F=ERX—=RAVAT A 101—-10
(1995. 1. 27)

IETEMEREE A HUE— RS 74

FHE— Hchi—
BA IBM - MEXZ

AL BILRABEEAER & B-RK2 Bl - oRFEATE L 7 7 A r0—BRECOWTEw
TWwb, HEBERILEAV5 2, REROEEER LAV L FCHNT, 1 DOBEKRCET S ¥ —D
HoOSHHMPEL R D, RIEFIAEREL £, 230,18 BoOF—~cERLAL L T 5, IEIEFIAKIK 66
HThHolko BXCDANF—D L ¥, Bl —RERFOR—IHHIAIBRIZF0.2HTH k. #H
OEETERRMIRH OB ILER L 23, ERECEMRBE & X —H,L %o

A SIMILAR KEY SEARCH FILE USING EXTENDIBLE ‘
CLASS NAME EXPRESSION

Motoichi Hirade Eiichi Tanaka
IBM Japan - Kobe University

In information retrieval there is a great demand for a file that can retrieve similar keys to an input
key. However, only a few researches have been done for this kind of files. This paper proposes a file of
this kind using extendible class name expressions and based on a B*-tree. Therefore, the file can easily
insert and delete keys without lowering its storage utilization. The experiment using 230,188 keys with
length 1 ~ 16 shows the good performance of the file. That is, the file can retrieve, insert and delete
keys with less disk access than an original B-tree. The number of page reads for searching similar keys is
around 30.2 in case of an input key with length 6. The storage utilization of the file is about 66%. This
value is very close to the average storage utilization of an original B-tree. The performance of this file is
analyzed and the theoretical evaluation shows a good coincidence to the experimental value.

1 Introduction

In a B-tree and its variants [1] - [4], [6], [7], [14] - [16], [18], retrieval, insertion and deletion of a key
can be performed with a small number of disk access. A B-tree keeps storage utilization at least 50%
and on average 69%. The analyses [4], [7], [15], [16], [18] of a B-tree and B*-tree show high performance
by analyzing the height of a tree and storage utilization. The method of increasing storage utilization
using partial expansions [8] is proposed, and analyzed the expected performance of B*-trees with partial
expansions [17]. A B-tree and its variants cannot search similar keys to an input key. However, the
robustness of a file is required in the following cases. (1) Incorrect data are stored in a file. (2) A file has
incorrect structures. (3) Users want to list all similar keys to a key.

Among these problems, to cope with the case (2), several methods of detecting and correcting pointers
and indexes errors of a B-tree have been proposed [5], [12], [13]. For the problems of (1) and (3), a
hierarchical file using class name expressions has been proposed [10], [11]. However, this file is not
constructed so that the insertion of a key can not be easily done. Furthermore, the storage utilization of
the file becomes lower, when successive deletions occur.

In this paper, we propose a file structure for searching similar keys to an input key, and describe
the method of operations. The file structure is a tree structure combined a hierarchical file using class
name expressions and a B*-tree. The proposed file structure has following features. (4) A retrieval, an
insertion and a deletion of a key can be performed with a small number of disk access like a B-tree. (5)
Search for similar keys can be performed like a hierarchical file using class name expressions.

2 Clustering the Set of Keys

The set of keys should be clustered in order to search similar keys efficiently. In this section we will
describe two methods of clustering the set of keys. The one uses class name expressions [10], {11], and
the other uses extendible class name expressions.

2.1 Class Name Expressions

Assume that the set T of alphabet is divided into the following two classes. A = {a, b, ¢, d, e, 1, g, h, i,
j»k, 1, m}, B={n, 0, p, q, 1, 8 t, W, v, W, X, ¥, z}.

A and B are called class names. If we write “apple” using the above class names, we have ABBAA.
We call this the class name expression (CNE) of “apple”. The CNE of “knock” is also ABBAA. A set of
keys can be clustered using CNEs as shown in Fig. 1.

