

ThingGate: A gateway for flexible operation of bare-metal IoT

honeypot

Chun-Jung Wu†, Katsunari Yoshioka†, ††, and Tsutomu Matsumoto†, ††

Abstract: Internet of Things (IoT) malware keep evolving and exploit multiple vulnerabilities to infect IoT devices. Besides

malware, human attackers also utilize various tools to access and collect variable information on the devices For instances, web UI

of IP Cameras and routers are constantly searched and accessed if vulnerable. In order to observe and analyze such variety of

attacks in depth, there is an increasing need for bare-metal IoT devices as a honeypot since it is costly to emulate device-specific

vulnerabilities and complex functionalities from their dedicated services. However, operating bare-metal IoT honeypots has unique

technical challenges mostly coming from their low configurability as an embedded system. A bare-metal honeypot needs proper

access control while it is allowing attackers to access its inside to some degree, such as filter out bricking commands and changes

of critical configuration. From this observation, we propose ThingGate, a gateway for flexible operation of bare-metal IoT

honeypot. ThingGate employs a man-in-the-middle proxy to control and manage inbound and outbound traffic of the bare-metal

IoT honeypot. We evaluate ThingGate with seven bare-metal IoT devices and show that it successfully blocks unwanted incoming

critical attacks, masks wireless access point information of the devices while showing high observability of various attacks

exploiting different vulnerabilities.

Keywords: IoT Honeypot, MITM, Transparent proxy, IoT devices

1. Introduction

In recent years, people have been connecting various things to

the Internet for monitoring, collecting data, or remote

manipulation. Backend applications collect and exchange data

with these devices through the network. The network of this

appearance is called the Internet of Things (IoT). However, an

IoT Malware “Mirai” was used for conducting the massive

Distributed Denial of Service (DDOS) attack against Dyn DNS.

In October of 2016, about 100,000 Mirai IoT botnet nodes were

enlisted in this incident and reported attack rates were up to 1.2

Tbps[1]. Therefore, cyber threats from IoT botnet have become a

reality. To observe cyber attacks against such devices and analyze

the threats from IoT malware, some researchers design new

observation mechanisms and build various honeypots such as

IoTPOT[2], SIPHON[3], IoTCandyJar[4], and real devices

Honeypot for observing Web UI of IoT devices[5].

 The competition between hackers and cybersecurity

researchers is an endless war. IoT malware keeps evolving and

exploits multiple vulnerabilities to infect IoT devices. Since May

2018, the Mirai and Gafgyt malware families that assimilate

multiple known exploits affecting the Internet of Things (IoT)

devices. These exploits come from 11 makers' devices over HTTP,

UPnP, Telnet, and SOAP protocols [6]. a

Besides their well-known activities such as DDoS, recent IoT

malware have diverse purposes including coin mining, click fraud,

and sending spam emails. Nonetheless, human attackers also

utilize various tools to access and collect variable information on

† The author is with the Graduate School of Environment and Information

Sciences, Yokohama National University, Yokohama 240-8501, Japan

†† The author is with Institute of Advanced Sciences, Yokohama National

University, Yokohama, Kanagawa 240-8501, Japan

the device. For example, WebUI of many IP Cameras and routers

are constantly searched and accessed if vulnerable. In order to

observe and analyze such variety of attacks in depth, there is an

increasing need for a bare-metal IoT honeypot, namely a real IoT

device as a honeypot, since it is costly to emulate device-specific

vulnerabilities and complicated functionalities provided through

their WebUI and other dedicated services, such as UPnP.

However, it is worth noting that operating bare-metal IoT

honeypots has unique technical challenges mostly coming from

their low configurability as an embedded system. For example,

honeypot operators may need to control the incoming traffic since

there are critical attacks that may destroy firmware and/or change

the network configuration of devices that could make the

honeypot inoperational. Also, honeypot operators may need to

mask and/or replace outgoing responses from the honeypot

devices as they may contain information such as surrounding

wireless access points, which could reveal the physical location

of the honeypot devices.

