姿勢推定と RNN を用いた動画動作識別手法の調査

高崎 智香子1 竹房 あつ子2 中田 秀基3 小口 正人1

概要:防犯カメラなどの動画像データが活用されるようになってきたが,動画像解析に要する通信量や計 算量,プライバシーに関する問題が介在している.また,ディープラーニング技術が画像認識や音声認識 を始めとする様々な分野に応用されているが,正確な認識処理を行うためには大量のデータの収集,処理 が必要となるため,リアルタイムに解析するのは非常に困難である.本研究では,動画像をリアルタイム に解析し,動作の識別を行うことを目標として,姿勢推定ライブラリ OpenPose とディープラーニングフ レームワーク Keras を用いた機械学習手法について考察した.画像1枚から抽出した特徴量のみを使用し た学習では,約80%の精度で動作を識別することが可能であることがわかった.次に,同じ動画から取得 した10枚の画像の時系列を考慮した特徴量データを使用して動作の識別精度を測定したところ,画像1枚 の識別と比較して識別精度は低下した.また,より長い時系列を考慮した学習を行うためにLSTM による 学習を行い,時間ステップ数やLSTM のノード数,dropout の導入有無を変化させて動作識別精度を比較 したところ,精度が最も良く約83%に改善することができた.

A Study on Action Recognition Method with Estimated Pose by using RNN

Chikako TAKASAKI¹ Atsuko TAKEFUSA² Hidemoto NAKADA³ Masato OGUCHI¹

1. はじめに

カメラやセンサ等の発達やクラウドコンピューティン グの普及により,一般家庭でライフログを取得,蓄積し, 活用されるようになってきた.しかし,取得した動画像は データサイズと解析計算量が大きく,サーバやストレージ を一般家庭に設置して処理するのは難しい.リアルタイム に機械学習を用いて動画像を解析するためには,センサ側 での前処理により特徴量を維持したままデータ量を削減し た後,クラウド側に集約して処理することが望ましい.

本研究では、深層学習を用いて人の関節情報を抽出する 姿勢推定ライブラリ OpenPose[1][2][3][4] を使用し、動画 像から取得した関節の特徴量データから、複数の機械学習 手法を用いて動作識別を行った際の認識精度を比較した. また、ディープラーニングフレームワーク Keras[5] で構築 した NN モデルを用いた動作識別の性能改善を図った. 画 像1枚から抽出した特徴量のみを使用した動作の識別と、

¹ お茶の水女子大学

同じ動画から取得した 10 枚の画像の時系列を考慮した特 徴量データを使用した動作の識別を行い,各手法において 80%以上の精度で動作を識別することが可能であることが わかった.次に,より長い時間の依存関係を学習させるた めに LSTM を用いた実験を行った.LSTM のノード数や 時間ステップ数,dropout の導入有無について変化させ識 別精度を比較したところ,時系列を考慮したデータを使用 した他の手法による識別よりも高い精度を得ることができ た.しかしながら,過学習抑制手法の導入による改善が十 分ではないため,実験結果をもとに精度を向上させる手法 について考察する.

2. 背景

2.1 提案する動画像解析システムの概要と目的

本研究では、図1のようなシステムを想定している。各 一般家庭に設置されたカメラやセンサで取得した動画像か ら特徴量抽出を行い、その特徴量をクラウドに収集し機械 学習処理を行うことで動画に含まれる動作を識別する。ク ラウド側では動画や静止画を用いず、センサ側で抽出した

² 国立情報学研究所

³ 產業技術総合研究所

図1 提案する動画像解析システム

特徴量データのみを使用して十分に動作を解析できるの か,どの機械学習手法を用いると高い精度が得られるのか を調査するのが本研究の目的である.