2.2 Extendible Class Name Expressions

As we can see in Fig. 1, a clustering a set of keys using CNEs does not always have a good balance in
the numbers of keys under CNEs. So we propose the eztendible class name ezpression (ECNE) in order
to overcome the drawback of CNEs. The basic idea is that we define variable length CNEs. That is, we
divide a set that has a large number of keys, and merge sets that have a small number of keys into one.

CNEs use a fixed classification of letters, but ECNEs use a hierarchical classification of letters as
shown in Fig. 2. The Level 0 class consists of one class that has all letters, that is I, and its class name
is “0”. The class at level 0 is divided into u classes and we call them the level 1 classes. Their class
names are 1,--+,u. And alevel i class (i = 1,::-,7) is a fine classification of a level i — 1 class, where
is the maximum level number. Fig. 2 shows an example of a hierarchical classification of letters in case
that » = 2 and » = 2. In Fig. 2, the number on left shoulder of a class is its class name. At level i, u'~!
ECNESs have same class names. However, there occurs no confusion as we will show later.

A ONE using a hierarchical classification of letters is called the extendible class name expression.
When the maximum level number in a hierarchical classification of letters is 7, an ECNE E of key = with
length » can be expressed as follows.

E(-’F) =€1,1€1,2°°°€1,n-€2,1€22°* €2n."*°.Cp 1€r 2" Epn

€;,j is a level i class name of the j-th letter in a key or is the class name 0 at level 0. A period between ¢; ,
and e;41,1 is a separator between class names at level { and i-+1. For example, 1210.0000 and 212.111.210
are ECNEs.

We define the initial ECNE such that ¢;j =0 for ¢ = 1,--+,r and j = 1,--+,n, where 0 is the class
name at level 0. Any ECNEs are made from the initial ECNE by a series of extension that will be
described below. We define the length of an ECNE as the times of extension from the initial ECNE.
The length of the initial ECNE is 0. The way of extending an ECNE E with length m (0 < m < =r)
is as follows. Since m = n|m/n| + (m —n|m/n]), e|m/naj+1,m=nlm/n)+1 and its right class names are
“0", For example, consider ECNE 212.110.000 with n = 3 and m = 5. Since 5 = 3|5/3} + (5 —315/3)),
€lm/n]+1,m=nlm/n]+1 = €2,3 and the right class names of e3 3, that is e31, €3,2 and e3 3, are “0”. Hence,
exchanging €|m /n)+1,m—nlm/n}+1 for 1,+ <+, u, that is, class names at level (|m/n] +1), makes u extended
ECNEs. Thus the number of ECNEs increases by v — 1 An ECNE whose length is m = nr can not be
extended further.

Ezample: In case of r = 2 and u = 2 an extension of ECNE 12211.11000 with n = 5 and m=7
makes two ECNEs 12211.11100 and 12211.11200.

E™(z) denotes an ECNE with length m for z. For example, using the hierarchical classification of
letters in Fig. 2, the ECNE with length 7 for “apple” is E"(apple) = 12211.11000. E/*¥(z) denotes an
ECNE with the maximum length, that is nr, for z, and Ef*¥(z) = E*"(z). An ECNE with length m
has nr — m class names of “0" . We define full eztension by exchanging nr — m class names of “0" in
E™(z) for the maximum class name u, and it is denoted by F(E™(x)). For example, F(E" (a.pple)) =
F(12211.11000) = 12211.11222.

Let E™ and E™? be ECNEs with length m; and mg, respectively, and be mj < my. If E™(z) will
become E™2(zx) by more than or equal to 0 times extension, then E™(z) is called a prefiz of E™2(z).
For example, the prefixes of 121.110 are 000.000, 100.000, 120.000, 121.000, 121.100 and 121.110.

Let the maximum class name in a hierarchical classification be u. Let E™?!, E™2,... E™* be ECNEs
with length m, and E™~11 Em—12 ... Em™—1% be their prefixes with length m — 1, respectively. If
Em=11 = Em=12 = ... = E™~L* then the set of (E™!, E™2,..., E™*) is said to be reducible and
Em-bl jg called a reduced ECNE of E™!, E™2,..., E™*, For example, in case of 7 = 2 and u = 2,
(12211.11100, 12211.11200) is reducible and the reduced ECNE is 12211.11000.