1.1 Research questions

For the honeypot consisted of physical IoT devices, we want

to figure out the following research questions.

1. If we build the honeypot with vulnerable devices, how to

prevent critical and destructive attack vectors?

2. Some attackers may change the setting of devices which

cause functional disorder in devices. Is there a convenient

way to prevent it?

3. How to prevent information leak from the WebUI of

devices?

Computer Security Symposium 2019
21 - 24 October 2019

© 2019 Information Processing Society of Japan －1291－

1.2 Overview

The remainder of this paper is divided into six sections.

Section 2 presents the literature review of this research. Section

3 clarifies the terminology used in the paper. Section 4 describes

our method. Section 5 details the evaluation experiments and

results. Section 6 discusses our experiment results. Section 7

briefly concludes our research.

2. Related work

In [3], Guarnizo et al. proposed the SIPHON architecture,

which is a scalable high-interaction honeypot platform for IoT

devices. Our architecture leverages IoT devices physically

present at one location and connected to the Internet through so-

called wormholes distributed worldwide. The resulting

architecture allows the exposure of a few physical devices over

numerous geographically distributed IP addresses.

Many embedded devices have WebUI for device management

and operation, and some of them are open to the Internet with

vulnerability and weak credentials. Ezawa et al. [5] proposed the

use of a honeypot to monitor attacks against the WebUI of IoT

devices by employing bare-metal devices. The observation

results contained attacks against regular web servers and

indicated that some attacks are automatically conducted through

certain tools or types of malware. The observation also suggests

that some attackers changed the DDNS, VPN, and network

settings, resulting in the device becoming unavailable for other

attackers.

 Tamiya et al. [7] employed a decoy honeypot consisted of five

IP Cameras to capture the behavior of human-like attackers. His

research shows the behavior including extracting environment

parameter of devices, downloading the snapshot of live streams,

and long-term peeping live streams.

Tambe, et al. [8] developed a scalable VPN-forwarded

Honeypots to solve the cloud IP problem in SIPHON. Tambe's

honeypot consisted of physical IoT device and prevented Wi-Fi

information leak by the physical way. They remote Wi-Fi chip or

made use of an electromagnetically shielded enclosure to prevent

nearby wireless signals from reaching those devices.

Compared to existing literature, we find the previous honeypot

of physical IoT devices lacks abilities against destructive

commands. Moreover, only Tambe’s research prevented from

sensitive information leaks. Our work focuses on the high

interaction honeypot consisting of physical IoT devices. Our

approach improves the security of the honeypot, including

protecting sensitive data collecting by sensors. Besides, our

program monitoring and manage the incoming traffic to avoid

destructive commands.

3. Definitions

3.1 Man-in-the-middle

The man-in-the-middle (MITM) refers to an attack in which

the attacker positions themselves between two communicating

parties and secretly relays or alters the communication between

these parties, who believe that they are engaging in direct

communication with each other. Messages intended for the

legitimate site are passed to the attacker instead, who saves

valuable information, passes the messages to the legitimate site,

and forwards the responses back to the user. The MITM way can

lead to the web proxy attack, in which a malicious web proxy

receives all web traffic from a compromised computer and relays

it to a legitimate site. The proxy collects credentials and other

confidential information from the traffic. MITM flows are

difficult to detect because a legitimate site can appear to be

functioning properly and the user may not be aware that

something is wrong [9]. We utilize a web proxy attack to monitor

and manage the flow between clients and our honeypot.

3.2 Transparent Proxy

In computer networks, a proxy server is a server that acts as an

intermediary for requests from clients seeking resources from

other servers [10]. A proxy server can fulfill the request from the

client, filter out, or modify the request in a specific way.

Transparent Proxying or a transparent proxy means we redirect

traffic into a proxy at the network layer, without any client

configuration [11]. The client is unaware that the response

received originates from the proxy server and not from the source

server. We conduct the flow forwarding through MITM proxy by

pf of FreeBSD [12] and socat [13].

