F—=FR=ZA VAT L

107—4

(1996. 3. 11)

ke 2 RAEM £ b OEANEAET —2~N—-20HEIEAR
jtt A FH A, AIUER
JIN - Tishvib Nc
F731-31 LBHREREXAHEIAE 1515

~ E-mail: { kitakami, mori, arikawa}@its.hiroshima-cu.ac.jp

EELIBHRNLEBEME L OBRMNEDET —2X—-2IMT 28RSt ANEH L CHREL
fro HEILIZHRT ST, HAEESAONEF—aX—AH TIETMOEXRIBHEZIEET
3, Fe b REF—aN—INOMELE D F—aN—I B RIRL, BRYDOHMRT—IN-2
FAVWTFOBTF~AaN—ZEEETEI L ICL -~ TERSNTWVWS, BELAIL, RIDOH
F— AN ZAD ST —AN—AE-TEBFELT -2 RRTDILICH B, Thig,
By DOAEF—a~N— 20 SIGAMEINICERT AT — 40RO E LT, REF-2D
hTRRIR BB SRS FHERRT B 2 EIC Lo TEREATWS, BES X, Th 5 EHRAK
SBEICLBHAIET NI XLELTRET %, /-, BTV IUXLOBREERT
Bz, COBS{EAREEMAALE AT LIZDVWTREND, YAFLESATOTFIITH
RTERINTVD, 512, HAF—aN—ANBEEHERB 7 7t X2 FIHE CRHRT I
®IZ, World-Wide WebZHWT, KIBELOMBARTT I AEFTELIG T RA
E—T 1 —ANEBINTVD, KYAFLBENMBORBKIE 7 —3X—XOKE - HiF - &
BICHBIhTWS,

An Integration Methodology for Autonomous Nomenclature Databases
in Semantic Heterogeneity

Hajime Kitakami, Yasuma Mori and Masatoshi Arikawa

Faculty of Information Sciences
~ Hiroshima City University
151-5 Ozuka, Numata-Cho, Asa-Minami-Ku
Hiroshima-Shi 731-31, Japan
TEL & FAX: +81-82-830-1587
E-muail: {kitakarni, mori, arikawa} @its.hiroshima-cu.ac jp

Abstract

We developed a new integration algorithm for autonomous nomenclature databases in the presence of
semantic heterogeneiry over international computer networks. First, the algorithm requires users to
assign priority according to order of belief for each one of the accessible nomenclature databases.
Integration is achieved by increasing the kernel database, selected by the algorithm as the one with the
highest priority among the databases. Complex problems are included to recognize conyistent parts that
can be incrementally added to the kernel database in the remainder of the accessible nomenclature databases
through the use of tree structures. The algorithm with relational operators, was proposed after
considering both structural and cooperative constraints useful in managing single and multiple
databases. In addition, we present a nomenclature database system including the useful algorithm. The
system is also accessible from remote users through World-Wide Web and is implemented in SQL
programming and CG/ (Common Gateway Interface) scripts of World-Wide Web. The system can be
useful in both integrating and managing biological taxonomy databases over international computer
networks.

1. Introduction

The amount of information handled by computers in various forms such as characters, numeric
values, documents and images, has been increasing in an explosive manner since networks became fairly
wide spread in the world. This increase of information makes it no easy matter to access databases. In
order to save on labor, many database researchers try facilitate access by classifying information and
constructing hierarchical structures. Other researchers do not try to manually classify large amounts of
data but automatically do so using machine learning [1}.[2]

We are focusing our attention on a methodology for constructing an integrated database without
the inconsistencies which occur when there is semantic heterogeneity among loosely coupled databases
storing nomenclature data. Many types [3],[4] of heterogeneity in multiple database systems can be
divided into those due to differences in DBMSs and those due to differences in the semantics of the data.
The former occurs when there is a mismatch in data models or system level support. The latter occurs
when there is disagreement about the meaning, interpretation, or intended use of identical or related data.
In general, inconsistencies occurring in the presence of semantic heterogeneity are resolved by either
mapping relationships between any two databases or revising databases to create agreement. However, an
on-going problem exists as described (5] below. The problem is that due to the large amounts of data
stored within these databases, detection of all inconsistencies is an impossibly expensive proposition.
Furthermore, even if all the inconsistencies were detected and resolved at a given time, future independent
construction in loosely coupled environments can still introduce new inconsistencies. Hence, database
constructors must continue to maintain consistency among these databases for long periods of time.
However, it is impractical to resolve inconsistencies whenever database users access the integrated
database over computer networks.

