F—EAR—-RAVATF A 104—15
(1995. 7. 18)

ATV 2y bT = I N— ADRERFERIF & £ DIEH

RAE Eif =i FT Hep g

LR ERE RABME TR e A7 L U e L R
SR XA NHIZ Ny 2 LA T AE

BUSF — & DA SR EHEIOCRAT BG4 T V= 7 F OAIE, 472« 2 FEIF — ¥ ~<— 2 (OODBMS) i2 51}
HRORELHD -0THE, COBEENWTTF—FX—ADF7 7 FOWE (K] L, W+ AHEEMs 2 L
ks, COBMOFEBOEIIOODB DELREL DD —-DTHLE {25, Bh, -HAENHRF -y N—20REL
RAMNBED -2 THEY, A7V 27 ORKAAERCINT 2--BHMHOMER, FPCRESATETVRERELLV.
W. Kim 513 OODB i2 &1} % - BMM@H L LTHEEA T V2 7 M 2B AU MR OBA 2 ITE L Tw 545, £hidil
B A RBICH E > TEY 2B ShTuhv, KRLTIE, BO47 V= 7 M oBI 2 IRAERYE 2 BRI BR
THHHAL LT, FEBF{EMEYE (Path Existence Dependency, PED) O#E2 2 AL, ZOMKMNEREIFD. 1515
N/ PED 2L #i7:% PED # @M T 2 b D& O»OHERW A BT T VA, 72, PED O VKIS OT N £ 74728, i
B CAD X B B O DB %Y.

Path Existence Constraints in Object Databases and its Applications

: Fitetsu Qomoto Toshiyuki Takamatsu Katsumi Tanaka
Dept. of Comp. & Comm. Sci. Information Systems Office Dept. of Comp. & Syst. Eng.
Faculty of Engineering Daiwa House Industry Co., Ltd. Faculty of Engineering
Kyoto Sangyo University Kobe University

The notion of complezx objects by using object identifiers as attribute values is one' of the typical features in object-oriented
database management systems (OODBMSs), which handles the complicated nested structure of objects in the real world.
Using this notion, we can navigate in the database among the related objects one after another. Therefore, the notion of
reference path of in complex objects is very essential concept in OODBs. However, the integrity constraints, which is one of
the most basic concepts in database systems, for the reference path in complex objects are fully discussed in formal. As one
of the integrity constraints in OODB, the notion of existence dependency is one of integrity constraints in object-oriented
databases presented by W. Kim et al. However, their notion of existence dependency is only conceptual and they’ doesn’t
have made a discussion formally in detail.

In this paper, we propose ‘a notion of path ezistence dependencies (PED) as a method to treat formally the existence de-
pendencies, especially, dependencies between object reference paths. Introducing a notion of selector variables, a suitable
object can be specified as a unit of the path existence dependency. Several inference rules for PEDs are shown, and practical
application examples are described in order to demonstrate the efficiency of the notion of PEDs.

—113-

1 Introduction

In object-oriented database management systems (OODB-
MSs) [1, 10, 11], the object identifiers (oids)[4] are used
to identify each object uniquely without regard to its at-
tribute values. Generally, since oids are used to attribute
values of the object, the nested structured objects, com-
plez objects, can be represented directly. With this no-
tion, the object sharing, which one object is shared by sev-
eral objects, is accomplished with reference values in at-
tributes. Using the notion of complex objects, we can navi-
gate among the related objects one after another with oids,
which are used as attribute values. For example, the nota-
tion, personi.father.father, is generally called a dot ez-
pression [6] or path ezpression [5], and is denote the “grand
father” of personil.

The notion of reference path of in complex objects is very
essential concept in OODBs, consequently, which is very im-
portant from both theoretical and practical aspects. How-
ever, the integrity constraints, which is one of the most basic
concepts in database systems, for the reference path in com-
plex objects are fully discussed in formal.