2.3 A Method of Clustering a Set of Keys Using ECNEs

A set of keys can be clustered using ECNEs. When we cluster a set of keys, we establish the upper bound
of the number of keys in a subset that have the same ECNE. If the number of keys in a subset becomes
greater than the upper bound, the subset is split by extending the ECNE into ux ECNEs. Similarly, we
establish the lower bound of the number of keys in'a subset that have the same ECNE. If the number
of keys in a subset become less than the lower bound, the subset will be merged with other subsets by
reducing the ECNEs. If the ECNE and other ECNEs can be reduced to an ECNE, their subsets can
be merged. Thus, we can cluster a set of keys in good balance, since we establish the upper and lower
bounds of the number of keys in a subset. Fig. 3 shows an example of clustering a set of keys using
ECNEs made by a hierarchical classification of letters in Fig, 2.

2.4 Property of ECNEs

Let x be a key of length n. Assume that a series of extension of the initial ECNE of a key with length =
produces M, ECNEs, and let T, = {Ey 1, Eny2, -+, Ex M, } be the set of them. An ECNE has following
properties that is useful to retrieve a key that will be described in Section 3.
(1) There is only one prefix of E/*"(z) in T,.
(2) There is no prefix of E/*"(z) in T; (j > 1, j # n).
From property (1) we have property (3)
(3) E.,n can not be a prefix of E, g, where 1 < h,g < M,.
If we omit periods in an ECNE, we can rega.rd the ECNE as a number. The order of ECNEs is equal
to that of numbers. Therefore, ECNEs have the following three properties.
(4) Let E,, and E,, be ECNEs of keys with length n; and n3, respectively. If n; < no, we have the
inequality F,, < E,,.
(5) Let E and E' be two ECNEs such that E < E’. Let E be any ECNE made by extending F one or
more times. Then there is the inequality E < E < E'.
(6) If Ej, is a prefix of B, there is the inequality E} < EJ < F(E%), and vice versa.

3 The File Structure and Operations
3.1 The File Structure

The file structure of the proposed file is a tree structure as shown in Fig. 4, and it consists of an mdez
part and a data part, The index part is a B*-tree that stores ECNEs and the data part stores clustered
keys. An example of a file is.shown in Fig. 5. Each node:in the file is a page. -A page is the smallest
physical unit of storage allocation on the secondary'storage device. It is the smallest unit of data that
can be read from or written to the secondary storage. Page size, in bytes, is usually defined by the file
system. In Fig. 5, the boxes represent pages and the numbers outside the boxes are page numbers. :

Fig. 6 shows organizations of pages. A page in the index part is called an indez page and a page in
the data part is ¢alled a data page. A leaf index page contains £ ECNEs Ey, Ey, -+, Ey and { pointeia
P1,P2,-*+,Pr- A non-leaf index page contains £ fully extended ECNEs Fy, Fy,---, F and £+ 1 pointers
Por P13+~ Pr» I Ey denotes the maximum ECNE in P(p;) that is a leaf index pagé pointed. by p;,
then Fj4; = F(E;). For example, in page 1 of Fig. 5, F; = 122.222 is the fully extended ECNE of
E, = E5 = 100.000 in page 2. Tuples (E;, p;) and (F;, p;) are called entries. A data page, pointed by
pointer p; of entry (E;,p;) in a leaf index page, has the set of keys whose ECNEs are E;. The keys in a
data page are stored in lexicographical order.

The file has the following properties. -

A lea.f page except the root in the index part has at least [(k+1)/2] and at most k¥ ECNEs. The
root and leaf page holds at least one and at most k ECNEs. , :

(2) A non-leaf and non-root index page has at least |k*/2] and at most k* fully extended ECNEs. The
root and non-leaf index page has at least one and at most k* fully extended ECNEs.