We have proposed an integration algorithm for loosely coupled nomenclature databases in the
presence of semantic heterogeneity. We assume that each nomenclature database is represented by a
binary relation and that naming conflicts in leaf nodes do not exist among these databases. In the
integration algorithm, it is important to search for consistent parts of the nomenclature databases outside
of the kernel database. This paper describes an integration algorithm including operators of relational
algebra (6] for integrating these databases. Finally, we present the integrated database system including
the useful integration algorithm. The system is also accessible from remote users using World-Wide
Web. It is useful in both integrating and managing biological taxonomy databases (7LIBLIOT over
international computer networks.

2. Example of the integration

There are two autonomous databases shown in Figure 1. The integrated database in general can be
inconsistent within itself, if we construct one through the union of two databases. Each database
constructor can resolve inconsistencies between the two databases using a method which performs either
mapping or revision of data at a given time, but future independent construction in loosely coupled
environments can still introduce new inconsistencies. Hence, we try to integrate two databases without
using the method.

Ry

Figure 1. An example of nomenclature databases

The actual constructed trees have a height of 30 to 40. Because of limited space, we introduce small
trees shown in Figure 1 as one example illustrative of the integration. Let us consider R ={ (a.f), (b.g).
(e.i), (firoot). (g.root), (i.root), (root, NULL) | and Rp=((a,x), (b.x), (c.h). (d.h), (f.root). (x.¥). (v.root).
(h.root), (j.root), (root, NULL) }, where these relations, R} and R2, are included in two databases, DB
and DB), respectively. Moreover, we assume that any tuples of database DB are the most believable of
these databases, DBj and DB . The tuple, (roor, NULL)., means that the root node does not have any
parent node, where NULL represents missing information.

The relation consisting of all inconsistent tuples of R can be represented by set { (a.x), (b.x)],
and the relation consisting of all tuples appearing in both relations can be represented by set { (f,root),
(root, NULL) }. Let us consider T={ (a,x), (b.x) } U { (firoot), (root, NULL)]. Relation R') consisting
of all tuples appearing in the first and not the second of two relations, R and 7, can be represented by set
{ (c,h). (d.h). (x.y). (v.root), (h,root), (j,root)). Thus, it seems that we can obtain the integrated relation

R (=Rj uRzl) through the union of two relations, Ry and Rzl. However, node x of the tuple, (x,¥),
should be distinguished from leaf nodes, ¢, d and j, in the integrated relation, since x is a nonleaf node in
relation R2 and has future ambiguous interpretations in resolving inconsistencies between two relations,
R and R2. We call the nonleaf node, the pending node. It should be excluded from the integrated
database when we integrate. Let us consider a tuple, (y,root), included only in R, where y is not
included in any domain of table Ry If the difference set, (R2 — R/), has at least one pending node
among its child nodes, (-,y). of node y, we in general can define the tuple, (-,y), as a pending node,
where the dash symbol "-" represents any node of the difference set.

We will describe the integration algorithm using operators of relational algebra in detail. We
believe that our results can be adapted to other data models.

3. Nomenclature database

Tuples representing the tree structure are stored in the relation Rj, where R; is one only element
in the component database DB;, I <i <n. We assume that naming conflicts in leaf nodes do not exist
among these databases. The tuple of node x stored in R; is represented by (x.y) which is a pair of node
x and its parent y, where both x and y are defined by the same domain D and the attribute stored with
x is defined as the primary key of the relation R(x,y).