3.3 Cyber Attacks against WebUI of Physical IoT Devices

In 2017, Ezawa et al. [3] propose a Honeypot consisting of

physical IoT devices to observe attacks against the WebUI of IoT

devices. The devices include IP Cameras, routers, pocket routers,

a printer, and a TV receiver. In 2018, Tamiya et al. [7] employed

five IP Cameras to build a decoy honeypot to capture the behavior

of peeping attackers. According to these two honeypots, we

summarized four kinds of cyber attacks against these WebUI:

1. Configuration information theft attacks

If the device contains vulnerabilities of information disclosure

or weak credentials. The attacker can collect the configuration

and parameters of devices by some URLs, such as

get_status.cgi.

2. Modification of the configuration

According to the observation of the two honeypots, attackers

may modify the DDNS, VPN, credentials, and network

configuration.

3. Snapshot attacks

－1292－

Snapshot is a feature of IP Cameras and offers a current time

image of the live stream to users. Once the clients send the

HTTP request of the snapshot, the web server will provide the

current time image in a JPG or PNG file.

4. Long term peeping

This attack collected by IP Cameras when some clients access

the URL of the live stream. Moreover, the clients stay on the

web page of live streams for several hours.

4. ThingGate

4.1 Goal

ThingGate is a customized MITM proxy for managing flow

between clients and the honeypot that consists of phycal IoT

devices. To face the challenges from the physical IoT devices, we

define the following two goals.

1. Incoming traffic management

We wish to block the incoming flow of unwanted or deadly

attack vectors.

2. Response information management

Our program checks the HTTP response from IoT devices and

prevents the leakage or exposure of sensitive information.

Blocking Wi-Fi with an electromagnetic shielding container is

costly. We hope to prevent leakage through a simple and light-

weight method.

4.2 System Overview

Our design, which was inspired by SIPHON architecture [3],

is displayed in Figure 1. Our honeypot consists solely of real IoT

devices. Moreover, SIPHON’s forwarder is improved with an

MITM proxy to manage the forward traffic from wormholes to

local physical IoT devices. These flows may target IoT devices

other than ours.

Wormhole. The wormhole device contains some ports open to

the general Internet on a public IP address. We transparently

forward the incoming traffic toward these ports through an MITM

proxy to a specific port on a remote physical IoT device.

Forwarding is conducted through socat [13], which is a

command-line-based utility that establishes two bidirectional

byte streams.

MITM Proxy. The socat utility ensures that the traffic between

the wormhole and the IoT device has managed to accomplish the

protection and HTTP response rewriting tasks in real time. The

proxy examines all the flows and decides to block, delegate to

devices. The proxy conducts the modification of the flow through

the MITM way.

Data Storage. The storage dumps traffic records from the

wormholes and aggregates the data for offline analysis. For

example, Wireshark is used to analyze the headers of HTTP

requests in dumped traffic files.

Figure 1 System overview of ThingGate.

4.3 Incoming traffic management

For protecting IoT devices from destructive attack or

modification configuration, we prepared a blocking list of

bricking and critical configuration URL. Figure 2 shows the

workflow of filter out unwanted traffic. ThingGate checks

incoming HTTP traffic if the URL of the HTTP request is in the

blocking list. If the list contains the URL, ThingGate will filter

out the form data and replace the URL with another safe URL.

Moreover, then send the safe HTTP request to the targeted device.

Figure 2 Filtering out unwanted traffic.

4.4 Response information management

Many IoT devices contain sensors and show the data in the

WebUI. For example, an IP Camera shows the Wi-Fi access point

(AP) list in the Wi-Fi setting web page shown in Figure 3. The

list exposed not only the mac address of devices but also

organization name, models of devices, or maker names.

Figure 3 The example of Wi-Fi AP list sensed by IP camera.

－1293－

In order to prevent information leak from sensed data of the

device, ThingGate manages the output traffic of the IoT honeypot.

Figure 4 shows the workflow of response information

management. If the client visits the web page of Wi-Fi AP List,

ThingGate will response a fabricated AP to the client.

Figure 4 Protecting Wi-Fi information with ThingGate.

