Fe ZR—=RAYAF A 102— 2
(1995. 3. 14)

WEARAND T — & R0
BAKCHETLZE

AK

RRIEXRFKRFER BTFEFAH HRFEER

A7V MEMT -5 N— A LOERESICIET = S REED A B = XL BHBELT
WHEI LR, F-FHIR, Ka—, T/ LAEROER IR EREFAR Lo L
Fe Y EBHROA DX LBLELENE, F—IR—ATOTFIIVT®2iT58
B HBRELTIILET Fhy JICHESARBBROX A= XL EFHTH L
BTEB, LeLiedo7uy 7 vHFRENRREA N =X A LT HEREX
EHEREITRIZRCOR I BEO AN = XL RERT 5 OB OH—
B7V—AT =0 AT N=ATUTIIVIEEPEDETH L, K
TREDERNOE—HLLTTF—IRBED AN = XLk EHTRELRREBEARRES
FYh, CORBERICRT-IRBEERRAT 2000 REFABER TS,
SITRATV s OID LBHIRY—LELTHRbA, Ea—~DOT77txb
F—LEeHWTRHAEIN D, FOFHRE L TIORBFRIEITF - RBEOA S =X
LEFERT B ODWN L RBN Do Twb,

A Study of Introduction of the Mechanism of
Data Hiding to a Logical System

Kume Izuru

Department of Information Science, Graduate School of Science
and Engineering, Tokyo Institute of Technology

Many concepts of object oriented database are accompanied with the mechanisms
for data hiding. Different mechanisms of data hiding are needed for data abstrac-
tion, view mechanism, and access control. In database programming, we can use
such mechanisms of data hiding which are predefined ad hoc But what can we do
if the programmer is not satisfied with the predefined mechanisms of data hiding?
A database programming language with simple and unified framework to describe
new mechanisms of data hiding, is the answer. In this article in order to take the
first step to that aim we consider a logical system with which we can describe the
mechanism of data hiding. This logical system has special predicate to represent
data hiding. In this system object identities and attributes are represented as
terms and views are accessed by terms. As a result this logical system has strong
expressive power to describe the mechanism of data hiding.

9

1 Introduction

Data hiding plays important role in database
systems. In the area of object oriented data
base. (OODB), various kinds of mechanisms
of data hiding appear. Views need data hid-
ing miechanisms to hide object identities and
attributes. Data abstraction also need an-
other mechanisms for data hiding to hide
the attributes of an object and permit in-
direct access by method. Data hiding is also
needed for security. In [BJS93] we can see
some examples of access control. The con-
cept “of access control includes data hiding,
because we can realize a range of access con-
trol with data hiding. From the viewpoint
of DB programmer so far as security is con-
cerned, we can use “data hiding” instead of
“access control”. Because actually there is
no difference between “You know its exis-
tence but can’t touch it.” and “You don’t
know its existence.” So we can regard the
problem of access control as that of data hid-
ing. ;

Turn to the area of Deductive Object Ori-
ented Database (DOOD), though there are
many researches to realize data abstraction
[YTY92, Nak84, BM92, McC93, HL92], but
no study emphasizes on data hiding as well
as we know.’

Probably it is because DOOD use Logic
Programming Language (LPL) for Database
Programming Language (DBPL). Originally
the declarative programming style of LPL
matches description of the data structure or
data definition in a broad sense. Exam-
ples are, say, recursively defined relations,
integrity constraints [L1087, Ul188] or hetero-
geneous database [LSS93}, which are hard to
express in procedural languages. In usual the
semantic domain of LPL is single space, but
the concept of data hiding requires multiple
space of semantic domain. It is because if we
introduce data hiding for security, we assume
multiple space where we can see not all data.
Whether we can recognize the existence of an
object or an attribute of the object depends
on which space we live in.