2.2 関連技術

2.2.1 OpenPose

OpenPose は、深層学習を用いて人の関節等のキーポイ ント情報をリアルタイムに抽出する姿勢推定ライブラリ で、カーネギーメロン大学などによって開発された.動画 や画像に含まれる人物の身体だけでなく、顔や手の135の キーポイントを検出することが可能である.加速度センサ などの特殊センサを使わずに、カメラによる画像や動画の みで解析できることが特徴である.また、GPUを使用す ることで、画像や動画に複数の人が含まれている場合でも リアルタイムに解析できる.

2.2.2 Keras

Keras はプロジェクト Open-ended Neuro-Electronic Intelligent Robot Operating System (ONEIROS) の研究の 一環として開発された,ニューラルネットワークを実装する ためのライブラリである. バックエンドとして TensorFlow や Theano, Microsoft Cognitive Toolkit をサポートして おり,迅速な実験を可能にすることに重点を置いている. ユーザーフレンドリ,モジュール性,および拡張性によ り,容易に素早くプロトタイプの作成が可能である.また, CPUと GPU 上でシームレスに動作するため,高速な演算 が可能で,畳み込みやリカレント及びその組み合わせによ るニューラルネットワークにも対応可能なことが特徴であ る.Keras の最大の利点として,非常に簡単にネットワー クモデルを記述でき,迅速な実験が可能であるという点が 挙げられる.

3. 本研究で使用する機械学習手法

本稿では、OpenPose を用いて画像から抽出したキーポ イントの座標データを使用して、複数の機械学習手法を用 いて動作識別精度を比較する.実験では、(1)1枚の静止画

図2 OpenPose によって取得したキーポイント

図 3 OpenPose によって取得した座標値の一部

による動作識別と (2) 時系列を考慮した複数静止画を用い た動作識別を行った上で,時系列データとしてデータを学 習させるために LSTM を用いた実験を行った.データセッ トには,日常の動作 100 カテゴリの動画を約 1000 ずつ集 めた STAIR Actions[6] から取得した画像を利用する.

3.1 使用データ

STAIR Actions データセットのうち, writing, reading newspaper, bowing カテゴリの各動画から1秒間分の動画 を切り出し, 0.1秒間隔で1動画につき10枚の静止画を抽 出した.各静止画に対して OpenPose を用いて25のキーポ イントの画像上の x, y 座標を取得して特徴量 50 のデータ を作成した. OpenPose によって抽出したキーポイントの 例を図2に,この画像から取得した座標値データの一部を 図3に示す.各カテゴリのデータ数は表1の通りで,この うち7割を学習データ,3割を正解データとして使用した. このとき,同じ動画内の画像が学習データと正解データに 分かれないように振り分けた.上記のデータを2 点間の近 さを確率分布で表現し次元圧縮を行う手法である t-SNE[7] を用いて2次元に圧縮し,可視化した様子を図4に示す.

表 1	STAIR Ac	tions の各ナ	カテゴリ	リのデータ数	Į

カテゴリ	(1) データ数	(2) データ数
writing	6470	647
reading newspapaer	8840	884
bowing	11230	1123

図 4 (1) 画像 1 枚のデータの分散

図 5 (2) 時系列を考慮したデータの分散

この図で,紫色は writing,緑色は reading newspaper,黄 色は bowing カテゴリのデータを表しており,各カテゴリ のデータが分散していることがわかる.

次に、時系列を考慮したストリームデータとして動作の 識別を行うために、各動画から取得した画像 10 枚の 50 の 特徴量を、1 枚目から時系列順に並べて特徴量 500 のデー タを作成した.各カテゴリのデータ数は、表 1 の 10 分の 1 になっており、t-SNEを用いて可視化した様子は図 5 の 通りである.この図で、紫色は writing、緑色は reading newspaper、黄色は bowing カテゴリのデータを表してい る.図4と比較して、データ数の違いを考慮してもカテゴ リごとにまとまりが見られ、動作の特徴が現れていると考 えられる.

3.2 機械学習手法

各実験では、以下の4つの手法で動作の認識精度を測定 した.