3) A da.ta. page has at least one and at most b keys, where b = | B/n|. B is a page size and n is the
length of keys.

3.2 The Retrieval Algdi-ithni

If key z is in a file, we can find only one prefix of Ef*"(z) in the index part due to property (1).of an
ECNE. When we retrieve z, we must search the data page that has keys with the prefix of E/*(z).
Let P(p) be a page to which p is pointing. Then E,---, E; are the ECNEs in P(p) and py,---,p¢ are
pointers-in. P(p) if P(p) is an leaf index page, and Fl, -, F¢ are the fully extended ECNEs in P(p)
and po,- -+, ps are pointers in P(p) if P(p) is an non-leaf mdex page. o and B, that is, an ECNE and a
pointer, respectwely, are not used in the retrieval algorithm, but will be used in the insertion and deletion
algorithms and the algorithm for searching similar keys. The algorithm for retrieving key = is as follows.

(1) Make Ef*(z),
(2) p « the pointer to the root page.

(3) While P(p) is a non-leaf index page, set p as follows.

,if BI*(z) < R
Y A p. , if F < E"‘”(-’L’) < F}-H.
p i Fy < EI¥(z)

(4) In aleaf index page P(p),

(a) If Ef“”(:z:) < Ej, let a@ « null and # « null. Quit operations, since there is no prefix of
Ef*(z) in the file due to property (2) of an ECNE.

(b) H E; < EM*(2) < By, let 0 — E; and 8 — p;.

(c) ¥ E; < Ef*"(z), let a — Eg and 8 « p;.

(5) If the length of a key with o differs from the length of «, there is no prefix of Ef""(a:) in the file
due to property (2) of an ECNE. Then let @ « null and 3 « null, and quit operations.

(6) If 8 = null, there is no z in the file. Otherw:se, since o is a prefix of Ef'"(a:) search z in data
page P(B).

Erample: Consider the case of retrieving “king” in the file of Fig. 5. Since & = king, Ef*"!(king)

= 1121.2211. In the root page 1 there exist ECNEs 1112.2222 and 1222.2222. Since 1112.2222 <
E'f‘"(kmg) = 1121.2211 < 1222.2222, pointer p; is taken. p; points leaf index page 4. Since 1120.0000
< 1121.2211 < 1200.0000 in page 4, we have E; = 1120.0000 that is a prefix of Ef*!(king). Pointer p;
points page 12. We can find “king” in page 12.

3.3 The Search Algorithm for Similar Keys

We use the one dimensional weighted Levenshtein distance (WLD) [9] as a similarity measure between
two keys. Let d; be the predetermined threshold of distance between an input key and keys in a file. We
will describe the case that d; = 1, that is, “a key has at most one error” (condition(A)).

Let z' be a garbled key of z with length » under condition(A). Let the maximum level number r in
a hierarchical classification be 2, and E/*(z') = €1,1€1,2 " £1,0-€2,1€2,2*** €2,n. Lot e'- ; be a class name
at level i such that ef ; # e;,; and *; be any class name at level i.

The following is the method of searching the most similar keys to an input key z' w1th length n.

(1) Let Z be the set of keys that have the minimum distance from z' and dmm be the muumum distance.
Z — ¢ and dpin «— dy are given in advance, where ¢ is the empty set.

(2) Make Ef*!(z").

() Create the set $ of all ECNEs that satisfy condition(A) from Ef*!(z"), and sort the set S.
(4) While S # ¢, repeat (5) ~ (7).

(5) Remove an element s from S.

(6) Search s in the index part by step (2) ~ (5) in the retrieval operation.

(a) If a = s, perform (7) for P(B).
(b) I a is a prefix of s, remove an ECNE that is a prefix of @ from S, and perform (7) for P(ﬁ)
(¢) If & = null, go to (4).
(7) Let h be the number of keys in P(B) and z; (1 < j < h) be a key in P(f). For j = 1 ~ h, calculate
the WLD from z; to 2’
If D(zj,2') < dmin, let Z — {z;} and dnin = D(zj,2')
I D(:L‘j,.'t') = dmin, let Z «— Z + {.’17,}

After the above operations, Z is the set of the most similar keys to z'.