In this article we consider the logical ba-
sis for Data Definition Language (DDL) for
DOOD, to describe various kind of data hid-
ing mechanisms. We call this logical system
View-Logic. The semantic domain of View-
Logic is enriched to design the data structure
with high level concept of data hiding. To

do this we decide what are basic concepts
commonly seen between enormous numbers
of data models of OODBs [ZM90]. We argue
the concept of object identity and complex
object should be basic in our model [MH90,
KW89, KL89, KLW90, HY90, AK89]. That
is object identities are domain for interpre-
tation of data, and attributes are functions
[KL89, KLW90] and has object identity as
its value.

To reflect the situation above View-Logic
has multiple world semantics so it belongs to
modal logic. In addition we introduce two
concepts ... belonging and data hiding.
Belonging is generalization of the relation-
ship between class and instance. We have
two types of data hiding, hiding of object
identity and hiding of attribute of an ob-
ject. They are realized as the relationships
between worlds and object identities.

This article is organized as follows: In the
section 2 we give the syntax of View-Logic.
There we introduce the special notation to
represent object’s attribute, belonging, data
hiding, and specification of a set of objects.
In section 3 we discuss about the semantic
domain of View-Logic. In section 4 we give
the procedure in the form of tableau and dis-
cuss its soundness. In section 5 we show fu-
ture works.

2 Syntax of View-Logic

In this section we explain the syntax of View-
Logic. View-Logic is basically multi modal
logic. We can use object identifier as action
unlike ordinary multi modal logic. We can
use constant names and variables as object
identifiers. In View-Logic views correspond
to world in ordinary modal logic. A sequence
of object identifiers represents the access to
a view. We use the term “view access” in-
stead of action. So a formula [a]F at some
view I represents that F is true at every view
accessible from I' with view access a.

As mentioned above we use an object
identity for @ and also use such term
f(01,-++,0,) where f is function symbol
called access function and oy ... o, are object
identifiers.

To access a view with o we must recognize
all of the object identifiers which appears in
a. So from the view where some of the object
identities in « is hidden we can’t access any
world by a.

We introduce four types of new atomic for-
mulae for definition of object’s attribute, for
hiding of object identity, hiding of attribute
and for belonging relationships. In addition,
one formula is introduced to define the spec-
ification of all objects (instances) which be-
longsto the same object(class).

When an object whose object identity is
obj has attribute att and it’s value is val,
we express it by obj[att = val]. We borrow
this notation from [KW89, KL89, KLW90].
Note the obj must be object identifier and
att be constant name or variables and val is
eithet object identifier or basic value expres-
sion such as integer.

For hiding object identity from all views
accessible with a we use formula such as
o | o where o is object identifier. To hide
attribute att of object o from the views acces-
sible with o we use such formula (o0, att) | a.

To express o belongs to c we write o : ¢. In
this case both of 0 and ¢ must be object iden-
tifier. This formula is usually paired with the
formula introduced below.

We introduce a new binary logical connec-
tive is. It is used as cis F' where ¢ must be a
object identifier and F is any formula. Only
in such F we permit to use two special ob-
ject identifier self and inst where the former
is assigned ¢ and the latter is assigned any
object identity which belongs to ¢ and not
hidden. Formula F' defines the specification
of all objects which belongs to ¢ and are not
hidden.

empl:pub_reg_emp A emp2:pub_reg_emp A

empl[salary=>1000]Aenp1[status=>"part"]JA
empi[salary=>1000]Aempi[status="reg"JA

pub_reg_emp is ((inst,salary)|seltA
(inst |selt—inst [status="part"]))

Figure 1: an example of data hiding

pub_reg_emp:hidespecA
VYVV0(V:hidespec A 0:V A OlV —
YU((-U[owns=V]VU[auth="1ow"])
«0{for_usr(V,U)))

Figure 2: an example of views for users

We explain informally the meaning of the
formulae by two examples. Formal defini-
tion of the semantics of formulae is given
in section 3. The first example in figure 1
gives an example of hiding of object identi-
ties and hiding of an attribute. Assume there
is a view I' where the formula in figure 1
is true. So the formula pub_reg_empis--- is
also true. From this it follows that there
is a view A which is accessible from I' by
pub_reg_emp. Notice that empl and emp?2
belong to pubreg.emp. So the attribute
salary of empl and emp2 is hidden at the
view A by the formula (inst, salary) | selt.
empl is hidden at A by the formula inst |
selt & inst[status = "part”].