- (1) ロジスティック回帰
- (2) ランダムフォレスト
- (3) SVM (Support Vector Machine)
- (4) Keras で構築した NN モデル

ロジスティック回帰はロジスティック関数に回帰させてク ラスに属する確率を出力し,ランダムフォレストは複数の 決定木の各予測結果の多数決により結果を決定するモデル である. SVM はカーネル関数を用いて射影した高次元空 間のマージンを最大化するように最適化するモデルで,本 実験ではカーネル関数に RBF を使用した. NN は人の神 経細胞を模したモデルであり,完全結合の NN を用いた. また, NN モデルでは性能を改善するためにパラメータ調 節を行った.

次に, NN に対して Dropout と Batch Normalization を 以下の 3 パターンで導入し, 識別精度を測定した.

- (4a) Dropout
- (4b)Batch Normalization (BN)
- (4c) Dropout \succeq Batch Normalization

Dropout とは、各層のノードの一部を無効化して学習を 行い、ネットワークの自由度を強制的に小さくして汎化性 能を上げることで過学習を防ぐ手法であり、本実験ではノー ドの2割を無効化して学習を行った. Batch Normalization とは、入力されるバッチの平均と分散を計算して正規化を 行い、スケールとシフトで調整をすることで学習の精度と 速度を向上させる手法である.

最後に、特徴量の前後関係をより長い時間考慮して実験 を行うために、Recurrent neural network (RNN)の拡張 である Long short-term memory (LSTM)を用いて実験し た.まず、RNNとは再帰型ニューラルネットワークと呼ば れるモデルであり、文章など連続的な情報を利用できると いう利点がある。前の時間に計算された情報を記憶してお き、後の計算でこれらの情報を使用して学習を行うことが できるが、長期記憶ができないという欠点がある。LSTM は CEC・入力ゲート・出力ゲート、忘却ゲート、覗き穴 結合という3ステップの機能を導入することによってこの 欠点を解消し、データの長期依存を学習可能にした手法で ある.

本研究では、現段階では 10~30 ステップでの学習を行う ため、RNN による学習で十分依存関係を考慮できる可能 性があるが、今後、動画から取得する画像の枚数について 考慮していく予定であるため、より長期の依存関係を学習 可能な LSTM を使用した.また、過学習を防止するために Dropout を導入した.LSTM の Dropout には、入力の線形 変換で無効化するノードの割合を表す dropout と、再帰の線 形変換で無効化するノードの割合を表す recurrent_dropout がある.それぞれについて 2 割のノードを無効化した際 と、入力・再帰共に 2 割のノードを無効化した際の精度を 測定した.

表 2 各手法による動作の識別精度

	training	validation
1) ロジスティック回帰	0.688	0.640
2) ランダムフォレスト	1.000	0.786
3) SVM	1.000	0.454
4) NN	1.000	0.828
4a) NN w/ Dropout	0.987	0.820
4b) NN w/ BN	1.000	0.842
4c) NN w/ Dropout, BN	0.970	0.813

表 3 ロジスティック回帰, ランダムフォレスト, SVM で最適化し たパニューク

にハノハーダ		
手法	パラメータ	値
1) ロジスティック回帰	С	0.001
	bootstrap	false
	criterion	entropy
	\max_depth	none
2) ランダムフォレスト	max features	10
	min_samples_leaf	1
	min_samples_split	3
	n_estimators	100
3) SVM	С	10
	gamma	0.0001
	中間層の総数	3
4) NN	中間層のノード数	50
	epoch 数	1600
	活性化関数	ReLU