5. Evaluation

5.1 Prototype and data set

 We developed a prototype of ThingGate using Python and the

MITM proxy open-source software [11]. We performed four

different experiments with seven physical IoT devices to evaluate

the effectiveness of ThingGate. Table 1 presents the specification

of our devices, all of which contained vulnerabilities that had

been publicly disclosed. Besides, we installed ThingGate on a

server with four cores Intel 3.10 GHz CPU, 16 GB RAM, and 1.8

Terabytes disk.

Table 1 IoT devices used in experiments.

IoT device Maker’s

country

CPU Arch. price*

(JPD)

Router A Taiwan MIPS 26,000

IP Camera A1 China ARM 4,980

IP Camera A2 China ARM 4,980

IP Camera A3 China ARM 4,980

IP Camera B USA ARM 3,000

IP Camera C Taiwan MIPS 14,000

IP Camera D Taiwan MIPS 7,960

* We collected this price information from Amazon Japan on Oct. 1, 2018. IP

Camera A1 ~A3 are the same mode devices

Table 2 presents the two data sets collected by our honeypot

through ThingGate. From September 8 to October 13, 2018, we

used seven devices and 32 IP addresses to collect the attack flow

(data set 1). Moreover, we summarized the unwanted attack

URLs to construct the blocking lists. Moreover, we analyzed the

URL list of critical configurations and the URLs of destructive

vulnerabilities from our IoT devices. We designed and

implemented the prototype of ThingGate according to data set 1.

From November 17, 2018, to June 31, 2019, we deployed

ThingGate and forwarded 19 IP addresses to conduct the

evaluation experiments. The collected flow for this period is

labeled as data set 2.

Table 2 Data set for analysis.

Data

set

HTTP

requests

honeypot

IP

Duration Analysis or

evaluation

subjects

1 307,405 19
2018/09/08~

2018/10/13
Blocking Lists

2 1,920,653 19
2018/11/17~

2019/06/31

Blocking unwanted flow.

Fabricated sensor content.

 Table 3 shows the distribution of HTTP methods in data set2.

The GET and POST accounted for the vast majority (97 %) which

contain various cyber attacks against HTTP services. Moreover,

some of the OPTION method flows come from the Real Time

Streaming Protocol (RTSP) [14]. The RTSP traffic means some

attackers or malware recognized our devices are IP Cameras and

want to utilize our RTSP services. Besides, the M-SEARCH and

NOTIFY traffic are based on Universal Plug and Play protocol

(UPnP) [15]. Our devices disabled the UPnP port and services by

default, but the clients try to attack our UPnP service. For the

PROFIND flows, the clients blindly sent remote buffer overflow

packets which against IIS 6.0 [16].

Table 3 HTTP method statistics for data set 2.

HTTP method count Percentage (100%)

CONNECT 420 0.022

GET 1,512,526 78.751

HEAD 7,062 0.368

M-SEARCH 41,961 2.185

NOTIFY 67 0.003

OPTIONS 264 0.013

POST 356,272 18.550

PROPFIND 1,938 0.101

PUT 132 0.006

Table 4 presents the statistics of HTTP requests, attackers' IP

address and URLs. Because we forward fifteen IP address for IP

Camera A1, A2, and A3, they got 51/% HTTP requests. However,

IP Camera C got the most HTTP requests and URLs on condition

－1294－

that forwarding only one IP traffic to the device.

Table 4 Statistics of cyber attacks. Observation of 7 months.

IoT device Honeypot

IP counts

HTTP request

counts

Unique

attacker IP

counts

Unique

URL

counts

Router A 1 17,447 1,808 6,150

IP Camera

A1
5 340,316 22,336 2,300

IP Camera

A2
5 455,639 23,196 4,546

IP Camera

A3
5 193,941 13,642 1,573

IP Camera B 1 54,024 4,581 1,740

IP Camera C 1 782,645 4,291 2,8111

IP Camera D 1 76,641 4,422 1,395

Total 19 1,920,653 57,230 38,374

5.2 Blocking unwanted flow experiments

5.2.1 Design of experiment

We analyzed our devices and created a list of configuration

URLs and destructive vulnerabilities. There 51 critical

configuration URLs and one destructive URL in the list, and we

extract the pathname of configuration URLs to build a blacklist.