4 Experimental Results.

The file was constructed using 230,188 English words. The experiment was carried out under the following
conditions. The page size B was 1,024 bytes. The maximum number of ECNEs in a leaf index page and
a non-leaf index page were k = k* = 170. The hierarchical classification of letters of Fig. 2 was used.

The storage utilization U of our file is shown in Fig. 7. As the number N of keys becomes larger, U
seems to converge to about 66%. According to the performance analysis [16], [L5] of a B-tree, the storage
utilization converges to In2, when N and b are large. The storage utilization of the proposed file was
slightly lower than that of a B-tree, that is, In 2, since the assumption (3) is not satisfied.

Let o' be a garbled spelling of # and Z be the set of keys with the minimum distance to z'. We
estimated the following three rates.

(1) Correction rate : the probability to be |Z]=1and Z = {a:}
{(2) Miscorrection rate : the probability to be |Z] = 1 and Z # {z}.
(38) Rejection rate : the probability to be |Z] > 1.

~71-

A key in the file was garbled by making a substitution, an insertion ora deletion, and this garbled spelling
was input to the system. H a garbled key is equal to another key in the file, the key is not used for an
input key. The correction rates of search for the most similar keys are shown in Fig. 8. In the experiment
under condition (A), a miscorrection did not occur.’ As shown in Fig: 8, the longer an input key was, the
higher the correction rate was. The correction rate was higher when an input key had an insertion error.
On the contrary, it was lower when an input key had a deletion error.

5 Conclusion

In this paper, we proposed a file that can retrieve similar keys to an input key, and insert and delete
keys without lowering its storage utilization. The file structure is based on Bt-tree. The experiment
using 230,188 English words with length 1 ~ 16 indicates that'this file can retrieve, insert and delete keys
with less disk access than a an original B-tree [1]. The storage utilization of the file was about 66%. We
analyzed the performance of searching similar keys. The theoretical values of the numbers of page reads
and calculating WLDs were very close to their experimental values. The performance analysis was based
on the assumption that a key has at most one error. One of the remained problems is to analyze the
performance in more general cases. The details are described in {19] although many topics are omitted.

References

[1] R. Bayer and E. McCreight, “Organization and maintenance of large ordered indexes,” Acta Inform.,
vol.1, pp.173-189, 1972.

[2] R. Bayer and K. Unterauer, “Prefix B-Trees,” ACM Trans. Da.ta,base Syst vol.2, no.l, ppl1-26,
1977.

[3] D. Comer, “The ubiquitous B-tree,” Comput. Surveys, vol.11, no.2, ppl21-137, 1979.

[4] B. Eisenbarth, N. Ziviani, G. Gonnet, K. Mehlhorn, and D. Wood, “The theory of fringe analysis
and its application to 2-3 trees and B-trees,” Information and Control, vol.55, pp.125-174, 1982.

[5] K. 'Kant and A. Ravichandran, “Synthesizing robust data structures - an mtroductxon,” IEEE Trans.
Comput., vol.39, no.2, pp.161-173, '1990.

[6] D. E. Knuth, The Art of Computer Programming, vol.3 : Sorting and Searching, Reading, MA :
Addison-Wesley, 1973.

[7] K. Kiispert, “Storage utilization in B*-trees with a generalized overflow technique,” Acta Inform.,
vol.19, pp.35-55, 1983.

[8] D. Lomet, “Partial expansions for file organizations with an index,” ACM: Trans. Database Syst.,
vol.12, no.1, pp.65-84, 1987.

[9] T. Okuda, E. Tanaka and T. Kasai, “A method for the correction of garbled words based on the
Levenshtein metric,” IEEE Trans. Comput., vol.C-25, no.2, pp.172-178, 1976.