4. 実験

4.1 画像1枚のデータによる動作識別

まず, データセット (1) 画像 1 枚のデータを使用した際 の結果について説明する.1枚の画像から抽出した特徴量 データを使用した際の各手法による動作識別精度の測定結 果を表2に示す.この表で、ロジスティック回帰、ランダ ムフォレスト, SVM は, 交差検証を用いた GridSearch を 行い,最も精度がよかった場合の精度を表しており,表3 のようにパラメータを設定した. ロジスティック回帰にお ける C は正則化の強さを表し、C が大きくなるほど正則 化が弱まることを示す. ランダムフォレストのパラメータ には決定木構築時に bootstrap サンプリングを行うかどう かを表す bootstrap, 決定木のデータ分割基準となる criterion, 決定木の最大の深さと葉の数を設定する max_depth と max_features, 葉の構成とノードの分割に必要な最小の サンプル数を表す min_samples_leaf と min_samples_split, 複数決定木の精度を測定し多数決を行うバギングに使用す る決定木の数を示す n_estimator を設定した. SVM では誤 分類を許容する程度を示す C, 境界の複雑さを表す gamma を設定した. NN は, ノード数 50 の中間層を 3 層, epoch 数を1600に設定し、分割数3で交差検証を行った際の平 均の精度を示している.

表2の1)から4)を比較すると、最も高い精度を示して

いるのは NN で, 8 割以上の動作を識別できていた.また, NN の学習における損失を図 6 に,識別精度を図 7 に示す. 青はトレーニング,オレンジ色はバリデーションの結果で ある.グラフから,epoch 数が増えるにつれてトレーニン グの損失が 0 に収束しているのに対し,バリデーションの 損失は増加しており,過学習が生じていることが分かる.

次に,NNモデルのパラメータを最適化するために,中間 層の層数とノード数の変化させて識別精度を測定した.図 8は,中間層の層数を3~6,ノード数を50,75,100,125と 変化させた際に交差検証を用いてGridSearchを行い,認 識精度の測定を行った結果をヒートマップで示している. 結果から,最も精度が高いのは中間層の層数を5,ノード 数を75に設定した場合で,精度は0.834となった.また, 層数が3~4,ノード数が100以上の場合に精度が良くなる 傾向が見られたため,ノード数の検証範囲を絞って更に細 かいパラメータを用いた実験を行うことで,性能改善が見

図8 中間層の層数とノード数による動作識別精度の比較

表 4 時系列を考慮したデータを使用した際の各手法による動作の 識別精度

	training	validation
1) ロジスティック回帰	0.869	0.580
2) ランダムフォレスト	1.000	0.828
3) SVM	1.000	0.440
4) NN	0.976	0.748
4a) NN w/ Dropout	0.999	0.800
4b) NN w/ BN	0.999	0.813
4c) NN w/ Dropout, BN	0.987	0.765

込めると考えられる.

上記の結果を踏まえ、最も精度が高くなった中間層の層 数 5, ノード数 75 に設定した NN モデルに, Dropout と Batch Normalization のそれぞれを導入する場合としない 場合について交差検証を用いた GridSearch を行った. 測定 した認識精度を比較したヒートマップを図9に示す.この 図において, 縦軸が True の場合は Batch Normalization を 導入したことを示し, False は導入していないことを示す. 横軸が0.0の場合はDropoutを導入していないことを示し、 それ以外の場合は0.1~0.5の割合でノードを無効化して 学習を行っていることを示す.結果から、無効化率4割の Dropout と Batch Normalization を導入した場合と, 無効 化率 3 割の Dropout を導入し, Batch Normalization を導 入しない場合に識別精度が0.823となっているが、小数点以 下4桁目以降で差が出ており, 無効化率4割の Dropout と Batch Normalization を導入した場合は 0.8233, 無効化率 3割の Dropout のみを導入した場合では 0.8228 であった. よって、中間層を5層、ノード数を75に設定した場合に最 も精度が高くなるのは、無効化率 4 割の Dropout と Batch Normalization を導入した場合であることがわかった.

以上の結果から、実験で得られた識別精度は十分でなく、 より細かくノード数や Dropout の無効化率を設定して精 度を比較することで、識別精度の向上が見込めることがわ かった.