Further, we select target pages in devices for replacing the

pathname in the blacklist. Table 5 presents the blacklist against

IP Camera A1~A3. Moreover, we deployed the blacklist in

ThingGate and redirected flow to the target pages if the incoming

traffic matched the blacklist. The flow of one IP address was

forwarded to all devices except for the three IP Cameras.

Table 5 Configuration blacklist and replaced pathnames

against IP Camera A1~A3.

Configuration

pathname

Description of

pathname

Replaced

pathname

Description of

pathname

/set_network.cgi
change network

settings
/admin2.htm

show camera

status

/reboot.cgi reboot camera /admin2.htm
show camera

status

/set_upnp.cgi
change UPnP

settings
/upnp.htm

show UPnP

information

/set_wifi.cgi set Wi-Fi network /wireless.htm
show Wi-Fi

settings

/set_ddns.cgi
change dynamic

DNS settings
/ddns.htm

show dynamic

DNS settings

/set_users.cgi change user /user.htm show user

settings account settings

/restore_factory.cgi
restore factory

settings
/upgrade.htm

show upgrade

functions

/upgrade_htmls.cgi

,

upgrade system

firmware
/upgrade.htm

show upgrade

functions

/upgrade_htmls.cgi upgrade WebUI /upgrade.htm
show upgrade

functions

5.2.2 Experimental results

 From data set 2, we found on June 7th, an attacker from

American accessed our Wi-Fi router in the honeypot and

modified the LAN DNS setting, point to a Vietnam server.

ThingGate successfully blocked this HTTP request, filtered out

the form data, and replace the URL with another URL in WebUI.

Figure 5 shows the detail information of the HTTP request.

Figure 5 The HTTP request of a modifying configuration

attack.

5.3 Fabricated sensor information experiment

5.3.1 Design of experiment

We selected the WebUI of all of the IP Cameras as victim

devices that we would like to protect. ThingGate monitored the

flow of 18 IPs forwarded to these cameras. If clients requested

the web page of scanning Wi-Fi information, we replaced the

information with fabricated information.

5.3.2 Experimental results

In data set 2, we found that ThingGate successful sent

fabricated Wi-Fi information to 44 different clients in 80 HTTP

response. Table 6 presents part of the attackers’ geographical

location, number of requests sent, and duration of visit to our

honeypot. The Googlebot [17] client only sent 23 HTTP requests

in one day.

Table 6 part of attackers who request Wi-Fi information.

Observation of 7months from IP Camera A1~A3, B, C, and D.

clients Source IP Country Reques

ts for

Wi-Fi

Total

request

count

Attack Duration

Client A aaa.aaa.202.28 USA 3 2704 2018/12/12~201

－1295－

8/12/12

Client B bbb.bbb.169.38 USA 3 4167
2018/12/23~201

8/12/23

Client C ccc.ccc.226.5 USA 6 3476
2018/12/17~201

9/01/12

Client D ddd.ddd.89.58 China 1 537
2019/01/11~201

9/01/11

Client E eee.eee.148.116 China 3 2333
2018/11/19~201

8/11/19

Client F fff.fff.15.51 France 3 98
2019/01/07~201

9/01/08

Client G ggg.249.79.85* USA 1 23
2018/11/17~201

8/11/17

*The clients G is Googlebot

5.4 Observation of cyber attacks against the WebUI

According to data set 2, there are 1,920,653 cyber attacks

employed HTTP requests to attack our honeypot. Some of these

attacks are only able to be observed by physical devices. We

collected similar attacks which present in Ezawa's and Tamiya's

honeypot [5] [7]. We found attackers attempt to capture and

modify the configuration of devices, remotely control direction

and zoom of IP Camera, peep the live video, snapshot of IP

Camera and utilized the remote code execution (RCE)

vulnerability of devices [18]. In addition, after the RCE attack

vector, the attacker download devices' live stream by access a

hidden web application. The application "/video.cgi"did not

appear in source code and can be customized by width and height

parameters. Table 7 shows the statistic and description of the

attack against our physical device.