The second example in figure 2 defines
views based on another view. Assume there
is a view I" where the formulae in figure 1 and
in figure 2 are true. Then we have one world
T’y for each user u of the database accessible
from T' by Ryor_usr(pub_reg_emp,u)- The for-
mula in figure 2 states that if a user u has
low authorization or is not the owner of the
object pub_reg_emp, then the object identity
whose status is part time is hidden at the
view Iy,

Note that we can use object identities as a
way to access views from a view. So we have
a way of access control of views by hiding
object identities. This is an example that
View-Logic has strong expressive power of
data hiding mechanism.

3 Semantic
View-Log

Domain of

In this section we explain the semantic do-
main of View-Logic and interpretation of
terms and formulae. We define the logical
consequence of a set of formulae. At first we
define frame. A frame FR contains the enti-
ties of semantic domain and is represented as
a tuple (0, G,S,R) where O is a non-empty
set of object identities, S is a set of signa-
tures which are the names of attributes, G a
non-empty set of views (called world in ordi-
nary modal logic). R is a set of binary rela-
tions on G. Each element of R corresponds
to view access. So an element in R is writ-
ten as Ry where @ is a view access. Then we
must define the domain of view access VA.
VA includes O. As mentioned in section 2
we permit a expressions like f(oy,---,0,) for

view access. So the domain for interpretation
of access function f is needed. We prepare
the domain AF Then we can define VA as
OUAF xO)U---U(AF x O"-..)

Then we define schema. A schema SCH
defines the structure of a semantic domain
based on FR. It is represented as a tuple
(FR, Resident, Belong, ATT). Then we ex-
plain the contents of SCH. Resident is a
function from G to 2°. It determines for
each view T' in G the set of object identi-
ties not hidden in I'. So o € Resident(T’)
means that o is accessible in I'. Belong
is a binary relation on © x O. "It deter-
mines for each object which object to be-
long. Belong(obj, mobj) means obj belongs
to mboj and the former determines the spec-
ification of the latter if there is a formula in
the form of mobjis F. We can make a di-
rected graph by regarding object identities
as nodes and relation as edges from first ar-
gument to second argument. AT 7T assigns a
pair of signature and view, a function from a
set Objs which is subset of O to the follow-
ingset VU(V - V)U---U(V* = V)U---
where V is the union of Objs and the set of
basic value (BY) such as integers or strings.

Before we begin to explain the interpre-
tation of a formula we restrict the set of
schemata to consider. We require them to
satisfy the following conditions.

1. For any T € G and sig € S both of the
domain and range of AT T (sig,T') are
the subset of Resident(T).

2. for any view T, any view access & and
object identity o, if there is a view Ag
accessible from I' by R, such that o be-
longs to Resident(Ag) then o belongs to
Resident(4).

3. for any view I', any view access ¢, any
signature sig and object identity o it
is satisfied that there is a view Ay ac-
cessible from I" by R, such that o be-
longs to the domain of AT 7 (sig,Ao)
then o belongs to AT77(sig,A) and
AT T (sig, Ag)(0) = AT T (sig, Ag)(o).

4. for any view I' and any object identity
mobj, it is satisfied that if mobj doesn’t
belong to Rersident(T') then there is no
view accessible by R, where mobj ap-
pears in a.

5. The directed graph made from Belong
must be a collection of finite directed

trees with direction from children to
only one parent.