図 9 Dropout の無効化ノードの割合に関する比較

表 5 時系列を考慮したデータを使用した際のロジスティック回帰, ランダムフォレスト SVM で最適化したパラメータ

ノンダムノオレスト、SVM で取適化したハノメータ			
手法	パラメータ	値	
1) ロジスティック回帰	С	0.001	
	bootstrap	false	
	criterion	entropy	
	\max_depth	none	
2) ランダムフォレスト	max_features	10	
	min_samples_leaf	1	
	min_samples_split	2	
	estimators	300	
3) SVM	С	1	
	gamma	0.0001	
	中間層の総数	3	
4) NN	中間層のノード数	500	
	epoch 数	1600	
	活性化関数	ReLU	

4.2 (2) 画像 10 枚の時系列を考慮したデータによる動作 識別

次に,データセット (2) 画像 10 枚の時系列を考慮した データを使用した際の結果について説明する.同じ動画か ら取得した 10 枚の画像から抽出した特徴量を時系列順に 並べたデータを使用した際の,各手法による動作識別精度 の測定結果を表4に示す.また,ロジスティック回帰,ラ ンダムフォレスト,SVM で交差検証を用いた GridSearch を行い,最も精度のよかったパラメータは表5のように なった.NN は,ノード数500 の中間層を3層,epoch 数 を1600 に設定した際の精度を示しており,過学習防止の ために無効化率2割の Dropout,Batch Normalization と その両方を導入した際の精度も示している.ランダムフォ レストによる識別精度が最も高く,0.828 となり,NN では Dropout,Batch Normalization,その両方を導入したいず れの場合においても識別精度を向上させることができた.

次に、中間層の層数とノード数を最適化するために、

図 10 時系列を考慮したデータを使用した際の中間層の層数とノー ド数による動作識別精度の比較

図 11 時系列を考慮したデータを使用した際の Dropout の無効化 ノードの割合に関する比較

層数を 3~6, ノード数を 500, 600, 700, 800 と変化させ て GridSearch を行ったところ, 図 10 が得られた.中間 層 4 層, ノード数 700 に設定したときに 0.744 と最も精度 が良くなったため, この NN モデルを用いて Dropout と Batch Normalization の導入有無について GridSearch を 行った結果を図 11 に示す.結果から, 無効化率 0.1 と 0.2 の Dropout のみを導入した場合に識別精度が 0.74 となっ ているが,小数点以下 4 桁目までで比較すると,中間層の 層数を 4 層,ノード数を 700 に設定した NN で最も識別制 度が高くなるのは Dropout のみを無効化率 0.2 で導入し た場合であった.また,Batch Normalization を導入せず, Dropout のノード無効化率を 0.0~0.2 の範囲で変化させた 場合に精度が高くなりやすいという傾向が見られたため, この範囲でより細かいパラメータ調整することで性能改善 が見込めると考える.

図 12 LSTM モデルの構成

表 6 LSTM による動作識別精度

X C BEIMICS SHERMMARK				
時間ステップ数	ノード数	training	validation	
10	50	1.0	0.802	
	100	1.0	0.780	
20	50	1.0	0.773	
	100	1.0	0.765	
30	50	1.0	0.819	
	100	1.0	0.829	

4.3 LSTM を用いた動作識別

LSTM モデルの構成を図 12 に示す. 各画像から取得し た特徴量を2層の全結合のNNで学習した後、その結果を LSTM に時間ステップごとの入力として与え,最後のステッ プの出力を用いて動作のカテゴリ分類を行う.時間ステッ プ数を 10, 20, 30 と変化させ、ノード数を 50, 100, epoch 数を 1600 に設定した際の識別精度を表 6 に示す. NN に よる学習と同様に過学習の傾向が見られたため、Dropout を導入した.LSTM のノード数が 50 のとき, 100 のとき のそれぞれについて dropout のみ, recurrent_dropout の み, dropout と recurrent_dropout の両方を無効化率 2 割に 設定した際の、各時間ステップ数ごとの識別精度を表した ヒートマップを図 13,図 14 に示す.このとき,epoch 数 1600 では収束が十分ではなかったため 3000 に設定した. 図からノード数 50, 100 ともに入力のみ dropout を設定 した時が精度が良くなる傾向が見られた.しかしながら, dropout の導入による過学習の抑制が十分ではないため, 使用データの正規化やオーギュメンテーションを行うこと で改善できると考える.