 There were 49 source IPs has watched the live stream of the

camera. Among them, five IPs were peeking over an hour. The

maximum time of peeking is about 18 hours. Moreover, some

clients from 21 source IP addresses adjusted the directional and

zoom of the camera. One client from American applied the RCE

exploit code of IP Camera C to attack IP Camera C and D. The

Live stream for long term peeping, the real-time response of

control direction and zoom, and the whole scenario of RCE attack

are hard to simulate by VM-based honeypot. Our physical devices

behind ThingGate successfully observed these kinds of cyber

attacks.

Table 7 Cyber attacks against WebUI of IoT devices.

Observation of 7months from IP Camera A1~A3, B, C, and D.

Category Pathname Description of URL Victim

devices

Request

counts

Configuration get_params.cgi Show system IP Camera 599

information

theft attacks

variables A1~A3, B

get_status.cgi
Show configuration

of devices

IP Camera

A1~A3, B,

C, D

1064

modification

of the

configuration

/%5ccgi-

bin/set_network.cg

i

Set network

configuration

IP Camera

A3 83

decoder_control.cg

i

Control directional

and zoom

IP Camera

A1~A3
153

Snapshot

attacks
snapshot.cgi

Show current image

of live video stream

IP Camera

A1~A3, B
2,920

Long term

peeping

livestream.cgi
Show live video

stream

IP Camera

A1~A3,
4560

videostream.cgi
Show live video

stream

IP Camera

A1~A3, B
273

Remote

Command

Execution

/setSystemComma

nd

Set OS Commands

for execution

IP Camera

C, D 4

6. Discussion

From the observation of cyber attacks in data set 2, our

honeypot successfully collected attacks against physical IoT

devices Through ThingGate. These attacks, such as peeping

video streams, control the direction of the camera, and RCE

attacks first and then download live stream via hidden web

application are hard to simulate by the virtual machine. We also

found 44 clients request the Wi-Fi AP information web page from

the fabricated sensor information experiment. From the 44 clients,

41 clients employed a predefined list to scan victims, two are

human-like attackers, and Googlebot. Googlebot is web crawler

software developed by Google, and it analyzed the JavaScript

code in WebUI, traverse all web pages including the Wi-Fi

configuration page. We verified Googlebot by using a reverse

DNS lookup on the accessed IP address according to a Google

document [19]. The results of observation show that many

attackers collected Wi-Fi AP information from WebUI of IoT

devices.

Compared with Tambe's research, they applied the physical

way that remoted Wi-Fi chip or made use of an

electromagnetically shielded enclosure. ThingGate is much

easier and cheaper. However, there is a risk that attackers get root

privilege and open terminal to scan Wi-Fi though command-line

interface.

According to the result of block unwanted traffic experiment,

we prove ThingGate can prevent devices from modifying the

configuration. Hence, we can build the bare-metal IoT honeypots

together with ThingGate to increase the efficiency and safety of

－1296－

the honeypot.

7. Conclusion

 We employ the transparent proxy to develop a supporting

mechanism for honeypot consisted of physical IoT devices.

ThingGate can improve the security of honeypot, manage the

incoming traffic and output response content via MITM way. We

evaluated ThingGate on the public internet, prove the

effectiveness of ThingGate. In our observation, ThingGate did

not yield the cyber attacks against physical devices, such as RCE

attack and long term peeping. In our experimental result, we

successfully defended the unwanted attack which changes

configuration. Moreover, ThingGate fooled 44 clients who

requested the Wi-Fi AP list in WebUI with fabricated AP.

Acknowledgments

 A part of this work was funded by MSec project, supported by

the National Institute of Information and Communications

Technology (NICT).

Reference

[1] P., Loshin, “Details emerging on Dyn DNS DDoS attack, Mirai

IoT botnet,” TechTarget network,

http://searchsecurity.techtarget.com/ news/450401962/Details-

emerging-on-Dyn-DNS-DDoS-attack-Mirai-IoT-botnet, accessed

Feb. 06. 2019.

