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Abstract: Trusted Execution Environments allow an application to run securely even in an untrusted environment
such as the Internet. However, existing approaches still rely on an untrusted network stack for their communications.
While protocols such as TLS can guarantee the integrity and confidentiality of the application-level data, the metadata
of the communication is not protected. Not only this allows an attacker to infer sensitive information, but it can also
be used to tamper with communications and degrade performance.
To tackle this problem we describe secureTCP, a Secure TCP/IP stack for commodity machines. secureTCP provides
integrity and confidentiality guarantees from a malicious software stack. We implement secureTCP and evaluate it with
a microbenchmark as well as with the Lighttpd web server. Our evaluation demonstrates that it offers strong security
guarantees while reducing the performance by less than 7% for ≥ 1 kB messages.

1. Introduction
The security of Internet services is of prime importance. Users

give their data to an untrusted third-party from which they expect
confidentiality and integrity guarantees. While service providers
are not inherently malicious, they are a frequent target for attacks,
yet securing their infrastructures is a difficult task. The unfortu-
nate consequence is frequent data leakage or corruption on the
Internet [12], [29], [38].

Recent years have seen the development of Trusted Execution
Environments (TEE), in particular with Intel SGX [17], ARM
TrustZone [44] and AMD SME/SEV [21] technologies. Trusted
Execution Environments are special secure execution environ-
ments isolated from the rest of the system. They allow an appli-
cation to enforce security guarantees even in the presence of a
powerful attacker who can control both the software and hardware
stacks.

While many applications using a Trusted Execution Environ-
ment have been proposed [5], [6], [7], [26], [27], [28], [33], [36],
[42], they all rely on the untrusted host operating system to provide
communication capabilities, in particular the TCP stack. Exist-
ing protocols such as TLS [31] or IPsec [13] can guarantee the
confidentiality of the data. However the metadata is not protected.
This is a problem, as an attacker could learn sensitive information
from the metadata [45] or tamper with the TCP/IP protocol to de-
grade quality of service [19], which could have unfortunate impact
on the economy and reputation of both the service and service
provider.

This paper aims at improving the security of the TCP/IP stack
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in order to provide stronger guarantees to secure applications. We
propose secureTCP, a novel secure TCP/IP stack design that lever-
ages a TEE to conceal both the metadata and data of network
packets from a potentially malicious service provider. In order to
communicate securely with the network, secureTCP assumes an
advanced network card with trusted hardware-based encryption.
This can for example be provided by a smartNIC [10], [35]. se-
cureTCP receives encrypted IP packets from the network card and
securely reconstructs the TCP stream, before sending it to secure
application.

We have implemented a prototype of secureTCP, leveraging
Intel SGX, the mTCP user-level TCP stack [18] and the DPDK
library [15]. To provide good performance and limit the impact of
faults [27], secureTCP (i) minimizes the amount of code and data
in the TEE; (ii) minimizes the number of transitions between the
untrusted and trusted environments; and (iii) implements batching
of network functionalities.

An evaluation, using both a microbenchmark and the Lighttpd
web server [23], demonstrates that secureTCP provides a low per-
formance overhead (< 7% for ≥ 1 kB messages) while offering
additional security guarantees to Internet services compared to
using an untrusted network stack.

The rest of this paper is organized as follows: Section 2 moti-
vates the need for a trusted TCP stack and introduces the threat
model. Section 3 presents the design of secureTCP while Section 4
details its implementation. We evaluate secureTCP in Section 5,
discuss related work in Section 6 and conclude in Section 7.

2. The route to secure the TCP stack
A secure TCP stack needs to meet several requirements:

R1. Security of communications: integrity and confidentiality
of both data and metadata exchanged between applications and
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Fig. 1: Approaches for the deployment of trusted applications.

network must be ensured.
R2. Isolation: the TCP stack and application must be isolated
from each others. It ensures that a bug in the application does not
affect the TCP stack and vice-versa [8].
R3. Performance: security and performance are at opposite ends
of the spectrum: adding security often decreases the performance
of systems. This is why minimizing the performance overhead is
of prime importance.

