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Abstract: Internet of Things (IoT) malware keep evolving and exploit multiple vulnerabilities to infect IoT devices. Besides 

malware, human attackers also utilize various tools to access and collect variable information on the devices For instances, web UI 

of IP Cameras and routers are constantly searched and accessed if vulnerable. In order to observe and analyze such variety of 

attacks in depth, there is an increasing need for bare-metal IoT devices as a honeypot since it is costly to emulate device-specific 

vulnerabilities and complex functionalities from their dedicated services. However, operating bare-metal IoT honeypots has unique 

technical challenges mostly coming from their low configurability as an embedded system. A bare-metal honeypot needs proper 

access control while it is allowing attackers to access its inside to some degree, such as filter out bricking commands and changes 

of critical configuration. From this observation, we propose ThingGate, a gateway for flexible operation of bare-metal IoT 

honeypot. ThingGate employs a man-in-the-middle proxy to control and manage inbound and outbound traffic of the bare-metal 

IoT honeypot. We evaluate ThingGate with seven bare-metal IoT devices and show that it successfully blocks unwanted incoming 

critical attacks, masks wireless access point information of the devices while showing high observability of various attacks 

exploiting different vulnerabilities. 
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1. Introduction  

In recent years, people have been connecting various things to 

the Internet for monitoring, collecting data, or remote 

manipulation. Backend applications collect and exchange data 

with these devices through the network. The network of this 

appearance is called the Internet of Things (IoT). However, an 

IoT Malware “Mirai” was used for conducting the massive 

Distributed Denial of Service (DDOS) attack against Dyn DNS. 

In October of 2016, about 100,000 Mirai IoT botnet nodes were 

enlisted in this incident and reported attack rates were up to 1.2 

Tbps[1]. Therefore, cyber threats from IoT botnet have become a 

reality. To observe cyber attacks against such devices and analyze 

the threats from IoT malware, some researchers design new 

observation mechanisms and build various honeypots such as 

IoTPOT[2], SIPHON[3], IoTCandyJar[4], and real devices 

Honeypot for observing Web UI of IoT devices[5]. 

  The competition between hackers and cybersecurity 

researchers is an endless war. IoT malware keeps evolving and 

exploits multiple vulnerabilities to infect IoT devices. Since May 

2018, the Mirai and Gafgyt malware families that assimilate 

multiple known exploits affecting the Internet of Things (IoT) 

devices. These exploits come from 11 makers' devices over HTTP, 

UPnP, Telnet, and SOAP protocols [6]. a 

Besides their well-known activities such as DDoS, recent IoT 

malware have diverse purposes including coin mining, click fraud, 

and sending spam emails. Nonetheless, human attackers also 

utilize various tools to access and collect variable information on 
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the device. For example, WebUI of many IP Cameras and routers 

are constantly searched and accessed if vulnerable. In order to 

observe and analyze such variety of attacks in depth, there is an 

increasing need for a bare-metal IoT honeypot, namely a real IoT 

device as a honeypot, since it is costly to emulate device-specific 

vulnerabilities and complicated functionalities provided through 

their WebUI and other dedicated services, such as UPnP. 

However, it is worth noting that operating bare-metal IoT 

honeypots has unique technical challenges mostly coming from 

their low configurability as an embedded system. For example, 

honeypot operators may need to control the incoming traffic since 

there are critical attacks that may destroy firmware and/or change 

the network configuration of devices that could make the 

honeypot inoperational. Also, honeypot operators may need to 

mask and/or replace outgoing responses from the honeypot 

devices as they may contain information such as surrounding 

wireless access points, which could reveal the physical location 

of the honeypot devices. 

1.1 Research questions 

For the honeypot consisted of physical IoT devices, we want 

to figure out the following research questions. 

1. If we build the honeypot with vulnerable devices, how to 

prevent critical and destructive attack vectors? 

2. Some attackers may change the setting of devices which 

cause functional disorder in devices. Is there a convenient 

way to prevent it? 

3. How to prevent information leak from the WebUI of 

devices? 
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1.2 Overview 

The remainder of this paper is divided into six sections.  