As one of the integrity constraints in OODB, the notion
of composite objects [7] by W. Kim et al. is well known. This
is consist of the two orthogonal concepts: The ezclusive ref-
erence constraint is that some object is referred by only one
other object, and the existence dependency constraint is that
the existence of some object is dependent to another object.
But, both concepts are only intuitive proposal, therefore,
formalization in order to discuss characteristics of them is
not sufficient.

In this paper, we introduce the notion of Path Ezistence
Dependencies[15], (PED), which is an extension of the ex-
istence dependency constraint by introducing the notion of
path expressions and selector variables [5]. With this no-
tion of PEDs, the formal treatment for the integrity con-
straints in terms of the existence dependency between ref-
erence paths of objects in OODBs. Additionally, several
inference rules for derivation of PEDs are also treated. By
those rules, it.is enable to remove the redundant PED or to
detect a loop of reference path.

In section 2, several motivations are discussed with intu-
itive examples. The basic definitions needed for our notion
of PEDs are described in Section 3. The formal definitions
for PEDs are given in Section 4. Several examples to explain
the notion of PEDs and inference rules for PEDs are also de-
scribed. The discussions for the relationships between the
PED and other semantic constraint in OODBs are described
in Section 5, additionally, a few examples of practical appli-
cations for PED are discussed. Section 6 is a concluding
remarks.

2 Motivations

In some cases, the existence of some object depends on that
of another object in order to satisfy the semantic integrity
constraints in databases. This notion is called the eristence
dependency of objects, which is introduced by W. Kim[7].
Intuitively, the existence dependency is that, when an object
o exists, some another object o’ also exists.

For example, in the restaurant, the dish should be cre-
ated after the corresponding order have been accomplished.
This is a kind of existence dependencies (Figure 1). That is,
“When a dish (object) exists, an order {object) correspond-

'In this.case. personi denotes an oid. father is the attribute, whose
value is an oid of the Person type object.

ing to it should exist. ” On the other hand, this constraint
is also interpreted as the following: If the order (object)
is deleted, then the corresponding dish should be deleted.
With this notion of existence dependencies, we can repre-
sent some kind of constraints about the existence of objects.
In other words, this also can be considered as constraint of
the deletion of objects in the database.

In several notable facilities of OODB, the notion of com-
plex objects is very useful one. That is, the object has either
a simple atomic value or an object identifier (oid). And, us-
ing oids as attribute values, the nested structure of data
can be represented directly. Therefore, on the discussion
of existence dependencies in OODBs, we consider, the no-
tion of complex object should be taken into account. Conse-
quently, as the unit of existence dependencies, the individual
objects do not only considered but also the group of objects
such that they have references of attributes each other. In
our path existence dependency, the dependency between the
reference structures of objects can be treated with the path
ezpression.

We consider the problem of spouse under monogamy as
another example. Suppose that some person (object) has
his spouse (object). Then, his spouse should also have her
spouse. In this case, the existence dependency, “If a person
has a spouse, then his spouse also should have a spouse,”
is not sufficient to semantically maintain the integrity con-
straint. The reason is that, as shown in Figure 3, the unde-
sirable situation such that three persons are mutually spouse
of each other can arise.

In order to solve this situation, the constraint should be
modified such as “A person X has a spouse Y, then X is
also the spouse of Y” using some way (in this case, variable
X and Y) to represent explicitly the relationship between
objects. But, in the notion of the existence dependency by
W. Kim, lack of a constructor to represent the reference
among objects and to specify objects on the reference path,
the above example can not be represent accurately. On the
other hand, in order to represent such situation, we intro-
duce the notion of path ezpression such as person.spouse,
and selector variables to denote the specified object in the
references. .

3 Basic Definitions

In this section, several terms are defined, which are needed
for the following formal discussion. As the basic construct
of our data model, Oz data model [2], which is given some
restrictions, is assumed.))

Intuitively, an object is the tuple t.ypé, that is, it is a pair
of an tuple value and an object identifier (0id), and only
atomic values or oid’s are allowed as attribute values.