2.1 TCP stack threats
While confidentiality and integrity guarantees can be provided

by encrypting the TCP payload, this is not sufficient. First, the un-
trusted network stack is involved in handling packets between the
network card and the trusted application. Even if the application
uses TLS [31] or IPSec [13], the metadata related to the communi-
cation (TCP headers and TCP protocol management packets) is
not protected. A malicious service provider could extract sensitive
information from the metadata or modify the packets for its own
benefits.

Second, a malicious service provider could tamper with the
network stack, e.g. slowing down connections by controlling the
TCP congestion control mechanism [19]. As an example a service
provider hosting the video streaming applications of two compet-
ing companies could slow down the traffic of one of them in favor
of the second one.

2.2 Deployment of trusted applications
Several trusted applications for untrusted environments have

been proposed in recent years [5], [6], [7], [26], [27], [28], [33],
[36], [42]. Their approaches regarding network communications
can be separated in two different categories (see Figures 1a and 1b):
(i) applications that directly make use of the kernel network stack;
and (ii) applications that implement their own stack inside the
TEE via a LibraryOS.
2.2.1 Unsecure network stack

Trusted applications wanting to access the network can lever-
age the untrusted host operating system network stack. For ex-
ample, on Linux, trusted applications can use the BSD socket
API [2]. This is the approach chosen by several systems that
modify the design of existing applications to enhance their secu-
rity [6], [26], [27], [33], [36], [37].

Using this approach the trusted applications can ensure the
integrity and confidentiality of the data. Nevertheless the com-

munications are processed by an untrusted component (R1). The
trusted applications access the host OS network stack, isolated
from the application (R2), without involving intermediate com-
ponents: every call to a network function is translated to a call
to the untrusted network stack. This provides a low performance
overhead (R3).
2.2.2 LibraryOS secure network stack

Systems such as Haven [7], Graphene-SGX [42] or SGX-
LKL [28] provide applications with essential functionalities by
implementing an entire libraryOS [34] inside the TEE.

The libraryOS provides its own network stack. Nevertheless, it
eventually needs to interact with the untrusted stack of the host
OS (R1). Duplicating the network stack can lead to performance
issues (R3). For example the network stack inside the application
conceives of the scheduling delay as network delay, and starts un-
necessary congestion control. Finally, there is no isolation between
the network stack and the application (R2): they both execute in
the same address space. A bug in one of these components could
corrupt the other one and eventually leak sensitive information.

2.3 Threat model
Service providers are not inherently malicious. Nevertheless

they can be subject to bugs, misconfigurations, negligence or other
human errors that can lead to secrets being exposed. Furthermore
it is in the interest of the service provider to protect its reputa-
tion and business model, which can potentially lead to unfair and
selfish behaviours.

From a technical point of view we assume that the software
stack, including the operating system and drivers, is compromised.
The attacker has access to the hardware stack, including the mem-
ory and PCI buses. The CPU package provides a Trusted Execu-
tion Environment (TEE). In addition we assume the existence of
an advanced NIC equipped with trusted hardware-based encryp-
tion [9], [10], [35].

We consider that the trusted components are implemented in
accordance to their specification and do not leak sensitive infor-
mation via side channels. Side-channel attacks are orthogonal
to the problem we address. Existing technique such as [14] can
be employed. Similarly, availability is an orthogonal problem:
at any point the system could stop executing trusted processes.
This can be addressed with other means such as service replica-
tion [25], [30].

We assume the network infrastructure is secure. Protecting phys-

10

コンピュータシステム・シンポジウム 
Computer System Symposium

ⓒ 2019 Information Processing Society of Japan

ComSys2019
2019/12/10



TEE

TCP buffers
control

TEE

3

4

NIC encryption
key

AppEncryption
module

NIC

HP
1

0

HP

HP P

TCP stack
TCP

buffers

2

Packet I/O
library

P

Fig. 2: secureTCP architecture. P is the payload, H is the packet
metadata and red means encrypted.

ical access to data centers is a major concern to cloud providers.
From a logical point of view, components such as routers, etc., can
be implemented inside a TEE.

3. secureTCP
We describe secureTCP*1, a user-space secure TCP/IP stack

that ensures the confidentiality of network communications on
an untrusted computer system. secureTCP replaces the untrusted
network stack of the untrusted host with a trusted network stack, as
depicted in Figure 1c. secureTCP can be either used by standalone
or libraryOS-based secure applications.