Section 2 presents the literature review of this research. Section 

3 clarifies the terminology used in the paper. Section 4 describes 

our method. Section 5 details the evaluation experiments and 

results. Section 6 discusses our experiment results. Section 7 

briefly concludes our research.  

2. Related work 

In [3], Guarnizo et al. proposed the SIPHON architecture, 

which is a scalable high-interaction honeypot platform for IoT 

devices. Our architecture leverages IoT devices physically 

present at one location and connected to the Internet through so-

called wormholes distributed worldwide. The resulting 

architecture allows the exposure of a few physical devices over 

numerous geographically distributed IP addresses. 

Many embedded devices have WebUI for device management 

and operation, and some of them are open to the Internet with 

vulnerability and weak credentials. Ezawa et al. [5] proposed the 

use of a honeypot to monitor attacks against the WebUI of IoT 

devices by employing bare-metal devices. The observation 

results contained attacks against regular web servers and 

indicated that some attacks are automatically conducted through 

certain tools or types of malware. The observation also suggests 

that some attackers changed the DDNS, VPN, and network 

settings, resulting in the device becoming unavailable for other 

attackers. 

  Tamiya et al. [7] employed a decoy honeypot consisted of five 

IP Cameras to capture the behavior of human-like attackers. His 

research shows the behavior including extracting environment 

parameter of devices, downloading the snapshot of live streams, 

and long-term peeping live streams. 

Tambe, et al. [8] developed a scalable VPN-forwarded 

Honeypots to solve the cloud IP problem in SIPHON. Tambe's 

honeypot consisted of physical IoT device and prevented Wi-Fi 

information leak by the physical way. They remote Wi-Fi chip or 

made use of an electromagnetically shielded enclosure to prevent 

nearby wireless signals from reaching those devices. 

Compared to existing literature, we find the previous honeypot 

of physical IoT devices lacks abilities against destructive 

commands. Moreover, only Tambe’s research prevented from 

sensitive information leaks. Our work focuses on the high 

interaction honeypot consisting of physical IoT devices. Our 

approach improves the security of the honeypot, including 

protecting sensitive data collecting by sensors. Besides, our 

program monitoring and manage the incoming traffic to avoid 

destructive commands.  

3. Definitions 

3.1 Man-in-the-middle 

The man-in-the-middle (MITM) refers to an attack in which 

the attacker positions themselves between two communicating 

parties and secretly relays or alters the communication between 

these parties, who believe that they are engaging in direct 

communication with each other. Messages intended for the 

legitimate site are passed to the attacker instead, who saves 

valuable information, passes the messages to the legitimate site, 

and forwards the responses back to the user. The MITM way can 

lead to the web proxy attack, in which a malicious web proxy 

receives all web traffic from a compromised computer and relays 

it to a legitimate site. The proxy collects credentials and other 

confidential information from the traffic. MITM flows are 

difficult to detect because a legitimate site can appear to be 

functioning properly and the user may not be aware that 

something is wrong [9]. We utilize a web proxy attack to monitor 

and manage the flow between clients and our honeypot. 

3.2 Transparent Proxy 

In computer networks, a proxy server is a server that acts as an 

intermediary for requests from clients seeking resources from 

other servers [10]. A proxy server can fulfill the request from the 

client, filter out, or modify the request in a specific way. 

Transparent Proxying or a transparent proxy means we redirect 

traffic into a proxy at the network layer, without any client 

configuration [11]. The client is unaware that the response 

received originates from the proxy server and not from the source 

server. We conduct the flow forwarding through MITM proxy by 

pf of FreeBSD [12] and socat [13]. 

3.3 Cyber Attacks against WebUI of Physical IoT Devices 

In 2017, Ezawa et al. [3] propose a Honeypot consisting of 

physical IoT devices to observe attacks against the WebUI of IoT 

devices. The devices include IP Cameras, routers, pocket routers, 

a printer, and a TV receiver.  In 2018, Tamiya et al. [7] employed 

five IP Cameras to build a decoy honeypot to capture the behavior 

of peeping attackers. According to these two honeypots, we 

summarized four kinds of cyber attacks against these WebUI: 

1. Configuration information theft attacks 

If the device contains vulnerabilities of information disclosure 

or weak credentials. The attacker can collect the configuration 

and parameters of devices by some URLs, such as 

get_status.cgi. 