Let R={ (a,b) | aeD, be D) and S={ (b,c) | be D, ce Dj stand for two binary relations. A forward
search for § and R, denoted as SAR, is defined as { (b,c) | Ty ((a.b)eR, (b,c)eS) }. In opposition to this,
a backward search for S and R, denoted as SVR, is defined as { (¢,a) | Fu ((a.b)eR, (c.a)€S)).

3-1 Tree searches

Let Tg c R T =Tg, T; =TAT;.;. 1 £i<n, Ty=¢. The search for R and Tp is defined as R*
= w0 Ti. We call it a recursive forward search. The search can locate all nodes appearing in the
optimal path from each node stored in T to the root node of R. Let N be the upper bound in the
recursive forward search [10]. The search is represented by the following algorithm:

* ' ,

R™ :=Rp ; RR==Rp;i =03
while (R'#¢ or i <N)do

i =1 + 1 ;
R =R AR ;
R* = R*U (R — RY);

end ;

We define this search processing as RaN Rp . All tuples appearing in the results of RA® Rp are
represented by lineage(R, Rp). Let us consider the processing using the example shown in Figure 1.
lineage(R, Rg) ={ (c.h), (h.root), (root, NULL)), where Rg ={ (c.h) /.

Let To c R, T} =Ty, Ti=T VTj.;. 1 £is<n, Tp=¢ using the previous procedure. The search
for R and Ty is defined as R*=u i>0 Ti. We call it a recursive backward search. The search can find
whole progeny from each node stored in Rp to the root node of R. Let M be the lower bound in the
recursive backward search. The search is represented by the following algorithm:

R* =Rp ; R=Rp:i =0;
while (R'#¢ or i <M)do

Poo= 0 o+ 1

R’ R VR,

R* = R*U (R — R

I

*

)

end;

We define this search process as RVM Ry, All tuples appearing in the results-of RV Rp are
represented by subtree(R, Rp). Moreover, we define all leaf nodes included in subrree(R, Rp) as set,
leaf(R, Rp). ltis clear that leaf(R, Rp) =((x.y) | (x.y)esubtree(R, Rp). ¢ = ((x.y)]} Vsubtree(R.R0)) J.
Let us consider the process using the example shown in Figure 1. subtree(R. Rg) = { (f.root), (a.f),
(h, root), (c,h), (dh)), where Rg = { (f,root), (h,root))} and leaf(R, Rp)={ (a.f), (c,h),
(dh)).

3-2 Integrity constraints

We can define two types of integrity constraints [9in these multiple databases. One is useful in
consistently managing each database itself and other is useful in managing multiple databases. The
former is called a structural constraint, which can detect any abnormal subtrees and/or nodes. The latter is

called a cooperative constraint, which can detect inconsistent nodes among these databases. We regard
semantic heterogeneity as a violation of the cooperative constraint in this paper.

The structural constraints for each database are useful in maintaining the topological structure of
the database. The constraints include not only key constraints related to both (C1) missing information
and (C2) data duplication, but also specific constraints, (C3) and (C4), which prohibit storing data with
missing information except for the root tuple and prohibits data with an invalid node name in the second
attribute of the binary relation. These structural constraints, (C1)-(C4), can be represented by the
following rules:

(C1) inconsistent <- X =NULL, Ri(X,Y).

(C2) inconsistent <- X] #NULL, X =X, Ri(X}.Y]). (X2.Y2)e(Ri — [(X1.Y1)]).
(C3) inconsistent <- X #"root", Y =NULL, Ri(X.Y).

(C4) inconsistent <- X #NULL, Y #NULL, R{(X.Y), TRi(Y.Z).

The cooperative constraints represent semantic mismatches between any two databases, R; and
Rj. Figure 2 shows that the mismatches are caused by differences in node name except for leaf nodes and
topological structure between these databases. The system can detect mismatches in a way that proves
the inequal relation, ¥ #Y2, for any two tuples, (X,Y7)eR; and (X.Y2)€Rj. The constraint can be
represented as follows:
(C5) inconsistent <- Y] #Y2, Ri(X.Y). Rj(X. Y2).

This constraint can detect differences in (1) spelling, (2) up-and-down relationship between parent and
child nodes, and (3) restructuring (for example, splitting and merging) across any two databases.

