improvement in average respectively. It is worth noting that 

even though the architecture T2AF does not have any excellent 

improvement overall especially when the mobility system is 

moving, it has 28.95% improvement from 3.73 to 2.65 for the 

stationary mobility system environment. 

5.3.2 Evaluation of Abnormal case with camera detection rate 

75% 

For the abnormal case with camera detection 75%, we assume 

that all the sensors perform normally except camera and the 

detection rate of camera is lowered from original 95% to 75%, the 

parameter configurations for each sensor are detailed in the 

following table. 

Table 4. Configuration of sensor properties in abnormal case 

with camera detection rate 75% 

 Detection 

rate 

FOV 

distance 

Clutter rate 

(clutter/frame) 

Error covariance 

(x, y, 𝒗𝒙, 𝒗𝒚) 

Camera 75% 300m 1 (10, 1, 3, 1) 

Sensor 1 85% 100m 1 (3, 1, 2, 1) 

Sensor 2 90% 150m 3 (3, 1, 2, 1) 

 

Figure 11. GOSPA performance evaluation for tracking and 

fusion at different speeds in abnormal case with camera 

detection rate 75% 

In the result shown in figure 11, we found that the architecture 

T2AF performs superiorly with average 27.08% GOSPA 

improvement from 6.5 to 4.74 compared to the rest of two 

architectures when the mobility system is stationary. However, it 

performs the worst with higher GOSPA when the mobility systems 

operate at higher speed even though it has the excellent fusion 

performance when the mobility system is stationary. This 

insinuates that the achievement of satisfactory fusion performance 

in T2AF architecture is contingent on the speed of the mobility 

systems. The rest of the architectures M2TF and T2TF demonstrate 

their improvement abilities and perform stably regardless of the 

mobility system speed. Both architectures M2TF and T2TF have 

similar performance overall with smaller GOSPA in average for all 

cases when the mobility systems are moving at different speeds. 

On the whole, the architecture M2TF which perform better 

among all architectures has 25.08% improvement in average from 

6.87 to 5.09 to the relatively good tracking performance in Sensor 

2 before fusion when T2TF has 18.41% in average from 6.87 to 

5.55, It is worth noting that even though the architecture T2AF 
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does not have any excellent improvement overall especially for the 

case when the mobility system is moving, it performs well in the 

stationary mobility system environment. 

5.3.3 Evaluation of abnormal case with camera detection rate 

50% 

For the abnormal case with camera detection 50%, we assume 

that all the sensors perform normally except camera and the 

detection rate of camera drops from original 95% to 50%, the 

parameter configurations for each sensor are detailed in the table 6 

shown below. 

Table 6. Configuration of sensor properties in Abnormal 

case with camera detection rate 50% 

 Detectio

n rate 

FOV 

distance 

Clutter rate 

(clutter/frame) 

Error covariance 

(x, y, 𝒗𝒙, 𝒗𝒚) 

Camera 0.5 300m 1 (10, 1, 3, 1) 

Sensor 1 0.85 100m 1 (3, 1, 2, 1) 

Sensor 2 0.9 150m 3 (3, 1, 2, 1) 

 

Figure 12. GOSPA performance evaluation for tracking and 

fusion at different speeds in abnormal case with camera 

detection rate 50% 

From figure 12, the GOSPA improvement tendency is similar to 

the normal case and the abnormal case with camera detection 75% 

although all the GOSPA values are relatively higher overall 

compared to normal case and the case with 75% camera detection 

rate change. On the other hand, both architectures M2TF and T2TF 

have similar performance regardless of the mobility system speed 

overall with smaller GOSPA with 21.84% improvement rate from 

7.39 to 5.98 and 23.29% improvement from 7.39 to 5.88 in average 

respectively. We further found that the GOSPA of the architecture 

T2AF performs superiorly with 31.29% improvement from 7.99 to 

5.49 compared to the rest of two architectures and has a significant 

improvement in GOSPA when the mobility system is stationary. 