3.1 Basic Definitions

First, the following sets, mutually disjoint, are assumed.

e The set of ;v.ll strings, S. . N
e The set of all numerics, /\/)

o The set of all boolean, B.

o The set of all object identifiers, Z.
e The set of all attributes, A

e The set of all classes, C, where String, Number and
Boolean are classes, and are the elements of C.

—114—

Also, two predefined functions are assumed. class is a many-
to-one mapping from oids to a class, and oids is a mapping
from a class to the powerset of oids. These functions are
denoted formally as follows?:

class : T —C
oids : C— 2%

Definition 1 Value
Values are defined as follows:

1. Special symbol nil is a value. It corresponds to null
value.

2. All strings, numerics, and booleans are values. They
are called atomic values.

3. An arbitrary object identifier i € T is value.

4. n-tuple [A; :v,..., Au i W)(A; € A1 <i<n)isa
value, where vy, .. ., v, are nil, an atomic value or oid,
respectively®.

Definition 2 Type
Type are defined as follows:

1. aclass C is a type.

2. For arbitrary classes, Cy,...,Cn and attributes,
Ay,..., Ay, n-tuple, [A1: C1,..., Ay : Cy), is a typet.

Here, it is assumed that a many-to-one function type is
given. type is a mapping from the set of class C to T(C),
which is the set of all types created with any element of C 5;

type : C - T(C)

Furthermore, the mapping, Dom, from a type to a set of
values is defined as follows: Assume that C and Cj,...,Chn
are classes respectively,

1. Dom(String) = {nil}US
2. Dom(Number) = {nil} UN

w

. Dom(Boolean) = {nil} U B
. Dom(C) = {nil} U 0ids(C)

. For a type t = [A; : C1,...,Aq : Ca]where A; €
Aand C; € C(1 i< n),

Dom(t) = Dom([A;:Cl,...,As:C4l)
{[A1 :v1,..., An v} | vi € Dom(Cy),
1<i<n}

"

e

Definition 3 Object
Object is a pair, o= (i,v), defined as:

e iisan oid. That is, i € I.
e v is a n-tuple value, [A; : v1,...,4n : va]%

Here, for any object, 0 = (i,[A1 : v1,..., 4 : wa)), it
is assumed that the relationships, type(class(i)) = [A; :
Cly...yAn : Ca] and v; € Dem(C;)(1 £ j < n), are satis-
fied. O .

2Iutuitively. class returns the class for a given oid. oids returns the
sot of oids of possible objects which are belong to a given class.

?Uulike the original 02 data model, we do not treat the nested value
for simplicity. ' :)
* YFor simplicity. the nested type is not concerned.

SIntuitively, for a class, type returns the attribute structnie of ob-
jocts which belong to it.

SFor simplicity. the tuple type object is only considered.

Then, the attribute value of the object, o = (¢,[A1 : vy,.. .,
Ay ¢ 4]), is denoted by v; = i(4;) (1 < j < n). Fur-
thermore, the set of all objects in the database are called
the database instance, DB. And, two arbitrary different
objects in DB, (i1,v1), (i2,v2), the relationship, i1 # iz, is
satisfied.

Definition 4 Extension

Extension is the set which is returned for a class, C, by
the function, eztent(C). It is defined as follows: eztent(C)
is a function from the set of classes onto the subset of DB
which are the set of all the existing objects in the database.
The following characteristic should be also satisfied:

extent(C) = {(i,v) | class(i) = Cand (i,v) € DB}

However, for each different classes, Cy,C2, extent(C1) N
extent(C2) = 0 is satisfied.

When the relationship o € eztent(C) is satisfied for an
object o, o is called the instance of the class C.

3.2 Path and Path Expression

Definition 5 Attribute Sequence

For more than zero attributes in A, A; (1 < i < n), the
dot notation, Aj.As..... Ay, is called the attribute sequence.
Especially, the attribute sequence of zero length is denoted
by Id. O

Intuitively, an attribute sequence corresponds to a navi-
gable route from an object to another object in the database
using dot notation of attributes. For example, for the fol-
lowing attributes,

A = {name, address, body, engine, door, color},
the notation, body.door.color, is an attribute sequence.