R R R o R
:ﬁ) ﬁ J YZE chi Yﬁ)
X M ' X N ' 1 X 1l . K] 1] x ']

(a) difference of node name (b) difference of topology
Figure 2. Patterns of mismatch between two databases

4. Integration methods

Any user can automatically construct his integrated database using the proposed algorithm in this
section whenever he wishes to access one. We assume that each user gives priority related to their order
of belief in these databases before integration. Let the set of databases be 2=/ DBy, DB, ... DBy /.
where each database DB; is only stored with the relation R; . It is stored with a large amount of tuples
which are represented by the binary relation (x,y). The order of DB}, DB3, DBy means the priority
related to the order of belief in these databases, so that R; contains the most believable tuples. Let DBy
and DB2 be inconsistent with respect to each other. All the inconsistencies cause false tuples in R2.
We represent the integrated database as a set, Infegrated DB, and the i-th kernel database as a set,
KernelDBj, 1 <i<n_ Each kernel database, KernelDB;, includes only one temporal relation, KernelR;,
to be iteratively defined, where KernelDB| = DBJ and IntegratedDB = KernelDBp. Moreover, let the
structural constraints for each nomenclature database, DB;, be SICs; and the cooperative constraint
between two databases, Kerne/DB; and DB}, be CICsj.

4-1 General framework k

The 2nd kernel database, KernelDB?, is defined by both KernelDBj (=DB)) and DB, so that the
(i+1)-th kernel database, KernelDB;, |, in general can be defined by both Kerne/DB; and DBy . I Si <
n-1. The (i+1)-th kernel relation, KernelR4+], is represented as the union of KernelRjand (Rjy | —
KernelRi) 1 Si<n-1. Itis important to resolve [9] inconsistencies related to both the structural and
cooperative constraints before this iterative processing; as a result, we can .obtain the following
integration algorithm:)
an Q:=({DB},DB), ... DBy} ; KernelDB] :=DBj;
(12) Resolve inconsistencies of R;,if DB; |=SICs; , I <i<n;i =0;

while (i <n)do

P=i+ 1y
I3) Resolve inconsistencies of Rj+ . if (KernelDBj W DBy) 1= CICsis 1
(14) KernelR;) = KernelR; U(Riy] —KernelR;) ; '

end;
(15) IntegratedR = KernelR,, ;

All the inconsistencies of (I2) and (I3) can be detected and resolved by database constructors of each site at
a given time, but future independent construction in loosely coupled environments can still introduce new
inconsistencies of (I3). Hence, database constructors must continue to maintain consistency among these
databases for long periods of time. This means that complete maintenance of all the database
inconsistencies of (I3) is an impossibly expensive proposition due to the large amount of data, before
every integration. We propose a practical integrated algorithm to resolve these inconsistencies. The
practical integration algorithm is tremendously useful for users who need to acquire consistent
nomenclature data.

4-2 Difference set

Let KernelDB; and DB;,] each be consistent within itself and both be inconsistent with each
other. The difference set (Rj+; — KernelR;) of (14) consists of (1) inconsistent set violating the
cooperative constraint, (2) pending set stated in section 2, and (3) independent set. Both (1) and (2) are
detected by the cooperative constraint between two databases, Kerne/DB; and DB/ but (3) do not have
any relationship with the cooperative constraint. We should avoid incrementally adding not only all
inconsistent tuples of (1) but also ambiguous parts of (2) to the kernel database. Let us consider the
example shown in Figure 1. The inconsistent set of (1) is { (a.x), (b.x)], the pending tuple of (2) is (
(x,y), (v.root) }, and the independent set of (3) is { (c,h). (d.h), (h.root), (j.root) J. Inconsistent tuples,
(a:x) and (b,x), in general should not be added to the kernel database. Both tuples, (x.y) and (y.root),
should be excluded, since they include ambiguous interpretation before resolving inconsistencies. The
independent tuples, (c,). (d,h), (h,root) and (j.root), should be merged with the kernel database (=R),
since the union set of R/ and the independent tuples do not violate the structural constraints.