After an overview of secureTCP (Section 3.1), we detail the
secure packet processing (Section 3.2) and attestation (Section 3.3)
mechanisms.

3.1 Overview
secureTCP meets the requirements presented in Section 2:

R1. Security of communications: secureTCP ensures the in-
tegrity and confidentiality of both the data and metadata by lever-
aging a TEE.
R2. Isolation: the TCP stack and application are executed in two
different protection domains.
R3. Performance: secureTCP minimize the amount of code and
data inside the TEE to provide good performance.

Figure 2 presents the architecture of secureTCP. Both the ap-
plication and secureTCP run in two separate TEEs to ensure iso-
lation. That is to say, there is one instance of secureTCP per
secure application. Note that an orthogonal approach regarding
isolation could be to enforce multiple domains inside a single
TEE via compiler-based technique [39], [40]. The application and
secureTCP execute in a single process. Their interaction consists
of normal function calls via a well-defined API that is similar to
the BSD sockets API (see Section 4).

secureTCP relies on a fast user-space packet I/O library that
does not involve the operating system or network drivers for net-
work communications. The role of the packet I/O library is to
forward incoming and outgoing IP packets between the NIC and
the TCP stack, without inspection.

In order to minimize the amount of code that has to be trusted,
the packet I/O library executes outside of the TEE. This how-
ever does not affect the security of secureTCP. The IP packets,
including the metadata, are encrypted by the secure encryption
capabilities of the network card. The packet I/O library only ob-

*1 The source code of secureTCP is available at
https://github.com/sslab-keio/secureTCP.

serves encrypted packets. A malicious attacker cannot observe the
plain-text data or corrupt the IP packets without being detected.
For a similar reason the TCP buffers are allocated outside of the
TEE. These buffers appear only as encrypted data to an attacker,
while the control structures, controlling the offsets at which TCP
segments start and end, is securely managed inside the TEE.

3.2 Secure TCP stack
As depicted in Figure 2, secureTCP is composed of several

components. The network card (NIC) interacts with the user-space
packet I/O library to send and receive encrypted IP packets ( 1 ).
The encryption is performed on the entire IP packet, including
both its data and metadata.

Then the secure TCP stack retrieves the packets in batches,
copies them into TEE memory ( 2 ), decrypts them (checking for
their integrity) and reconstructs the TCP stream.

The TCP stream is copied into the TCP buffers ( 3 ), allocated
outside the TEE in untrusted memory. Nevertheless, given that
the TCP stream is encrypted by the application (e.g., using the
TLS protocol) and the control structures of the buffers are store
securely inside the TEE, the TCP buffers do not leak any sensitive
information.

Finally, when the application issues a call to read data, it is
securely copied by secureTCP from the TCP buffers to the appli-
cation buffers ( 4 ). Sending data across the network is done in a
similar way.

3.3 Attestation and provisioning
The goal of the attestation mechanism is two folds: (i) ensure

that the TEE is correctly initialized with secureTCP, executing
the correct code; and (ii) ensure that secureTCP can be securely
provisioned with secrets.

The attestation mechanism involves a trusted third party. The
TEE creates a cryptographically signed report of its memory con-
tent (including code and data). This report is used to prove that
secureTCP has been loaded correctly. Then the report is sent to
the trusted third-party for verifications. Once the attestation has
succeeded, the key used by the NIC to encrypt and decrypt IP
packets is exchanged with secureTCP ( 0 ).

4. Implementation
We ported the mTCP [18] user-level high performance TCP/IP

stack to Intel SGX and use DPDK [15] for the user-level packet
I/O library. mTCP differs from the BSD socket API in several
ways: (i) it implements a per-core accept queue design, meaning
that multiple cores can concurrently listen on the same socket; (ii)
it does not share sockets nor data structures across multiple cores,
which improves concurrency and scalability; (iii) it associates one
mTCP thread, communicating with DPDK, with each application
thread; and (iv) it avoids expensive system calls to the kernel
by running entirely in user-space. mTCP with DPDK relies on
polling, consistently checking for new packets to be sent/received,
potentially wasting CPU cycles.

mTCP uses several timers, for example to check for timeouts.
Access to a fast and trusted time in Intel SGX is only possible
starting with SGX v2 [1]. Our implementation of secureTCP cur-
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rently relies on the untrusted time given by the untrusted operating
system.