Definition 6 path)
For an object, (i,u) = o € DB, and attributes, A; €
A (1 £ i < n), if there exist the following objects in DB,

o1 = (i1,v1)
oz = (iz;v2)
Ouct = (ta-1,%n-1)

and the following relationships are satisfied among these ob-
Jjects,

i(A1)

i1(Az)

11
iz

ty—2(Au-1) = dn-1
in-1(4n) = v, where v,is not nil.

then the list of oids, < #,i1,...,in—1,va >, is called path,
and is denoted by 7.4;..... A7,

However, it is defined that ¢(/d) = 1 for an arbitrary oid
i. 0 ' ‘ o

Here, for any path, i.4;..... An(0 < n), the function,
tail(), is defined to return the last value of the given path.
That is, when i.4;..... A, =< i,%},...,in—1,v > holds,
tail(i.Ay..... A,) =v.

Furthermore, we extend the function, Dom as follows: For
an arbitrary class, C, and an attribute sequence, 4;..... An
(n>1),

"In nsnal. such dot notations denotes the tail value or object of the
attribute navigation. But, in this paper. these notations denote the
navigable path itsclf in the database. a

—115—

o Case:n=1

Dom(C.A;) = {v |v =1i(4),i € Dom(C)}

e Case: n>2

{U l v =1i(4,),
i€ Dom(C.A;..... Ay1)}

Intuitively, Dom(C.A4;..... A,) denotes the set of all the
possible end values such that they are reachable along with
the attribute sequence, A;..... A, from each instance of the
class C.

Definition 7 Path Expression
For an arbitrary class, C, and an attribute sequence,
Ay ... A,

is called path expression. For the path expression,
C.A;..... A,, the function, path(C.A;..... A,), denotes the
following set of paths in the database DB.

path(C.4;..... A)) = {iA.... An | o= (i,v) € DB,
class(i) = C}
g .

Definition 8 Selector Variable

Assume the path expression, C.A;..... Ajo.... A,. The
notation which is added a variable, X, for the class C or
any attribute A;(1 < j < n) in this expression is also a kind
of path expressions. This expression type is called, espe-
cially, path expression with selector variable. Furthermore,
the notation A;[X] is called attribute with selector variable.
However, it is defined that C[X].4;.... = C.Id[X].4;....
holds.

Here, the same selector variable must be bound to the
same value. For example, assume that the path expression
with selector variable, pe, have two same variable in it, that
is,

pe= C.A1 A][X] AL[X] A,,
The function, path{pe), denotes the following set of paths
such that the attribute values of the attributes Aj and Ay
are the same value:

path(pe) = {i.4; .
(i,v) € DB, class(i) = C,
tail(i.Ay.....

When the path, i.4;..... Apn, is an element of the set of
paths, path(C.A;..... A,), we call that the path, i.4;..... Ap,
conform to the path expression, C.4;..... A,

a

4 Path Existence Dependency

In this section, we introduce the notion of path ezistence
dependencies. and describe the formal definition of it, and
several intuitive examples.

4.1 Definition of Path Existence Dependency
Definition 9 Path Existence Dependency
For arbitrary two path expressions, pey and pes,
pe; = pez

is called Path Ezistence Dependency, in short, PED. When
this path existence dependency holds to the database in-
stance, DB, the following conditions should be satisfied:

1. Case 1: pe; and pey do not have the common selector
variable.

Vp (p € path(pe()) D 3q (g € path(pe2))

2. Case 2: For each selector variable, X;(1 < A < n),
such that they are common to the both path expres-
sions pe; and pey, the condition (*) holds: For the two
path expressions,

pre1 =

pez =
where A;(1<1<j—1)and

B;n (1 <m < k — 1)do not have

the common selector variable.
the following condition holds:

(*) Vp3q (p € path(pe1) D g € path(pez) A
tail(iy. Ay, Aj) = tail(iz.Bl.....B);))
where p = i3.45.....4;..... and

a

Intuitively, when some PED holds to the database,D B, for
each path, which conforms to the left side of the given PED,
there exist, at least, one such path in DB that conforms to
the right side.