However, the architecture T2AF performs worst with higher 

GOSPA when the mobility systems operate at higher speed. 

On the whole, the architecture T2TF which performs better 

among all architectures in average when M2TF has similar 

improvement in average. Similar to the normal cases and another 

abnormal cases, it is worth noting that even though the architecture 

T2AF does not have any excellent improvement overall, it 

performs well in the stationary mobility system environment. 

6. Related work 

From the current literatures, most of the proposed approaches that 

tackle the heterogenous sensor fusion problem are based on track-

to-track fusion which was originally proposed in [7]. Its variants 

include the refined data association with clustering [8] and 

integrating the non-kinematic information [9]. Their proposed 

techniques for the improvement to heterogeneous sensor fusion 

provided more accurate estimation of the target position and data 

management during the fusion stage. However, the requirement of 

our goal in this paper also focus on missed detection and clutter 

with provenly efficient method in the fusion layer but not only the 

estimation of the positions of the target objects. 

Furthermore, there are deep neural network based fusion 

approaches such as Deep Multimodal Encoding [10] and Deep 

Fusion [11]. Nevertheless, this machine learning based strategy 

requires enormous training data for creating the functional 

weighted model and it is still complicated at this point to ensure its 

faultlessness, safety and high reliability due to its ambiguous 

inductive properties driven by restrictedly available training data. 

This ambiguity leads to impracticality and difficulty of creating 

error-free model through debugging and re-training. Therefore, 

deep neural network-based approach for sensor fusion is not our 

study target in this paper. 

Whilst most of the existing literatures focus on tracking problem 

of homogeneous sensor with GMPHD such as [12], [13] and they 

showed the feasibility of exploiting GMPHD for sensor 

application, focusing on the fusion of homogeneous sensor is not 

applicable to practical tracking-based sensor fusion system due to 

incomprehensiveness of the environment in some abnormal 

circumstances with the constraint of single type of sensor.  

Even though there is a similar approach in literature [14] with one 

of our proposed architectures with GMPHD for heterogeneous 

sensors. They simply focus on extended object tracking which is a 

contrast to point object tracking that we focus here. Point object 

tracking only require cheaper hardware because of lower 

resolution of the sensor and this further saves the product cost. This 

paper further evaluates the performance of the proposed 

architecture with GMPHD for heterogenous sensor fusion in 

details. 

7. Conclusion 

This paper presents three architectures including T2TF, M2TF 

and T2AF of heterogenous sensor fusion with the integration of 

GMPHD in a bid to improve the detection ability in terms of the 

issues of clutter and miss-detection. We have gone through these 

three architectures and their improvement evaluation. Our results 

have demonstrated that they all have significant improvement 

ability but performed differently during the speed change in 

mobility system and the sudden change of one sensor properties. 

In our empirical results with GOSPA, it has been showed that 

our all proposed sensor fusion architecture T2TF, M2TF and T2AF 

with GMPHD can effectively improve the detection performance 

when the mobility system is stationary. However, the performance 

of T2AF starts to deteriorate when the mobility system speeds up 

from 0km/h even though it has excellent 29.10% GOSPA 

improvement in average for all stationary situations compared to 

the rests. Among all architectures, M2TF architecture with 

GMPHD performs remarkably in general with average 45.50% 

GOSPA improvement for normal case, 25.09% improvement for 

the abnormal case with 75% camera detection rate and 21.83% 

GOSPA improvement for the abnormal case with 50% camera 

detection rate. This draw us the conclusion that we might have to 

set up the minimum requirement for our satisfactory sensor fusion 

performance and switch to the most appropriate architecture under 

circumstances of system moving with variant speed or stationary 
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in order to get better detection enhancement through our sensor 

fusion algorithm. This evaluation is significantly critical for the 

adoption of sensor fusion architectures since it reflects their 

abilities to improve and keep the detection performance especially 

when there is sudden change in properties of sensors due to 

environmental influence and the speed of mobility system. 
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