2. Modification of the configuration 

According to the observation of the two honeypots, attackers 

may modify the DDNS, VPN, credentials, and network 

configuration.      

3. Snapshot attacks 
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Snapshot is a feature of IP Cameras and offers a current time 

image of the live stream to users. Once the clients send the 

HTTP request of the snapshot, the web server will provide the 

current time image in a JPG or PNG file.  

4. Long term peeping 

This attack collected by IP Cameras when some clients access 

the URL of the live stream. Moreover, the clients stay on the 

web page of live streams for several hours.  

4. ThingGate 

4.1 Goal 

ThingGate is a customized MITM proxy for managing flow 

between clients and the honeypot that consists of phycal IoT 

devices. To face the challenges from the physical IoT devices, we 

define the following two goals.  

1. Incoming traffic management 

We wish to block the incoming flow of unwanted or deadly 

attack vectors.   

2. Response information management 

Our program checks the HTTP response from IoT devices and 

prevents the leakage or exposure of sensitive information. 

Blocking Wi-Fi with an electromagnetic shielding container is 

costly. We hope to prevent leakage through a simple and light-

weight method.    

4.2 System Overview 

Our design, which was inspired by SIPHON architecture [3], 

is displayed in Figure 1. Our honeypot consists solely of real IoT 

devices. Moreover, SIPHON’s forwarder is improved with an 

MITM proxy to manage the forward traffic from wormholes to 

local physical IoT devices. These flows may target IoT devices 

other than ours. 

Wormhole. The wormhole device contains some ports open to 

the general Internet on a public IP address. We transparently 

forward the incoming traffic toward these ports through an MITM 

proxy to a specific port on a remote physical IoT device. 

Forwarding is conducted through socat [13], which is a 

command-line-based utility that establishes two bidirectional 

byte streams. 

MITM Proxy. The socat utility ensures that the traffic between 

the wormhole and the IoT device has managed to accomplish the 

protection and HTTP response rewriting tasks in real time. The 

proxy examines all the flows and decides to block, delegate to 

devices. The proxy conducts the modification of the flow through 

the MITM way. 

Data Storage. The storage dumps traffic records from the 

wormholes and aggregates the data for offline analysis. For 

example, Wireshark is used to analyze the headers of HTTP 

requests in dumped traffic files. 

 

 

Figure 1 System overview of ThingGate. 

 

4.3 Incoming traffic management 

For protecting IoT devices from destructive attack or 

modification configuration, we prepared a blocking list of 

bricking and critical configuration URL. Figure 2 shows the 

workflow of filter out unwanted traffic. ThingGate checks 

incoming HTTP traffic if the URL of the HTTP request is in the 

blocking list. If the list contains the URL, ThingGate will filter 

out the form data and replace the URL with another safe URL. 

Moreover, then send the safe HTTP request to the targeted device. 

 

 

Figure 2 Filtering out unwanted traffic. 

 

4.4 Response information management 

Many IoT devices contain sensors and show the data in the 

WebUI. For example, an IP Camera shows the Wi-Fi access point 

(AP) list in the Wi-Fi setting web page shown in Figure 3. The 

list exposed not only the mac address of devices but also 

organization name, models of devices, or maker names. 

 

Figure 3 The example of Wi-Fi AP list sensed by IP camera. 
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In order to prevent information leak from sensed data of the 

device, ThingGate manages the output traffic of the IoT honeypot. 

Figure 4 shows the workflow of response information 

management. If the client visits the web page of Wi-Fi AP List, 

ThingGate will response a fabricated AP to the client. 

 

 

Figure 4 Protecting Wi-Fi information with ThingGate. 

 

5. Evaluation 

5.1 Prototype and data set 

 We developed a prototype of ThingGate using Python and the 

MITM proxy open-source software [11]. We performed four 

different experiments with seven physical IoT devices to evaluate 

the effectiveness of ThingGate. Table 1 presents the specification 

of our devices, all of which contained vulnerabilities that had 

been publicly disclosed. Besides, we installed ThingGate on a 

server with four cores Intel 3.10 GHz CPU, 16 GB RAM, and 1.8 

Terabytes disk. 