The kernel relation, KernelRi, includes the most believable tuples in both Kerne/DB; and DBj .
when both are inconsistent with each other. Hence, the inconsistent set, Errorj4J of (1) including the
difference set, (Rj+] — KernelR;), can be represented as follows:

Errorie] ={ (xy) 1 (xy)€(Riy] —KernelR;), (x,z7)e KernelR;, z#v] ;

The pending set, Pending;+]. can be represented as follows:

Pendingiy] :={ (wv) | (wv)e(lineage((Riw] — KernelR;).{ (x.y) J)—{(xy)]) (xy)€Erroriy] }
The independent set includes neither inconsistent tuples nor pending tuples, so that it is represented as
follows: Independent;y | :=(((Rj+] — KernelR;) — Errorjy]) — Pendingiyj);

It is clear that any leaf node of Independent;y is included in the original leaf set,
leafl(root, NULL).Ri+1).

4-3 Practical integration

Let us remove the processing (I3) from the integration algorithm of the previous section 4-2 to
achieve practical integration. Inconsistent nodes which violate the structural constraint (C2) then appear
in the difference set, (Rj+] - KernelR;), of (14), so that we should remove the inconsistent set Errori+ |
and ambiguous parts of the pending set Pending;. from the difference set to make the (i+1)-th kernel
database. It is important to clarify the relationship among the inconsistent set, pending set, and
independent set in the difference set, (Rj4] - KernelR;). Figure 3 illustrates typical connection patterns
related to the topological structure among these sets.

(a) upper node (b) neighboring node (c) lower node
Figure 3. Typical connection pattern

The white circles shown in the figure mean shared nodes between Ri+/ and KernelRi, and disappear in the
difference set, (Rj+] — KernelR;). The black circles, the wavy line circles and the oblique line circles
are inconsistent tuples, pending tuples and independent tuples, respectively.

In Figure 3, we should remove the inconsistent tuples from the difference set to make the (i+1)-th
kernel database. It is possible to use the independent nodes shown in both (a) and (b) of the figure to
make the (i+1)-th kernel database. Whenever the independent nodes shown in (b) of the figure are utilized
for making the (i+1)-th kernel database, the kernel database is still consistent with (C4) of the structural
integrity constraints. Moreover, it is possible to use the independent parts shown in (c) of the figure to
make the (i+1)-th kernel one, since we can consistently connect the parts to the i-th kernel one, using
two upper pending nodes shown in (c) of the figure. The other pending node shown in (c) of the figure
should be removed from the difference set.

Let all the consistent nodes Add; 4 be named the additional set which can be added to the i-th
kernel one. The practical integration algorithm is as follows:
(PI1) Q2:=DBI1, DB2, .., DBn ; KernelDBl :=DBI ;
(PI2) Resolve inconsistencies of R;, if DB; |=SICs; ,1<Si<n; i :=0;
while (1 <n)do

=i+ 1,
(PI3) Temp :=(Rjyj — KernelR;) — Erroriy| ;
(P14) Add;y | = Temp — (Pendingiy] — cutting(Pending 1. Temp)) ;
(PIS) KernelRj 4 = KernelR; WAdd;y]

end;
(PI6) IntegratedR = KernelRy ;

where the set, Temp, means the difference set between (Rj4 ; —KernelR;) and the inconsistent set. The
inconsistent set, Errorj4 j, and the pending set, Pending;4 ;. appear in both (PI3) and (P14) of the
algorithm as previously defined. The processing which is cutting, cutting(Pending;,. ;. Temp), of (P14)
searches for the consistent parts of the pending nodes, Pending;, J, where the set, Temp, includes the
consistent parts of the independent nodes. If we can detect pending nodes which appear when searching all
lineages for consistent parts, they (the pending nodes shown in (c) of the figure 3) can clearly be utilized
to make the (i+1)-th kernel database. The processing is represented as follows:
cutting(Pending;+], Temp) := lineage(Pendingj,. |, (Pending;y] & (Temp — Pendingi+1))) ;