4.2 Examples of Path Existence Dependencies

In this subsection, we explain the above notion of path ex-
istence dependencies with several intuitive examples.

Let us suppose a database such that it manages the tu-
ple type objects. In this database, the tuple type object is
that it has finite attribute and has, at most, one value for
each attribute. This is similar to the tuple in the relational
databases. For instance, we assume that we have the fam-
ily registration management database, and that an object
(Person) has two attributes, spouse and child. As shown in
figure 3, the class in the database in only person, the object
o; has his spouse, 0,, and his child, o3. And the another
person o4 has her spouse, o5, and her child, og.

In such family database, a variety of integrity constraints
may be considered for each object, or among objects.

1. When a person have his (her) child, someone must
have his (her) spouse.

Although this is not a practfl;ca.l example, this con-
straint can be represented by the following PED:

Person.child = Person.spouse

Intuitively, whenever any instance, o0 = (3,v), of Person
class have the path i.child, in other word, o has a value
in child attribute, an object, o' = (#/,7'), as the in-
stance of the class Person must exist such that the
path, i’.spouse, exists in the database (Figure 4).

2. When a person has his child, he must have his spouse.
This example is concerning with the integrity con-
straint among specified objects. In order to represent
the relationships among specified objects in terms of
the given constraint, the selector variables are' intro-
duced in path existence dependencies. In the follow-
ing example, the selector variable, X, appeared in the
both side, denotes the same object.

Person[X|.child = Person[X].spouse

—116—

Intuitively, whenever any object, 0 = (i,v), in the in-
stances of the class Person have the path i.child (o has
the value in the child attribute), o itself must have the
value in the spouse attribute (This is shown in Fig-
ure 5).

3. When a person has a child, his (her) spouse must have
the same child.

This constraint is represented by the following PED:

Person[Y].child[X] = Person[Y] .spouse.child[X]

This PED means the followings: If the object, o =
(i,v), in the instances of the class Person has the path
i.child o must have another path, i.spouse.child, and
the tail objects of i.child and i.spouse.child must be
the same, that is,

tail(i.spouse.child) = tail(i.child)

(See Figure 6).

From another viewpoint, this PED restricts the com-
bination of the values of spouse and child attributes,
that is, in terms of the pair of the attribute value,
(spouse, child), of a Person object, the combinations
(valuel, value2) or (value,nil) are allowed (Figure 7),
but (nil,value) is not allowed (Figure 8). In other
words, the admissible null pattern of the attribute
value in an object is also represented.

4. When “some person” has a spouse, the spouse of spouse
of “some person” must be “somebody” himself.

This is represented by

Person[X|].spouse[Y] = PersonlY].spouse[X]

By this PED, the following situation is represented:
Whenever the instance, o = (z,v), of the class Person
has a path, i.spouse, at least, one person object, o' =
(¢',v"), must exist such that the path, #'.spouse, exists
and tail(i.spouse) = i holds (Figure 9).

4.3 Inference Rules for Path Existence Depen-
dencies

In this subsection, we show the inference rules for path ex-
istence dependencies.

Rule 1 For an arbitrary class, C, and an attribute sequence,

P
Cp=Cp

always holds. O

Rule 2 For an arbitrary class, C, and attribute sequences,
p1 and pz, an attribute, A, and a selector variable, X;

CplA[X]pg = C.p1.A.p2
always holds. O
Rule 3 For an arbitrary class, C, and attribute sequences,
pi and p2, an attribute, A, and a selector Va‘,riable;"X, such
that it appear in neither p; nor pa, ‘

C.p1-A.pz = C.p1. Al X].p2

always holds. O

Rule 4 Suppose that C is an arbitrary class, p is an at-
tribute path which has more than zero length, and A is an
attribute or attribute with selector variable. Then,

CpA=Cp
always holds. O

Rule 5 For the two PEDs, C1.p1 = C2.p2 and Ca.p2 =
Cj.p3, the transitive PED, Cy.py = Cs.p3, holds. Here,
C1, C; and Cy are arbitrary classes, and p1, p2 and p3 are
arbitrary attribute sequences with more than zero length. O

Intuitively, when the transitive relationships between sev-
eral PEDs, a new PED such that it satisfies these relation-
ships is also derived.