6. for any object identity o, any views I
and A, if A is accessible from I" and o
belongs to Resident(A) then o belongs
toI.

Now we define model of our logic. A
model M gives interpretation of term and
formula. It consists of SCH and func-
tions to map syntactical expression to en-
tity in SCH. It is represented as a tuple
(SCH, Fovjy Fiavets Fatt). Foid is one to one
mapping of constant object identity to O.
Face maps access function symbol to AF.
Faer maps constant attribute symbol to S.
Notice that different names of object iden-

" tity are interpreted to different elements in

0. We may use a single notation F for
FobjsFlabet and Fgyy when no confusion oc-
curs.

We pose constraint on assignments. An as-
signment ¢ must assign an element S to the
variable which occurs it the place of attribute
of the formula obj[att = val].

Given model M and assignment o we
describe the interpretation of term ¢ as
I[M,c}(t). and define it as follows.

If ¢t is a variable, then Z[M,o](t) is
o(t). If t is a name of object identity, then
I[M, o}(t) is Foia(t). If t is a name of at-
tribute, then Z[M,a](t) is Fou(t). If t =
f(o1,...,04) is view access, then Z[M, o](t)
18 Faco(Foid(01)s. .+ - s Foid(0n)). In cases M,
T and ¢ are obvious, we often omit them and
write as Z(t) for interpretation.)

In view-logic at a view each for-
mula’ is assigned one of three values.
{true,false,invalid}. =~ We introduce the
third value to express the notion of illegal
access. In view-logic a subset of the set of
objects is assigned to each view (world) by
the function Resitents. It defines the set of
object identities which are not hidden so in
a view we can access not necessarily all ob-
jects. Think about a formula F including
an expression of object identity which can-
not appear at a view. It is something like
an “illegal formula”. What value should we
assign to it at the view 7 Should we give it
false? If so, we must assign true to the for-
mula ~F. But =F is also illegal formula. So
we cannot do without having the third value.

Given model M, view I and assignment o,
we can describe the interpretation of a for-

mula F as Z{M, T, c](F). In cases M, I and
o are obvious, we often omit them and write
as I(F) for interpretation. It is defined as
follows.

In the case F has the form of dobj : mobj,
If either Z(dboj) or I(mobj) doesn’t belong
to Resident(T') then I(F) is invalid. Other-
wise if Belong(Z(dboj),Z(mobj)) then T(F)
is true else false. Notice that Belong is
global relation. So in the case both dobj and
mobj are constant symbol, if Z[M, T, c}(F)
is true (resp. false) at a view, then
I[M, A, 0]}(F) is true(resp. false) or in-
valid at every view A.

Consider the case F has the form of
objlattr = wvall. I(F) is invalid if either
of following is satisfied.

1. Z(obj) doesn’t belongs to the domain of
function of AT T (Z(atir),T).

2. Z(val) doesn’t belong to the range of
ATT(Z(attr),T) nor BY

Otherwise
I(F) is true if ATT(Z(attr),T)(Z(obj)) is
I(val). Otherwise I(F) is false.

Consider the case F is obj | mobj. If
either Z(obj) or Z(mobj) doesn’t belong to
Resident(T') then I(F) is invalid. Else if
Z(obj) doesn’t belongs to Resident(R) for all
A accessible by Rz(mobj) then I(F) is true.
I(F) is false otherwise.

Consider the case F is (obj, att) | mobj.
If either Z{0bj) or I(mobj) doesn’t belong
to Resident(T') then Z(F) is invalid. Else
if Z(obj) doesn’t belongs to the domain
of ATT(Z(attr),A) for all A accessible by
Rz(mobj) then I(F) is true. I(F) is false
otherwise.

Consider the case F is mobjis G, I(F) is
invalid if either of the following conditions
is satisfied.

1. Z(mobj) doesn’t belong to Resident(T).

2. for some d € O, Belong(d,I(mobj)) but
I[M,T,g[inst/d][self /T (mob;)]|(G) is
invalid .