[10] E. Tanaka and T. Toyama and S. Kawai, “High speed error correction of phoneme sequences,”
Pattern Recognition, vol.19, no.5, pp.407-412, 1986.

[11] E. Tanaka and Y. Kojima, “A high speed string correction method: using hlera.rchlcal ﬁle," IEEE
Trans. Pattern Anal. & Mach. Intell., vol.9, no.6, pp.806-815, 1987.

[12] D.J. Taylor and D. E. Morgan and J. P. Black, “Redundancy in data structures improving softwa,re
fault tolerance,” IEEE Trans. Software Eng., vol.6, no.6, pp.585-594, 1980.

[13] D. J. Taylor and D. E. Morgan and J. P. Black, “Redundancy in data structures: some theoretical
results,” IEEE Trans. Software Eng., vol.6, no.6, pp.595-602, 1980.

[14] H. Wedekind, “On the selection of access paths in a data base system,” in Proc. IFIP Working Conf.
Data Base Management, pp385-397, 1974.

{15} W. E. Wright, “Some average performance measures for the B-tree,” Acta Inform., vol.21, pp.541-
557, 1985.

[16] A. Yao, “On random 2-3 trees,” Acta Inform., vol.9, pp.159-170, 1978.

[17] R. Baeza-Yates and P. Larson, “Performance of B*-trees with partial expansions,” IEEE Trans.
Knowledge and Data Eng., vol.1, no.2, pp.248-257, 1989.

[18] R. Baeza-Yates, “Expected behaviour of B¥-trees under random insertions,” Acta Inform., vol.26,
pp-439-471, 1989. ‘

[19] M. Hirade, “A study on a fault tolerant file,” Master theses, Department of Electrical and Electronics
Engineering, Kobe University, 1994.

ullt
4B E:EZ
'Q:: aby
' lady
A4ABA - blue
dgte .]
;;;;‘: : fevel 0 {a,l»,c,d,e,f,g,h,ixj,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}
i |
ing 1 2
mind level 1 {a,b,c,d,e,f,g,h,ijk,l,m} {n0,p,qr,s,t,u,v,w,x,y,2}

AABB last
S E lion
many !

mu-< ::;: level 2 {abcdefg)
ABAB —————— boat

2 1 2
{hvirj)k»lum} (nlolplqlrlslt} {ulv»wrxr)'1z}

Fig. 1. An example of clustering Fig. 2. A hierarchical classification of letters.
a set of keys using CNEs.

1110.0000

an index part

1121.1ooo§ blue

1121,2000 hand
SE king

mind

1122.0000 last
SE lion

: many
1200.0000 boat
\:\E cold

home

Fig. 3. An example of clustering Fig. 4. A file structure.
a set of keys using ECNEs.

1

122.222

1112.2222

1222.2222

]

5
10,00 210.000 1120.0000 2100.0000
20,00 220,000 1200.0000 2200, 0000
100.000 1110.0000
o .
o []]]
4 10 1 12 13 14, 15
an no all set not baby || hand || know || that || Push
an 02 T
as on bag the no¥ || jife || have |[most || this || room
° to bed who run i Xin, ear || son,
—Te Too like 8 ¥y : g
in Top mild || many want your
is -
me you mind

Fig. 5. An example of a file.

(2)
R
[EI‘P1|E2|P1| IEklpy.J (%l
(b). RIS T ET T
r,,‘l,2|z,| erneean ‘z,J sk
(o) -
o
Fig' 6. Orga.niza.tions of pages. (a') A]ilOIl'lea-f [. an insertion
page in an index page, (b) x.zlea.f page in an o} - .:‘u:n:imm
index page, and (c) a page in a data page. ., .
N
¢ 1-[xl0’]
U
(%] . . : .
sk Fig. 8. Correction rates R of
searching the most similar keys
for length 8 inputs.
0
e N
sof
50, : 2

2
[x10%]

Fig. 7. Storage utilization
U versus the number N of keys.