 

Table 1  IoT devices used in experiments. 

IoT device Maker’s 

country 

CPU Arch. price* 

(JPD) 

Router A Taiwan MIPS 26,000 

IP Camera A1 China ARM 4,980 

IP Camera A2 China ARM 4,980 

IP Camera A3 China ARM 4,980 

IP Camera B USA ARM 3,000 

IP Camera C Taiwan MIPS 14,000 

IP Camera D Taiwan MIPS 7,960 

* We collected this price information from Amazon Japan on Oct. 1, 2018. IP 

Camera A1 ~A3 are the same mode devices 

 

Table 2 presents the two data sets collected by our honeypot 

through ThingGate. From September 8 to October 13, 2018, we 

used seven devices and 32 IP addresses to collect the attack flow 

(data set 1). Moreover, we summarized the unwanted attack 

URLs to construct the blocking lists. Moreover, we analyzed the 

URL list of critical configurations and the URLs of destructive 

vulnerabilities from our IoT devices. We designed and 

implemented the prototype of ThingGate according to data set 1. 

From November 17, 2018, to June 31, 2019, we deployed 

ThingGate and forwarded 19 IP addresses to conduct the 

evaluation experiments. The collected flow for this period is 

labeled as data set 2. 

 

Table 2 Data set for analysis. 

Data 

set 

HTTP 

requests 

honeypot 

IP 

Duration Analysis or 

evaluation 

subjects 

1 307,405   19 
2018/09/08~ 

2018/10/13 
Blocking Lists 

2 1,920,653 19 
2018/11/17~ 

2019/06/31 

Blocking unwanted flow.  

Fabricated sensor content.    

 

  Table 3 shows the distribution of HTTP methods in data set2. 

The GET and POST accounted for the vast majority (97 %) which 

contain various cyber attacks against HTTP services. Moreover, 

some of the OPTION method flows come from the Real Time 

Streaming Protocol (RTSP) [14]. The RTSP traffic means some 

attackers or malware recognized our devices are IP Cameras and 

want to utilize our RTSP services. Besides, the M-SEARCH and 

NOTIFY traffic are based on Universal Plug and Play protocol 

(UPnP) [15]. Our devices disabled the UPnP port and services by 

default, but the clients try to attack our UPnP service. For the 

PROFIND flows, the clients blindly sent remote buffer overflow 

packets which against IIS 6.0 [16]. 

 

Table 3 HTTP method statistics for data set 2. 

HTTP method count Percentage (100%) 

CONNECT 420 0.022 

GET 1,512,526 78.751 

HEAD 7,062 0.368 

M-SEARCH 41,961 2.185 

NOTIFY 67 0.003 

OPTIONS 264 0.013 

POST 356,272 18.550 

PROPFIND 1,938 0.101 

PUT 132 0.006 

 

Table 4 presents the statistics of HTTP requests, attackers' IP 

address and URLs. Because we forward fifteen IP address for IP 

Camera A1, A2, and A3, they got 51/% HTTP requests. However, 

IP Camera C got the most HTTP requests and URLs on condition 
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that forwarding only one IP traffic to the device. 

 

Table 4  Statistics of cyber attacks. Observation of 7 months. 

IoT device Honeypot 

IP counts 

HTTP request 

counts 

Unique 

attacker IP 

counts 

Unique 

URL 

counts 

Router A 1 17,447 1,808 6,150 

IP Camera 

A1 
5 340,316 22,336 2,300 

IP Camera 

A2 
5 455,639 23,196 4,546 

IP Camera 

A3 
5 193,941 13,642 1,573 

IP Camera B 1 54,024 4,581 1,740 

IP Camera C 1 782,645 4,291 2,8111 

IP Camera D 1 76,641 4,422 1,395 

Total 19 1,920,653 57,230 38,374 

 

5.2 Blocking unwanted flow experiments 

5.2.1 Design of experiment 

We analyzed our devices and created a list of configuration 

URLs and destructive vulnerabilities. There 51 critical 

configuration URLs and one destructive URL in the list, and we 

extract the pathname of configuration URLs to build a blacklist. 