Otherwise I(F) is true if both of the fol-

lowing conditions are satisfied. Z(F) is false
otherwise.

1. I[M, T, olinst/d][self /T(mobj)](G) is
true

2. there is accessibility relation Rz(mqbj)
from '

In the case F' has either form of A — B,
AVB, AAB and =A, I(F) is invalid if either
Z(A) or I(B) is invalid. As usual otherwise.

In the case F' has the form of VzA4, I(F)
is invalid if for some v which belongs to
Residents(T") U BY and I{M,T,ofz/v]}(4)
is invalid. ZI(F) is true if for all v €
Residents(T) U BY, I[M,T,cfz/v]](A) is
true. Z(F) is false otherwise.

In the case F has the form of JzA4, I(F)
is invalid. if for any v which belongs to
Residents(I') U BY, I[M,T,o[z/v]J(4) is
invalid. ZI(F) is true if for some v €
Residents(T') U BY, I{M,T,o(z/v]}(A) is
true. I(F) is false otherwise.

In the case F is [a]G. If Z(G) is invalid.
Elseif Z[G, A, 0}(G) is true for any A acces-
sible by R, from I' or there is no accessible
relation R, from I' then I(F) is true. I(F)
is false otherwise.

In the case F is < a > G. Z(F) is invalid
if Z(G) is invalid or there is a o which oc-
curs in @ and doesn’t belong to Z(0). Else
it I[G, A, 0](G) is true for some A accessi-
ble by Ry then I(F) is true. Z(F) is false
otherwise.

Notice that [a]F is not equivalent with
= < a > F. If the latter is true then the
former is true . But the converse is not al-
ways true. Even if the former is true the
latter may be invalid.

We define the logical consequence in the
way of [Fit93]. Assume we are given a set
of closed formulae P (as global assumption)
and S (as local assumption) and a formula
G. Assume for any model M such that
I[{M,T,c](F) is true for any F € P, any
T' € G and any assignment o, we have that
IfM,T,o](F) is true for any I' where for
any F' € S, I[M,T,o](F’) is true. In such
case we say that P is logical consequence of
global assumptions P and local assumptions
of S and write as P =5 = P.

In the next section we give the procedure
where given global assumption P and lo-
cal assumption S, only deduce logical conse-
quences of P and S. It means we have sound
proof system.

4 Tableau for View-Logic
In this section we will show the proof pro-

cedure for view logic in the form of tableau.
We borrow the notation from [Fit93].

Assume we are given sets of formulas P as
axioms and S as local conditions for world.
If we can make a finite tableau tree satisfying
following conditions,

1. It begins with a prefixed formula (., 1) F.

2. Tt is extended by the rules described
later.

3. Each branch in it ends with .

we call this tableau a proof of a formula F.
We can deduce OJ in a branch when we

have both A and -A. where A is atomic

formula.lt is formalized as follows.

c A
o —A
[m]

for any atomic formula A

Figure 3: O

We omit tableau rules for usual logical -

connectives. They are same as described in
[Fit93]. According to the notation for modal
operator, prefixes are not simply sequences
of numerals but of pairs of view access and
numerals. In this article we adopt the same
definition in [Fit93] for available and unre-
stricted prefix.Figure 4 shows the tableau
rules for modal operator.

o lo]X
oa,n) X
for a(a, n) available

o -fa]X
gla,n) -X

for o(a, n) unrestricted

g <a>X
o(a,n) X
for o(a,n) unrestricted

g<a>X
gla,n) ~X

for o(a,n) available
Figure 4: modal operator

Then we describe the rules for quantifiers
in figure 5.