4.1 Intel SGX
Intel SGX [17] is a new set of instructions present on Intel

processors since 2015. It provides confidentiality and integrity
guarantees even in the presence of a powerful attacker that controls
both the hardware and software stacks (with the exception of the
CPU package).

Intel SGX implements Trusted Execution Environments called
enclaves, which are a special secure execution mode. The memory
of applications running inside an enclave is stored inside a secure
area called the Enclave Page Cache (EPC). On current hardware
the EPC size is limited to 128 MB, shared between all the en-
claves of the system. As the EPC also contains SGX metadata,
only around 90 MB is available to applications. Using more than
90 MB starts an expensive paging mechanism [5]. To provide
confidentiality and integrity property, the enclave memory is trans-
parently encrypted and its integrity is verified in hardware. Fur-
thermore, while an enclave can access both trusted and untrusted
memory, the application can only access untrusted memory.

Enclaves are accessed via a well-defined interface, composed of
enclave calls (ecalls) and outside calls (ocalls). Executing an ecall
enters the enclave, changing the execution mode from untrusted
to trusted. Similarly, executing an ocall changes the execution
mode from trusted to untrusted. In both cases Intel SGX adds
additional checks to prevent attacks and leakage of secrets. The di-
rect consequence is that enclave transitions are costly: the authors
of sgx-perf [43] observed that an enclave transition is ≈ 13, 100
cycles.

Intel SGX provides an attestation mechanism that can be used
by applications to prove to a third party the authenticity of their en-
clave and the system on which they run [3]. This mechanism gives
to clients the guarantee that they are communicating with a secure
service. secureTCP reuses the Intel SGX attestation mechanism
with no modifications.

4.2 secureTCP interface
The interface of secureTCP is composed of 24 ecalls and 40

ocalls. All the ecalls but 2 define the mTCP API; the remaining 2
ecalls are used as wrappers for the creation of new mTCP threads.
The 40 ocalls are used for accessing DPDK (15) and the standard
library (25). We added 561 lines of code to mTCP and created an
enclave wrapper (to handle ecalls and ocalls) composed of 2, 200
lines of boiler-plate code.

4.3 Performance optimisation
The performance of Intel SGX applications is limited by two

factors: (i) the amount of memory used by the application; and
(ii) enclave transitions. secureTCP fits in the EPC as it uses only
16 MB of enclave memory. Thus we need to minimise the number
of enclave transitions.

We used the sgx-perf profiler [43] to pinpoint performance bot-
tlenecks. Our optimisations fall into 4 categories: (i) merge ecalls
and ocalls to reduce the number of enclave transitions; (ii) move
DPDK code inside the enclave to avoid ocalls; (iii) batch ecalls;

and (iv) execute the secureTCP thread and application thread on
different cores, minimizing the number of thread context switches.

5. Evaluation
Our evaluation first shows that secureTCP provides strong secu-

rity guarantees (Section 5.2). Then, using both a microbenchmark
(Section 5.3) and the Lighttpd web server(Section 5.4), it shows
that secureTCP offers an acceptable performance overhead.

5.1 Experimental set-up
All the experiments are run on an SGX-capable machine com-

posed of a 6-cores Intel Core i5-8500 at 3GHz (no hyperthread-
ing) equipped with 16GB of RAM and running the Intel SGX
SDK v2.5. The client machine is a 6-cores Intel Xeon X5650 at
2.67GHz with 8GB of RAM. They both use an Intel 82576 Gigabit
Ethernet Controller that supports DPDK and run Ubuntu 18.04.02
LTS with the Linux kernel 4.15.

5.2 Security discussion
In this section we list attacks on secureTCP. For each attack we

show how secureTCP prevents it, guaranteeing confidentiality and
integrity properties.
Bypass secureTCP. A malicious service provider could decide to
use its own TCP stack instead of secureTCP. To defend against
this attack, as explained in Section 3.1, the network card and se-
cureTCP only exchange encrypted IP packets. A malicious service
provider is not able to create valid encrypted IP packets that will
be correctly decoded by the network card.
Modification of TCP stream. A malicious service provider could
modify the content of the TCP buffers stored in untrusted memory.
Given that the content is encrypted and integrity-protected, this
attack is detected by secureTCP and the application.
Enclave interface attacks. An attacker could try to access the
enclave secrets by manipulating the arguments and returned values
of ecalls and ocalls [11]. To reduce the attack surface we harden
the enclave interface with additional checks on the values.