Rule 6 If the PED,
C1.p1-A[X] = C2.p2.B[X]
holds, then
Ci.p1-A[X] AL ... A, = Cop2.B[X]Ax..... A, (1<n)

also holds. Here, C) and C; are arbitrary classes, p; and
pa are attribute sequences with more than zero length, and
A, B and 4;(1 < i < n) are arbitrary attributes respectively.
a

Intuitively, if the selector variable appeared in the left side
of the given PED denotes the object such that it is the last
element of the path to conform to the right side, then the
attribute sequence of any length following the attribute with
its selector variable can be appended to the right side.

Rule 7 For a path expression, C}.py.p2, if the relationship,
Dom(Cy.py) = Dom(C3), holds, then the following PED is
also holds:

Crprp2= Czpz O

The formal discussion for these rules in detail such that
proof, characteristics, completeness, etc. is beyond the scope
of this paper because of lack of space.

5 Discussion about Path Existence De-
pendencies

In this section, the relationships between PED and other
integrity constraints are described. And, the usefulness of
practical applications for the notion of PEDs are shown.

5.1 Relationship between PED and Other Con-
straints

5.1.1 Exclusive Reference Constraints

Here, we consider the relationship between the exclusive ref-
erence constraint(7] and our path existence dependency. For
example, the following constraint is assumed: A Car object
has its engine in engine attribute. And, an Engine object
must be exclusively held by only one car (Figure 10).

With the current definition of the PED, this exclusive ref-
erence constraint can not be represented. However, several
extension for the definition of PED may enable the repre-
sentation of the exclusive reference constraint. That is, the
admission of the combination of several path expressions and
the predicate expression for the selector variables. For in-
stance, the following extended PED may be considered:

{Car[X).engine[Y], Car[Z]} where X # Z =
Car|Z).engine[W] where W # Y

—117—

The intuitive semantics is that; When there exist two path,
p1 = oj.engine and pz = 03./d, in the database such that
01 # 03, the relationship, tail(o;.engine) # tail(oz.engine),
holds. Of course, such extensions are need for careful dis-
cussion, and, it will be treated in future research.

5.1.2 Existence Dependency

W. Kim introduced the another constraint, the Existence
Dependency, in [7]. This is represented by our path existence
dependency. For instance, “For each Engine object, there
must exist a Car object that has it for the attribute value
of the engine attribute,” which constraint is represented by
the following PED:

Engine{X] = Car.engine[X]

5.1.3 Functional Dependency

The functional dependency [13] considering the navigating
operations in OODB, path functional dependency (PED) dis-
cussed by Weddell [9, 8). The possibility for PED to rep-
resent Weddell's notion of PFDs. Here, for simplicity, the
following simple example; If two Car objects have the same
value in model attribute. Then, the capacities of engines of
these car are also same. This is represented by the following
PFD:
Car({model} = engine.capacity)

In order to represent this PFD, the definition of PED should
be extended as the following notation can be used:

{Car[X}.type[Y],Car[Z].type[Y]} =
{Car[X].engine.capacity[Z], Car[Y].engine.capacity{Z]}

But, in this case, several extensions of definitions and
modifications of semantics for PEDs are needed. Therefore,
further careful discussion in detail will be needed.

5.1.4 Object Existence Dependency

In the DBTG network data model[3], the membership op-
erations, FIXED, MANDATORY and OPTIONAL, among
records are already defined. These operations mean some
kind of dependencies among records in the database, how-
ever, these dose not corresponded to the notion of PEDs
directly.