Let /gR | be the cardinality of the set R. The processing of (S14) prefers being computed on the
condition, [Errorjy [<</ leaf(Rj4 j.(root}) — KernelR; i rather than
/Error,'+] [>> /leaf(R,‘+1,{rool/)——~ KernelR; |, since the pending set, Pendingi+] is a function of the
inconsistent set, Errorj4j. If /Error,‘+1 [>> /Ieaf(R,'+j.(root})—— KernelR; | , the following processing
is useful for the integration:

Addiy] = lineage(Temp,{leaf(R;+].{root})— KernelR;}) ;

5. System overview

Figure 4 shows the system configuration of the nomenclature database system including the
practical integration algorithm with the relational data model. The system integrates and manages the
continuously enlarging biological taxonomy databases which have a total of about 100,000 tuples. The
height of the taxonomic tree stored in them is about 30 to 40.

EBI
DB server DB server
Taxonomy, Stored Procedures | gy . pDNA Data Bank of Japan
j Integreted Database (Shizuoka, Japan)
NCGR:National Center of Genome
NCBI NCGR DDBJ Resources (New Mexico, USA)
DB server DB server DB server NCBI :National Center (or Biotechnology

— — Information (Maryland, USA)
m m axonomy EBI :Europcan Bioinformatics Institute
Databa Databa i (Cambridge, UK)
Figure 4. The nomenclature database system

The taxonomy databases are biological dictionaries and are useful in constructing DNA databases at
international DNA data banks [1LI12],[13,[141[15] Tpe international DNA data banks are organized
by DDBJ (DNA Data Bank of Japan; National Institute of Genetics), NCBI (National Center for
Biotechnology Information) and EBI (European Bioinformatics Institute). Each data bank collaborates
with the other two data banks in many areas through mutual exchanges of data over international
computer networks. However, each taxonomy database is independently constructed, because of rapid
changes resulting from biclogical advancements. As a result, these taxonomy databases are respectively
autonomous and have semantic heterogeneity. The cooperative constraint implemented in SQL
programming actually detected about 2,000 inconsistent tuples between any two taxonomy databases (9],
It is tremendously helpful for not only the staff of the data banks but also biologists involved in genome

research to have a system which provides them access to consistent tuples as much as possible (16},

5-1 Access methods

We newly implemented not only the practical integration algorithm but also powerful tree search
algorithms in both SQL and Control Flow Language of the relational database system, SYBASE, and
also stored the SQL program in the integrated database. The program code is about 15,000 lines in size

including other useful mechanisms. The powerful tree search methods can make visible to users, a
structure which spans both up-and-down and left-and-right for a given node. The methods have several
functions, such as RA® Ry (=lineage(R, Rp)). RVRp, RV Rp (=subtree(R, Rp)), and RV(RA™ Ry).
We can define the neighborhood area inferred from any node using the powerful tree search methods. The
neighborhood area can cover several nodes made visible using the methods. If we change the given node
to one of other nodes in the area, we can find the new area defined by the change. If we repeatedly apply
the methods, we can move to any area of the tree structure shown in Figure 5. Users can also search
many documents, 1,500 images and DNA database in the integrated taxonomy database.

{B?)cumcms

D ¢ HTTPd r—
ocumen s Server CGI Script DB scrver

Documenls

Web Browscr Btored

Procedures
Imdge mages Integreted
Database
Documents . Documenls Documcms
Figure 5. The taxonomy database Figure 6. Interfacing between the WWW

and database servers
5-2 WWW interface
Moreover, we also developed a tool to interface between the taxonomy database system and World-
Wide Web L1718 (6 aliow remote access for the integrated database over the computer networks. The

tool was implemented in CGI (Common Gateway Interfuce) (19] script and the program code was about
1,000 lines in size. Figure 6 shows the system framework of the tool. If users access the integrated

database using Web Browser [20%.[21], it sends a message including the access method to the database

server. The method represented by the stored procedure [22] is executed on the database system, after the
database server has received the message.