Further, we select target pages in devices for replacing the 

pathname in the blacklist. Table 5 presents the blacklist against 

IP Camera A1~A3. Moreover, we deployed the blacklist in 

ThingGate and redirected flow to the target pages if the incoming 

traffic matched the blacklist. The flow of one IP address was 

forwarded to all devices except for the three IP Cameras. 

 

Table 5 Configuration blacklist and replaced pathnames 

against IP Camera A1~A3. 

Configuration 

pathname 

Description of 

pathname 

Replaced 

pathname 

Description of 

pathname 

/set_network.cgi 
change network 

settings 
/admin2.htm 

show camera 

status 

/reboot.cgi reboot camera /admin2.htm 
show camera 

status 

/set_upnp.cgi 
change UPnP 

settings 
/upnp.htm 

show UPnP 

information 

/set_wifi.cgi set Wi-Fi network  /wireless.htm 
show Wi-Fi 

settings 

/set_ddns.cgi 
change dynamic 

DNS settings 
/ddns.htm 

show dynamic 

DNS settings 

/set_users.cgi change user /user.htm show user 

settings account settings 

/restore_factory.cgi 
restore factory 

settings 
/upgrade.htm 

show upgrade 

functions  

/upgrade_htmls.cgi

, 

upgrade system 

firmware 
/upgrade.htm 

show upgrade 

functions 

/upgrade_htmls.cgi upgrade WebUI /upgrade.htm 
show upgrade 

functions 

 

5.2.2  Experimental results 

  From data set 2, we found on June 7th, an attacker from 

American accessed our Wi-Fi router in the honeypot and 

modified the LAN DNS setting, point to a Vietnam server. 

ThingGate successfully blocked this HTTP request, filtered out 

the form data, and replace the URL with another URL in WebUI. 

Figure 5 shows the detail information of the HTTP request. 

 

 

Figure 5 The HTTP request of a modifying configuration 

attack. 

 

5.3 Fabricated sensor information experiment 

5.3.1 Design of experiment 

We selected the WebUI of all of the IP Cameras as victim 

devices that we would like to protect. ThingGate monitored the 

flow of 18 IPs forwarded to these cameras. If clients requested 

the web page of scanning Wi-Fi information, we replaced the 

information with fabricated information. 

5.3.2 Experimental results 

In data set 2, we found that ThingGate successful sent 

fabricated Wi-Fi information to 44 different clients in 80 HTTP 

response. Table 6 presents part of the attackers’ geographical 

location, number of requests sent, and duration of visit to our 

honeypot. The Googlebot [17] client only sent 23 HTTP requests 

in one day. 

 

Table 6 part of attackers who request Wi-Fi information. 

Observation of 7months from IP Camera A1~A3, B, C, and D. 

clients Source IP Country Reques

ts for 

Wi-Fi  

Total 

request 

count 

Attack Duration 

Client A aaa.aaa.202.28 USA 3 2704 2018/12/12~201
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8/12/12 

Client B bbb.bbb.169.38 USA 3 4167 
2018/12/23~201

8/12/23 

Client C ccc.ccc.226.5 USA 6 3476 
2018/12/17~201

9/01/12 

Client D ddd.ddd.89.58 China 1 537 
2019/01/11~201

9/01/11 

Client E eee.eee.148.116 China 3 2333 
2018/11/19~201

8/11/19 

Client F fff.fff.15.51 France 3 98 
2019/01/07~201

9/01/08 

Client G ggg.249.79.85* USA 1 23 
2018/11/17~201

8/11/17 

*The clients G is Googlebot 

 

5.4 Observation of cyber attacks against the WebUI  

According to data set 2, there are 1,920,653 cyber attacks 

employed HTTP requests to attack our honeypot. Some of these 

attacks are only able to be observed by physical devices. We 

collected similar attacks which present in Ezawa's and Tamiya's 

honeypot [5] [7]. We found attackers attempt to capture and 

modify the configuration of devices, remotely control direction 

and zoom of IP Camera, peep the live video, snapshot of IP 

Camera and utilized the remote code execution (RCE) 

vulnerability of devices [18]. In addition, after the RCE attack 

vector, the attacker download devices' live stream by access a 

hidden web application. The application "/video.cgi"did not 

appear in source code and can be customized by width and height 

parameters. Table 7 shows the statistic and description of the 

attack against our physical device.  