They do not represent the static status of the membership
among objects, but the dynamic aspects to maintain the
membership on the creation and deletion of objects. This
means the following; Under several PEDs are given, what at-
tribute reference should be maintained on the creation and
deletion of objects. That is, this is the problem of interpre-
tation for PEDs on execution. Therefore, this will lead to
the issue of concurrency controls or active databases.

5.2 Application to Practical Systems

In order to show usefulness for the practical application of
the notion of PEDs, For instance, we suppose the computer
aided design (CAD) system and manufacturing management
system in the construction area.

5.2.1 Integrity Constraints in CAD

Assume that Window, Wall and Floor objects exist in a CAD
system for construction. The support attribute in each ob-
ject denotes the another object which should be supported
(Figure 11). Here, the following constraints are obvious; A
window must be supported by a wall. That is, there must

exist a Wall object to support for each Window object. This
is represented by the PED:

Window[X] = Wall.support[X]

In the same way, the constraint: a Wall must be supported
by a Floor is represented by:

Wall[X] = Floor.support[X]
From the above PEDs and inference rules for PEDs,
Window[X] = Floor.support.support|X|]

is derived®. This intuitively means that “a window must be
indirectly supported by way of a wall.” The constraints in
this example are regarded as a kind of the existence depen-
dency by W. Kim.

5.2.2 Production Management System

Here, we suppose a manufacturing management system for
construction parts.(See Figure 12). And suppose that a Wall
is assembled with an OuterPanel and Pillar object, and
an OuterPanel is constructed by a Panel and a Window in
general. Furthermore, the information for factories, which
these objects are produced or assembled, is denoted by the
factory or assemble attribute in each part object. Let us
consider that the following constraint is imposed on a special
wall, SWall class;

In the parts constructing the SWall, the Panel
and Window must be manufactured in the same
factory which assembles SWall itself.

In the big company spread on world wide, since the pro-
duction management to minimize for the cost of parts trans-
portation is a matter of course, the above constraint is fully
considerable. This is represented by the following PED;

SWall[X].assemble[Y] =
SWall[X].outer Panel.panel. factory[Y]
SWall[X].assemble[Y] =
SWall[X].outer Panel window. factory[Y]

In the object-oriented databases, the notion of complez o0b-
jects, are very useful in order to represent the semantic re-
lationships among objects. In this case, the information
about factories are denoted by Factory objects in assemble
or factory attributes. By introducing the notion of PEDs,
we can give the significant integrity constraints to the refer-
ence (navigable) path among related objects.

6 Concluding Remarks

In this paper, we introduced the notion of PEDs to represent
the integrity constraints between object reference paths in
OODBs. The PED (Path Existence Dependencies) denotes
the following; The path expression on the left side repre-
sents the arbitrary reference paths in the database, and the
right side represents the reference paths, which allowed to
exist under the existence of, at least, one path such that
it conforms to the left side. With this notation, the exis-
tence dependencies among reference paths in OODBs can
be treated. Furthermore, by introduction of selector vari-
ables, the suitable object on the reference paths can be spec-
ified. We also showed several inference rules for deriving the

®Although the pracess of derivation is omitted because of lack of
pages, it is easily probed.

—118—

new PED from the given PEDS. With this notion, the for-
mal basis for the constraints about existence dependency in
OODBs will be forined. Also, we discuss about the several
example to show the effectiveness of the notion of PEDs for
the practical applications.

Further research will be needed about, especially, the the-
oretical properties of PEDs. The following issues should be
focused:

e Soundness and completeness of the inference rules for
PEDs.

e Extensions of the expressive power of PEDs.

Since a PED restricts the allowed combination of the null
values, it is a very interesting issue whether the admissible
combinations of attribute values in a object can be derived
from the given PEDs or not. In other words, the admissi-
ble null pattern of the attribute value in an object. Fur-
thermore, it is also interesting that the introduction of the
regular expression[12, 14] in PEDs.

References

[1] Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K.,
Maier, D., and Zdonic, S., The Object-Oriented
Database System Manifesto, Proc. of The first Interna-
tional Conference On Deductive and Object-Oriented
Databases (DOOD’89), pp.40-57, Dec. 1989.