Notice that attribute is interpreted as
function. This reflects the fact that each ob-
ject has only one value for each attribute.

o VzA(X)
o A(t)

for any closed term ¢

o ~VzA(X)
a ~A(c)
for any parameter ¢

Figure 5: quantifiers

From this we can deduce contradiction and
identification. The rule in figure 6 reflects
such deduction. Finally we show two rules.

o ofatt=>t]
o ofatt=>c]
a P(c)

o P(t)

for any parameter ¢

o ofatt=>v]
o ofatt=>v’]
.o
for any v and v’ which represent
different value in basic value or object identity

Figure 6: tableau rules for object

They reflect the concept of information hid-
ing which is the most characteristics of View-
Logic. Recall that we introduced the third
value invalid for the formula which contains
some expression of illegal access. We hope
to have a guarantee that we deal with only
valid formula. So we introduce a new nota-
tion to indicate which object identity is valid
for each world. We use such a notation as
o (o) where o is a constant name of object
identity. This notation means object identity
represented by o is belongs to the residents
of the world represented by o.

Before describe the rules for valid object
identity, we define the set of appearance of
constant object identities of a formula F
which are not hidden. We define two sets
valpos(F) and valpeg(F) that are defined mu-
tually recursively as follows. If we write
val_(F) it designates both of valyes(F) and
valpeg(F).

For atomic formula A val_(A) is the set of
all constant symbol which represent object
identity and appears in A. And val_(oisF) =
val(o) Uwval_(F).

For any F whose form is either X V
Y, XAY or X — Y then val (F) is
val_(X)Uwal (Y). valney(—X) is valpes(X)
and valp,s(negX) is valn.q(X).

val_(VzF) is val (F). wal (3zF) is
val (F).

We- must pay attention on the treat-
ment of modal operator. wvaly,s([a]X) is
valpos(X) . valneg([a]X) is valuey(X) U
val(a). walpos(< a> X) is valys(X) U
val(a). valneg(< a > X) is valney(X).

In the definition above val(t) designates
the set of constant names for object identi-
fiers which appear in the term ¢.

for any o (e, n) available

(e ©) 2o
such that
]
0'(0!,11) (0)
a (o)
o F

for any o available,
g (01) for any F € P and -

: for any {01...0n} C valpes(F)
a (on)
(-1 F for any o available,

:(-s 1) (1) for any F € S and
.(-’ 1) (on)
Figure 7: tableau rules for validity

theorem 1 Assume we are given sets of for-
mulas P as azioms and S as local conditions
for world and we get a proof of =F. As-
sume also for any constant name of object
identity which occurs (¢ G) in the tableau,
we have (0 (0)) in the same branch. Then
P |= 8§ = P in the meaning of [Fit93].

for any o(a, n) available

a(a,n) (o) g ¢(701)a
such that
]

Figure 8: negation as failure

To prove above theorem, we must show at
first that all formulae in the tableau are valid

for any {01...0n} C valyes(F)

(that means all formula is true or false.)
and the tableau rules preserve the soundness.
The most difficulty lies in the step in figure 8.
We use the technique of double induction
which is similar in the proof of the sound-
ness of SLDNF-resolution in [L1087]. We call
a tableau which don’t use this step a tableau
of rank 0. We define tableau of rank k+1 it
use the deduction steps other than figure 8
or use tableau of rank k. In each step in the
proof of induction about the rank, we use the
induction of the length of tableau rules. Now
we define the length of a tableau rule is the
most numbers of steps of all branches.

5 Conclusion and Future

Work

In this article we proposed a logical system
View-Logic that has strong expressive power
to describe the mechanism of data hiding.
It is because we have a simple predicate for
data hiding and use object identities as a way
to access a view. Now we are considering to
make use of View-Logic in the area of secu-
rity.

From the theoretical point of view, two big
problems remain as future work. The first
one is the completeness of proof system. An-
other is the change of the state of an object.
This problem is itself difficult in the area of
LPL. As for this problem we are at the stage
of considering the syntax to express a change
of state. We hope not to extend the semantic
domain any more. As for other future work,
we are considering about the treatment of
general predicates and set value. They are
needed for the practical reason but it remains
a problem how we relate them to the data
hiding mechanism.