_ mnm Sear :» InverTace 1or the 1 9xonemy-Dsisoete |

=&l
- ».m.-. --.m o] i | v

Fiwye @ e e sena e gl o e e,

Yort o] Yaoss Gt P —] MMJ_I_"‘_‘:“_]M—L‘B!‘J

Welacepe_Seerch wmm Tor tn T esonomy Dotcsuere W (T ICKSOLACHR WY ehy et thineined for'ing Tuxaharmy-Paiasess HEL

sled 28] 212 5 ul ~J

Query fnterface for the Nowonciature Datat Quory Interface for the Nomonclature Databa Quary Interface for the Xossncixture Ditabase
LT 3] -ee © Sworys ivae B bearch teervedns watag taarys [Gonge I T Beniad Ueeeeden stiag fewyt m_;
Wi — (irmbisetors 2
» R em 20O e teatuste: S =
B | Ieeatyrectora % E

® il @ 2w O 10

(TN () ver, teoe, AT

& voreer [froiy]
EDE

[et soa't v ot

M), emparh ngian] Tteyataadecceonscocbas e semaer) [0, Kb 550, wwn torel Maredo)
i 3

et el ot atesd

131 190). ¢ a1 140
e LA L A Haen1 a1}, wrter] timster}

Caresetio natben O eerver te
PRSI w0t 1y

i S S S e (R S vy e e eek)
E hotaes 1o sur Lot Page

Figure 7. Window Interface to repeat the neighi')“g;}'\-&(;ﬁms‘earches

The tool has an effective window interface in which the query and result windows are the same
form, so that it provides users with an easy interface for use in repeatedly applying the powerful tree
search methods. The left window shown in Figure 7 illustrates the initial window to infer a
neighborhood area from a given node. We can see the center window after clicking the submit button. It
illustrates the execution results of the inference and the results are shown in the menu of the window.
The next query condition can be given by selecting a focused node in the menu. We can see the right
window after clicking the submit button. Thus, we can easily move to any area for the tree structure
using the window interface. Access to the taxonomy database system is available from our WWW site
(http://www its.hiroshima-cu.ac.jp/~kitakami/treedb.html). The database service using the system is still
in the development stage, and access is free of charge for a trial period.

6. Conclusions

This study was motivated by the fact that the nomenclature databases are constructed in loosely
coupled environments, so that it is impractical to resolve inconsistencies whenever database users access
the integrated database over computer networks. We proposed a practical integrated algorithm to
consistently integrate the databases without resolving inconsistencies. We assumed that the databases do
not include naming conflicts in leaf nodes. First, we had a user assign priority concerning belief in

accessible nomenclature databases before integration. Integration was achieved by incrementally
increasing the number of tuples in the kernel database after the algorithm had selected one kernel database
from the databases. It was important to exclude inconsistent tuples related to cooperative and structural
constraints in the algorithm. The algorithm was represented by such relational operators as join,
difference and union. In particular, the previous constraints, (C2), (C4) and (C5), in section 3-2 were
useful in proposing the practical integration algorithm. Finally, we introduced the nomenclature database
system including the practical integration algorithm. The system is accessible from remote users using
World-Wide Web. We also explained that the system is useful in both integrating and managing the
continuously expanding biological taxonomy databases over international computer networks.

Acknowledgments
We wish to thank the staff of the international DNA data banks for their help in automatically
obtaining these taxonomy databases with the relational model.

References

[1] J. R. Quinlan: Introduction of Decision Trees, Machine Learning, Vol. I, pp.81-106 (1986).

[2] Knowledge Discovery in Database: An Attribute-Oriented Approach, Procecdings the 18th VLDB
Conference, Morgan Kaufman Publishers, Inc., pp.547-559 (1995).

[3] Amit P. Sheth and James A. Larson: Federated Database Systems for Managing Distributed, Heterogencous,
and Autonomous Databascs, ACM Computing Surveys, Vol.22, No.3, pp.183-283 (1990).

[4] Evaggelia Pitoura, Omran Bukhres, and Ahmed Elmagarmid: Object Oricnlation in Multidatabase Sysiems,
ACM Computing Surveys, Vol.27, No.2, pp.141-195 (1995).