[2] Deux, O. et al., The Story of Oz, Trans. on Knowledge
and Data Engineering, Vol. 2, No. 1, pp. 91-108 (March
1990).

[3] Date, C. J., An Introduction to Database Systems 3rd
Edition, Addison-Wesley, 1975.

[4] Khoshafian, S. N. and Copeland G.P., Object Identity,
Proc. of OOPSLA’86, pp.406-416, 1986.

[5] Kifer, M., Kim, W., Sagiv, Y., Querying Object-
Oriented Databases, Proceedings of the 1992 ACM
SIGMOD International Conference on Management of
Data, pp393-402, June 1992

(6] Tsukamoto, M., Nishio, S. and Fujio, M., Dot: A
Term Representation Using Dot Algebra for Knowledge-
Bases, Proc. of the 2nd International Conference on
Deductive and Object-Oriented Databases (DOOD91),
Lecture Notes in Computer Science, Vol. 566, pp.391-

410, December 1991

[7} Kim, W., Bertino, E., and Garza, J. F., Composite Ob-
Jjects Revisited, Proc. of ACM SIGMOD, pp.337-347,
June 1989.

[8] Weddell, G. E., Reasoning about Functional Depen-
dencies Generalized for Semantic Data Models, ACM
Trans. on Database Systems, Vol. 17, No. 1, pp.32-64,
March 1992. ’

9

Coburn, N. and Weddell, G. E., Path Constraints for
Graph-Based Data Models: Towards a Unified The-
ory of Typing Constraints, Equations, and Functional
Dependencies, Proc. of the 2nd International Con-
ference on Deductive and Object-Oriented Databases
(DOOD’91), Lecture Notes in Computer Science 566,
Springer-Verlag, pp.312-331, Dec. 1991.

[10] Cattell, R. G. G., Object Data Management, Addison-
Wesley, 1991.

[11] Cattell, R. G. G. Ed., The Object Database Standard:
ODMG-93, Morgan Kaufman Pub., 1994.

[12] Yoshikawa, M., Circulation and Reuse of Database
Constructs through Common Dictionaries, Future
Databases '92 (Proc. of the 2nd Far-East Workshop
on Future Database Systems), Advanced Database Re-
search and Development Series - Vol. 3, World Scien-
tific, pp. 67-70, April 1992.

[13] Ullman, J. D., Principles of Database Systems, Com-
puter Science Press, 1980.

{14] Yoshikawa, M., Tanaka, K., Jozen, T., Tanaka, Y.,
Hirui, J. and Hotta, K., ObaseLang: An Object
Database Language with Flezible Syntaz and Eztended
Path Expressions, Trans. of Information Processing So-
ciety of Japan, Vol. 36, No. 4, pp.981-993, April 1995.

[15] Kamitani, M., Oomoto, E. and Tanaka, K., Path Ez-
istence Dependency and Attribute Key Constraints in
Object-Oriented Databases, Proceedings of Advanced
Database System Symposium '93, Vol. 93, No. 9, pp.73-
82, Tokyo Japan (Dec. 1993).

table#: 7
quantity: 2
contents:

name: salad
calorie: 110

Figure 1: The Relationship between a Dish and an Order

personi

name: John
spouse:

person3

name: Robin
spouse:

person2

name: Jane
spouse:

Figure 2: An Invalid Example on Monogamy

Person

Figure 3: Example Database

—119—

Figure 5: Dependency between A Person’s Child and Spouse

Person
spouse:
child:

Figure 6: Sharing a Common Child of a Couple
child: nil

Figure 7: Admissible Coinbinations of Attribute Values

spouse: il
child: e

Figure 8: Inadmissible Combination of Attribute Values

Person
spouse:
child:

spouse:

chiid:

Figure 9: Mutual Dependencies

Car Engine
engine: engineType:
color: capacity:

engineType: 1G-GEU
capacity: 1998

engine:
color: yellow

engine:
color: red

Figure 10: Exclusive Reference Constraint

Figure 12: An Example of Production Man‘agement