[2] Y.M.P., Pa, S., Suzuki, K., Yoshioka, T., Matsumoto, T. Kasama,

and C., Rossow, “IoTPOT: A Novel Honeypot for Revealing

Current IoT Threats,” Journal of Information Processing, Vol.24,

No.3, pp.522–533, 2016.

[3] J. D., Guarnizo, A., Tambe, S. S., Bhunia, M., Ochoa, N. O.,

Tippenhauer, A., Shabtai, & Y., Elovici, “Siphon: Towards scalable

high-interaction physical honeypots,” In Proceedings of the 3rd

ACM Workshop on Cyber-Physical System Security, pp. 57-68,

April, 2017.

[4] T., Luo, Z., Xu, X., Jin, Y., Jia, & X., Ouyang, "Iotcandyjar:

Towards an intelligent-interaction honeypot for iot devices." Black

Hat, 2017.

[5] Y., Ezawa, K., Tamiya, S., Nakayama, Y., Tie, K., Yoshioka, and

T., Matsumoto, “An Analysis of Attacks Targeting WebUI of

Embedded Devices by Bare-metal Honeypot,” In Computer

Security Symposium 2017, Oct., 2017.

[6] R, Nigam, “Unit 42 Finds New Mirai and Gafgyt IoT/Linux Botnet

Campaigns,” Unit42, https://unit42.paloaltonetworks.com/unit42-

finds-new-mirai-gafgyt-iotlinux-botnet-campaigns/, accessed Feb.

06. 2019.

[7] K., Tamiya, Y., Ezawa, Y., Tie, S., Nakayama, K., Yoshioka, and

T., Matsumoto, "Observation of Peeping using Decoy IP Camera,"

In Symposium on Cryptography and Information Security 2018,

Jan., 2018.

[8] A., Tambe, L.A., Yan, R., Sridharan, M., Ochoa, N.O.,

Tippenhauer, A., Shabtai, and Y., Elovici. "Detection of Threats to

IoT Devices using Scalable VPN-forwarded Honeypots." In

Proceedings of the Ninth ACM Conference on Data and

Application Security and Privacy, pp. 85-96. ACM, 2019.

[9] M., Jakobsson, and Z., Ramzan, "Crimeware: understanding new

attacks and defenses," pp17-19, Addison-Wesley Professional,

2008.

[10] A., Luotonen, and k., Altis, "World-wide web proxies," Computer

Networks and ISDN systems, 27(2), pp147-154, 1994.

[11] mitmproxy, https://mitmproxy.org/, accessed Feb. 06. 2019..

[12] PF (4), https://www.freebsd.org/cgi/man.cgi?pf, accessed Feb. 06.

2019.

[13] Rieger, G., socat (1) - Linux man page,

https://linux.die.net/man/1/socat, accessed Feb. 06. 2019.

[14] S., Henning, A. Rao, and R., Lanphier, "Real time streaming

protocol (RTSP)," https://www.ietf.org/rfc/rfc2326.txt, accessed

Feb. 06. 2019.

[15] P., Alan, L., Farrell, D., Kemp, and W. Lupton. "Upnp device

architecture 1.1." In UPnP Forum, vol. 22. 2008.

[16] Z., PENG and C., WU, "Microsoft IIS 6.0 - WebDAV

'ScStoragePathFromUrl' Remote Buffer Overflow," Exploit

Database, https://www.exploit-db.com/exploits/41738, accessed

Feb. 06. 2019.

[17] Google, “Googlebot,”

https://support.google.com/webmasters/answer/182072?hl=en,

accessed Feb. 06. 2019.

[18] METASPLOIT, “D-Link DCS-930L - (Authenticated) Remote

Command Execution (Metasploit),” https://www.exploit-

db.com/exploits/39437, accessed Feb. 06. 2019.

[19] Google, "Verifying Googlebot,"

https://support.google.com/webmasters/answer/80553, accessed

Feb. 06. 2019

－1297－