  There were 49 source IPs has watched the live stream of the 

camera. Among them, five IPs were peeking over an hour. The 

maximum time of peeking is about 18 hours. Moreover, some 

clients from 21 source IP addresses adjusted the directional and 

zoom of the camera. One client from American applied the RCE 

exploit code of IP Camera C to attack IP Camera C and D. The 

Live stream for long term peeping, the real-time response of 

control direction and zoom, and the whole scenario of RCE attack 

are hard to simulate by VM-based honeypot. Our physical devices 

behind ThingGate successfully observed these kinds of cyber 

attacks. 

 

Table 7  Cyber attacks against WebUI of IoT devices. 

Observation of 7months from IP Camera A1~A3, B, C, and D. 

Category Pathname Description of URL Victim 

devices 

Request 

counts 

Configuration get_params.cgi Show system IP Camera 599 

information 

theft attacks 

variables A1~A3, B 

get_status.cgi 
Show configuration 

of devices 

IP Camera 

A1~A3, B, 

C, D 

1064 

modification 

of the 

configuration 

/%5ccgi-

bin/set_network.cg

i 

Set network 

configuration 

IP Camera 

A3 83 

decoder_control.cg

i 

Control directional 

and zoom  

IP Camera 

A1~A3 
153 

Snapshot 

attacks 
snapshot.cgi 

Show current image 

of live video stream 

IP Camera 

A1~A3, B 
2,920 

Long term 

peeping 

livestream.cgi 
Show live video 

stream  

IP Camera 

A1~A3, 
4560 

videostream.cgi 
Show live video 

stream  

IP Camera 

A1~A3, B 
273 

Remote 

Command 

Execution 

/setSystemComma

nd 

Set OS Commands 

for execution  

IP Camera 

C, D 4 

 

6. Discussion 

From the observation of cyber attacks in data set 2, our 

honeypot successfully collected attacks against physical IoT 

devices Through ThingGate. These attacks, such as peeping 

video streams, control the direction of the camera, and RCE 

attacks first and then download live stream via hidden web 

application are hard to simulate by the virtual machine. We also 

found 44 clients request the Wi-Fi AP information web page from 

the fabricated sensor information experiment. From the 44 clients, 

41 clients employed a predefined list to scan victims, two are 

human-like attackers, and Googlebot. Googlebot is web crawler 

software developed by Google, and it analyzed the JavaScript 

code in WebUI, traverse all web pages including the Wi-Fi 

configuration page. We verified Googlebot by using a reverse 

DNS lookup on the accessed IP address according to a Google 

document [19]. The results of observation show that many 

attackers collected Wi-Fi AP information from WebUI of IoT 

devices. 

Compared with Tambe's research, they applied the physical 

way that remoted Wi-Fi chip or made use of an 

electromagnetically shielded enclosure. ThingGate is much 

easier and cheaper. However, there is a risk that attackers get root 

privilege and open terminal to scan Wi-Fi though command-line 

interface.  

According to the result of block unwanted traffic experiment, 

we prove ThingGate can prevent devices from modifying the 

configuration. Hence, we can build the bare-metal IoT honeypots 

together with ThingGate to increase the efficiency and safety of 
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the honeypot.  

7. Conclusion 

 We employ the transparent proxy to develop a supporting 

mechanism for honeypot consisted of physical IoT devices. 

ThingGate can improve the security of honeypot, manage the 

incoming traffic and output response content via MITM way. We 

evaluated ThingGate on the public internet, prove the 

effectiveness of ThingGate. In our observation, ThingGate did 

not yield the cyber attacks against physical devices, such as RCE 

attack and long term peeping. In our experimental result, we 

successfully defended the unwanted attack which changes 

configuration. Moreover, ThingGate fooled 44 clients who 

requested the Wi-Fi AP list in WebUI with fabricated AP. 
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