Acknowledgment

The author is much grateful to professor
Shibayama Etsuya for helpful comments and
thanks to all people who joined the discus-
sions.

References

[AK89] Serge Abiteboul and Paris C.
Kanellakis. Object identity as a

[BJS93]

[(BM92]

[Fito3]

[HL92]

[HY90]

[KL89]

query language primitive. In Pro-
ceedings of ACM SIGMOD, pages
159-173, 1989.

Elisa Bertino, Sushil Jajodia, and
Pierangela Samarati. Access con-
trols in OO database systems -
some approaches and issues. In Ad-
vanced Database Systems, LNCS,
1993.

Elisa Bertino and Danilo Mon-
tesi. Towards a logical-object ori-
ented programming languages for
databases. In LNCS 580, 1992.

Melvin Fitting. Basic modal logic.
In Dov M. Gabbay, C.J.Hogger,
and J.A.Robinson, editors, Hand-
book of Logic in Artificial Intelli-
gence and Logic Programming, vol-
ume 1, pages 368-440. Oxford Uni-
versity Press, 1993.

P. M. Hill and J. W. Lloyd.
The Godel Programming Lan-
guage. Technical report, Depart-
ment of Computer Science Uni-
versity of Bristol University Walk,
1992.

Richard Hull and Masatoshi
Yoshikawa. ILOG: Declarative cre-
ation and manipulation of object
identifiers (extended abstract). In
Very Large Date Bases, pages 455—
468, 1990.

Michael Kifer and Georg Lausen.
F-Logic: A higher-order language
for reasoning about objects, inher-
itance, and scheme. In Proceedings
of ACM SIGMOD, pages 134-146,
1989.

[KLW90] Michael Kifer, Georg Lausen, and

[KW389]

James Wu. Logical foundations
of object-oriented and frame-based
languages. Technical report, De-
partment of Computer Science
State University of New York at
Stony Brook, 1990.

Michael Kifer and James Wu. A
logic for object-oriented logic pro-
gramming (Maier’s O-Logic revis-
ited). In Proceedings of the ACM
SIGACT-SIGMOD Symposium on

[L1087]

[LSS93]

[McC93]

[MH90]

[Nak84]

[Unss]

[YTY92]

[ZM90]

Principles of Database Systems,
pages 379-393, 1989.

J. W. Lloyd. Foundations of Logic
Programming. Springer-Verlag,
second, extended edition edition,
1987.

Laks V. S. Lakshmanan, Ferei-
doon Sadri, and Iyer N. Subrama-
nian. On the logical foundations of
schema integration and evolution
in heterogeneous database systems.
In Deductive and Object-Oriented
Databases, volume 760, 1993.

F. G. McCabe. An introduction
to L&O. In K.R. Apt, J. W.
de Bakker, and J. J. M. M. Rutten,
editors, Logic Programming Lan-
guages Constraints, Functions, end
Objects. The MIT Press, 1993.

Yukihiro MORITA and Hiromi
HANIUDA. Object Identity in
Quixote. In Proc. of SIGDBS and
SIGAI of IPSJ, pages 109-118, Oc-
tober 1990.

Hideyuki Nakashima. Knowl-
edge representation in Prolog/KR.
In International Symposium on
Logic Programming, pages 126-
130, 1984.

Jefirey D. Ullman. Principles of
database and knowledge-base sys-
tems. Computer Science Press,
1988.

Hideki Yasukawa, Hiroshi Tsuda,
and Kazumasa Yokota. Ob-
jects, Properties, and Modules
in Quixote. In Proceedings of
the International Conference on
Fifth Generation Computer Sys-
tems, pages 257-258, 1992,

Stanley B. Zdonik and David
Maier. Readings in object-oriented
database systems, chapter 3. Mor-
gan Kaufmann, 1990.