5.3 Microbenchmark perfomance
The microbenchmark consists of a simple client-server applica-

tion where the client and server exchange fix-sized packets. Both
the client and server applications are limited to one core, sufficient
to saturate the network link.

Figure 3 presents the evolution of the throughput and latency of
mTCP and secureTCP for requests of 1 byte and replies between
1 byte and 64 kB. When considering replies of 1 kB and more, se-
cureTCP has a small performance overhead: the throughput drops
by 6% with 1 kB replies (from 80,400 requests/sec with mTCP to
75,300 requests/sec with secureTCP) and 3% with 64 kB replies
(from 1730 requests/sec with mTCP to 1681 requests/sec with se-
cureTCP). As the replies size increases, the cost of Intel SGX is
amortized, thus reducing the perfomance overhead.

With requests of 1 byte, the performance overhead of se-
cureTCP is as high as 69%: from 241,300 requests/sec with mTCP
to 75,500 requests/sec with secureTCP.

Two of the optimisations presented in Section 4.3 noticeably im-
prove the performance: (i) batching of ecalls increases the through-
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Fig. 3: Throughput vs latency of mTCP and secureTCP.

put by 97%, from 17,000 requests/sec to 33,300 requests/sec; (ii)
executing the application and secureTCP threads on different cores
further increases the throughput by an additional 126%, up to
75,300 requests/sec. These two optimisations respectively reduce
the number of enclave transitions and thread context switch.

The current performance overhead of secureTCP is due to con-
tention on the lock used to synchronize the application and se-
cureTCP threads. Unfortunately solving this issue is not trivial
and requires additional engineering.

5.4 Lighttpd web server performance
We measure the maximal performance, in terms of throughput

and latency, of secureTCP with the Lighttpd web server [23] using
the ApacheBench benchmark [4]. The server is configured with 6
cores. The webpage size is 1 MB. This is in line with the average
Internet webpage size [22].

In such settings secureTCP exposes a 7% overhead: the through-
put decreases from 101 requests/sec to 94 requests/sec while the
latency increases from 59 ms to 64 ms. This degradation is primar-
ily due to enclave transitions overhead.

6. Related work
To the best of our knowledge we are the first to improve the

security guarantees of the TCP stack by porting it to Intel SGX.
Nevertheless we are not the first authors to consider the execution
of network functionalities inside an SGX enclave. Shieldbox [41]
executes the Click modular router [24] inside SCONE [5] and
uses DPDK for fast user-level packet processing. In a similar way,
Endbox [16] executes a VPN and the Click modular router inside
an SGX enclave to provide scalable middlebox functionalities at
the client. These systems are complementary to secureTCP.

The LibSEAL library [6] terminates TLS connections inside an
SGX enclave and securely logs the interactions between clients
and Internet services. This log can then be used to detect whether
the service executes correctly according to its specification. se-
cureTCP goes a step further by securely executing the TCP stack
inside an enclave.

Several systems that improve the performance and security of
the network stack have been proposed in the past. For example,
IX [8], Arrakis [32] and Shinjuku [20] use virtualisation tech-
niques to separate the network processing from the rest of the
kernel. These systems can provide isolation and better perfor-
mance and scalability than traditional user-level stacks such as

mTCP [18]. Contrarily to these systems, secureTCP protects the
TCP stack even in the presence of a powerful attacker who con-
trols both the software (including the operating system) and the
hardware (with the exception of the CPU package).

7. Conclusions
This paper presents secureTCP, a secure user-level TCP/IP stack

that provides confidentiality and integrity guarantees by leveraging
a Trusted Execution Environment. We implemented a prototype
of secureTCP that uses Intel SGX and demonstrated, using both
a microbenchmark and the Lighttpd web server, that secureTCP
incurs a a low performance overhead (< 7% for ≥ 1 kB messages).

As of future work, a secure TCP stack is a first step towards
forensics analysis, auditing and monitoring. These mechanisms
are of prime importance to augment the security guarantees offered
by cloud providers.
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