4.4 考察

1 枚の静止画による動作識別実験と時系列を考慮した複 数静止画を用いた動作識別実験を行い,いずれの実験でも 8 割以上の識別制度を得ることができた.しかしながら, 本実験では中間層の層数とノード数,Dropout と Batch Normalizationの導入についての2つのパラメータでのみ 交差検証を行っているため,層数とノード数,Dropoutの 無効化率,BNの有無の全通りについて実験を行い精度を

 図 13 LSTM(ノード数 50)の時間ステップ数と dropout の導入有 無による識別精度の比較

図 14 LSTM(ノード数 100)の時間ステップ数と dropout の導入 有無による識別精度の比較

測定する必要があると考える.また,画像1枚による識別 と画像10枚による識別を比較すると,画像10枚の方が動 作の特徴を捉えやすいがデータ数が少ないため,トレーニ ングデータを増やして学習を行うことで識別精度を向上で きる可能性がある.

LSTM による動作識別では、時間ステップ数が 30 の際 に最も精度が良くなった.本研究で機械学習フレームワー クとして使用した Keras では、LSTM の覗き穴結合に対 応していないため、長期の依存関係を記憶する機能が不 足している.Keras のバックエンドとして使用している TensroFlowを使用することで対応することが可能なので、 今後、使用する機械学習フレームワークについても考慮し ていく.

NN や LSTM を用いた学習の様子から過学習の抑制が十 分ではないため,データの正規化やオーギュメンテーショ ンを行うことで改善を図る.また,使用データについて, 現在はキーポイントのx,y座標の2次元の特徴量を使用 しているが,z座標も合わせた3次元の特徴量を使用する ことでどの程度の精度が得られるのかについても調査する 必要がある.

5. 関連研究

Hara ら [8] は, 動画を入力として行動ラベルを識別すると いう課題に対し, 2次元の空間に 1次元の時間空間を加えた 3次元空間で畳み込みを行う, 3D CNN ベースの様々な手法 を用いた行動識別について調査した.データセットとして UCF-101[9], HMDB-51[10], ActivityNet[11], Kinetics[12] を用いており, Residual Network(ResNet)[13] ベースの 3D CNN を用いた行動識別による性能改善を示している.

本研究では,動画を使用せずに動画に含まれる人間の キーポイントの座標値のみを用いて十分に動作識別を行え るのかを調査し,リアルタイム解析を行うためにデータ量 を削減した上で十分な識別精度を維持することを目指す.

6. まとめと今後の予定

STAIR Actions データセットの動画から取得した画像を OpenPose を用いてキーポイントの座標値に変換した後, それを特徴量として複数の機械学習手法で動作の識別精度 を測定した.1枚の静止画から識別する実験から,NNの 精度が最も高くなることが示された.また,NN では過学 習が生じていることがり, NN のパラメータ調整, Dropout と Batch Normalization の導入や、中間層の層数とノード 数, Dropout と Batch Normalization の導入有無に関して 交差検証を用いた GridSearch を行うことで,精度の向上が 期待できることがわかった. 時系列を考慮して複数静止画 を用いた動作識別実験では、ランダムフォレストの精度が 最もよくなった.動作の識別精度は未だ十分とは言えない が、得られた傾向をもとにパラメータの範囲を絞って識別 精度を比較したり、トレーニングデータを増やすことで性 能改善が見込めると考えられる. LSTM による動作識別で は、時間ステップ数が30の時に精度が最も良くなることが わかった.また、NN と同様に過学習の傾向が見受けられ たため, Dropout を導入することで改善を行った.本研究 では機械学習フレームワークとして Keras を採用したが, LSTM の長期記憶を可能にする3つの機能のうち, 覗き穴 結合に対応していないことがわかったため, TensorFlow な どの対応可能なフレームワークを使用することでどの程度 精度に差が生じるのか調査する必要がある.