{ 5] Shailesh Agarwal, Arthur M. Keller, Gio Wiederhold, and Krishna Saraswat: Flexible Relation: An
Approach for Integrating Data from Multiple, Possibly Inconsistent Databases, Proc. of the 11
International Conference on Data Engineering, Taiwan, pp.495-504 (1995). '

[6] C. J. Date: An Introduction to Database Systems, The System ngrammm!> Scries, Addison Wesley, ISBN
0-201-54329-X, (1995)

[7] Scott Federhen: TaxMan Usecr's Manual, (1994), Available at
ftp://ncbi.nlm.nih.gov/repository/taxonomies/taxman/manual.ps

[8] Tim Clark, Cynthia Chung, and X. Yu: The NCBI Taxonomy Database, NCBI Tcchnical Report, (1993).

[9] Hajime Kitakami, Yoshio Tateno, and Takashi Gojobori: Toward Unification ol Taxonomy Dalabascs in a
Distributed Computer Environment, Proceedings of the Second International Conference-on Intelligent
System for Molecular Biology, Stanford University, AAAI Press, pp. 227-235 (1994).

(10} Francois Bancilhon and Raghu Ramakrishnan: An Amateur's Introduction to the Recursive Query
Processing Strategies, Proceedings of the ACM SIGMOD '86, Washinglon D.C., pp.16-52 (1986).

{11] Desmond G. Higgins, Rainer Fuchs, Peter J. Stoeher and Graham N.Camecron: The EMBL Data Library,
Nucleic Acids Research, Vol.20, Oxford University Press, pp.2071-2074 (1992).

[12] Christian Burks, Michael J. Cinkosky,William M. Fischer, Paul Gilna, Jamie E.-D. Haydcn, Giltord M.
Keen, Michael Kelly, David Kristofferson and Julie Lawrence: GenBank, Nucleic Acids Rescarch, Vol.20,
Oxford University Press, pp.2065-2069 (1992).

[13] Leslie Roberts: Research News,Managing the Genome Dala Deluge, Science,Vol.262, No.22, pp.502-505
(1993)

[14] Hajime Kitakami, Tadasu Shin-I, Kazuo Ikeo et al: YAMATO and ASUKA: DNA Databasc Management
System,Proceedings of the 28th Annual Hawaii. International Conference on System Sicncies, [EEE
Computer Society Press, Vol.5, pp. 72-80 (1995).

{15] Hajime Kitakami, Yukiko Yamazaki, Kazuo Ikeo et al.: Building and Search System for a Large-Scale DNA
database, Frontiers in Artificial Intelligence and Applications, Advances in Molecular Bioinformalics,
Vol.22, 10S Press, pp.123-138 (1994).

[16] NCBI News, National Center for Biotechnology Information, National berary of Medicine, National
Institute of Health, pp.1-8, September (1995).

[17] T. Berners-Lee, R. Cailliau, J. Groff and B. Pollermann: World Wide Web: The Information Universe,
Electronic Networking: Research, Applications and Policy, 2(1), Mcckler Publications, Westport CT,
pp.52-58 (1992), Available in PostScript at ftp://info.cern.ch/pub/www/doc/ENRAP_9202.ps

[18] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen and A. Secret: The World Wide Web, CACM, Vol.
37, No. 8, (1994).

{19] Rob McCool: National Center for Supercomputing Applications, University ol lllinois at Urbana-
Champaign, " Common Gateway Interface Overview, Work in progress, Available at
http://hoohoo.ncsa.uiuc.edu/cgi/overview.himl

{20] National Center for Supercomputing Applications, University ol Illinois at Urbana-Champaign, NCSA
Mosaic, A WWWwW Browser, Work in progress, Available at
http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/help-about.himl

[21] Netscape Communications Corporation, Netscape Navigator, A WWW Browser, Work in progress,
Available at http://www.nctscape.com/comprod/netscape_nav.html

{22] Prabhat K. Andleigh and Michael R. Gretzinger: Distributed Object-Oriented Data-Systems Design,
Prentice Hall Inc. (1992).