今後の課題として,過学習の改善を行っても loss が増加 し続けてしまうことから,正規化手法を再考しオーギュメ ンテーションによりデータ量を増強することで学習の質を 高めて実験を行い,3次元の特徴量を用いて学習すると, どの程度識別精度が向上するのか調査する.また,本研究 ではリアルタイムに動作の識別処理を行うことを目標とし ているため、動作識別モデルをセンサ側とクラウド側のク ラウド側の分散環境に実装し、動画の特徴量取得から動作 識別までにかかる時間についての評価や、解析時間と認識 精度のバランスを考慮した改善を行う.

謝辞

この成果の一部は, JSPS 科研費 JP19H04089, 国立研究 開発 法人新エネルギー・産業技術総合開発機構 (NEDO), JST CREST JPMJCR1503 の委託業務及び, 2019 年度国 立情報学研究所公募型共同研究 (19S0501)の助成を受け たものです.

参考文献

- Z. Cao, G. Hidalgo, T. Simon, S. Wei, Y.Sheikh: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, arXiv preprint arXiv:1812.08008 (2018).
- [2] Z. Cao and T. Simon and S. Wei and Y. Sheikh: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, CVPR (2017).
- [3] T. Simon and H. Joo and I. Matthews and Y. Sheikh: Hand Keypoint Detection in Single Images using Multiview Bootstrapping, CVPR (2017).
- [4] S. Wei and V. Ramakrishna and T Kanade and Y Sheikh: Convolutional pose machines, CVPR (2016).
- [5] Chollet, François and others: Keras: The Python Deep Learning library, https://keras.io/ (2015).
- [6] Y. Yoshikawa, J. Lin, A. Takeuchi: STAIR Actions: A Video Dataset of Everyday Home Actions, arXiv preprint arXiv:1804.04326 (2018).
- L. V. Maaten, G. E. Hinton: Visualizing Data using t-[7]SNE, Journal of Machine Learning Research 9, 2579-2605 (2008). C. Feichtenhofer, A. Pinz, and A. Zisserman: Convolutional two-stream network fusion for video action recognition, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1933-1941 (2016). L. Wang, Y. Qiao, and X. Tang: Action recognition with trajectorypooled deep-convolutional descriptors, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4305-4314 (2015). L. Wang, Y. Xiong, Z. Wang, and Y. Qiao: Towards good practices for very deep two-stream convnets, arXiv preprint, arXiv:1507.02159 (2015). L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool: Temporal segment networks: Towards good practices for deep action recognition, In Proceedings of the European Conference on Computer Vision (ECCV), pages 20-36 (2016).
- [8] Kensho Hara, Hirokatsu Kataoka and Yutaka Satoh: Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?, arXiv preprint, arXiv:1711.09577 (2017)
- [9] K. Soomro, A. Roshan Zamir, and M. Shah: UCF101: A dataset of 101 human action classes from videos in the wild, CRCV-TR-12-01 (2012).
- [10] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre: HMDB: a large video database for human motion recognition, In Proceedings of the International Conference on Computer Vision (ICCV), pages 2556-2563 (2011).

- [11] B. G. Fabian Caba Heilbron, Victor Escorcia and J. C. Niebles: ActivityNet: A large-scale video benchmark for human activity understanding, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 961-970(2015).
- [12] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, and A. Zisserman: The Kinetics human action video dataset, arXiv preprint, arXiv:1705.06950 (2017).
- [13] K. He, X. Zhang, S. Ren, and J. Sun: Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778 (2016).