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エントロピー正則化Wasserstein距離に基づく
マルチビューWasserstein判別法

笠井 裕之1

Abstract：Multi-view data analysis has recently garnered increasing attention because multi-view data

frequently appear in real-world applications, which are collected or taken from many sources or captured

using various sensors. A simple and popular promising approach is to learn a latent subspace shared

by multi-view data. Nevertheless, because one sample lies in heterogeneous types of structures, many

existing multi-view data analyses show that discrepancies in within-class data across multiple views have

a larger value than discrepancies within the same view from different views. To evaluate this discrepancy,

this paper presents a proposal of a multi-view Wasserstein discriminant analysis, designated as MvWDA,

which exploits a recently developed optimal transport theory.

Multi-view Wasserstein discriminant analysis with
entropic regularized Wasserstein distance

1. Introduction

Many real-world applications such as image classifica-

tion, item recommendation, web page link analysis, and

bioinformatics analysis usually exhibit heterogeneous fea-

tures from multiple views. For example, each web page

includes two views of text and images and multiple labels

such as sports and entertainment. Moreover, each image

has multiple features such as frequency features: wavelet

coefficients and color histograms. One category of suc-

cessful techniques to handle multi-view data is multi-view

learning which includes techniques to learn a shared sub-

space across multi-view data [1], [2], [3], [4], [5]. Many

algorithms in this category originate from single-view lin-

ear discriminant analyses such as Fisher linear discrimi-

nant analysis (LDA or FDA) [6]. They include, for ex-

ample, canonical correlation analysis (CCA) [7], [8], par-

tial least squares (PLS) [9], bilinear model (BLM) [10],

generalized multi-view analysis (GMA) [11], multi-view

discriminant analysis (MvDA) [12], and standard linear

multi-view discriminant analysis (S-LMvDa) [13]. Also,

MvHE has been proposed to address cases in which the

multi-view data are sampled from nonlinear manifolds

or where they are adversely affected by heavy outliers

[14]. However, because one sample lies in different and
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heterogeneous types of structures, many existing multi-

view data analysis show that discrepancies in within-class

data across multiple views are greater than discrepancies

within the same view from different classes. To this end,

building on recently proposed Wasserstein discriminant

analysis (WDA) [15], the study described herein presents

a proposal of a multi-view Wasserstein discriminant anal-

ysis, designated as MvWDA. The main contribution is

exploitation of the recently developed optimal transport

theory [16], [17] to evaluate discrepancies across multi-

view data. It is noteworthy that the fundamental char-

acteristics of optimal transport matrix amplify small dis-

crepancies, which is necessary to evaluate the discrepancy

within the same class and views. Numerical evaluations

using several real-world multi-view datasets demonstrate

the effectiveness of the proposed MvWDA.

2. Linear subspace discriminant analysis
and multi-view extensions

This section presents explanation of linear subspace dis-

criminant analysis and its multi-view extensions. For this

purpose, some notations are summarized before the de-

tails. We denote scalars with lower-case letters (a, b, . . .),

vectors as bold lower-case letters (a, b, . . .), and matri-

ces as bold-face capitals (A,B, . . .). 1d is used for the

d-dimensional vector of ones. Here, n, d, C, and V re-
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spectively represent the number of sample data, data di-

mension, classes, and views. The sample data matrix is

denoted as X = [x1, . . . ,xn] ∈ Rd×n; also, X is assumed

to be centralized. The dimensions and the number of sam-

ple data of the c (∈ [C])-th class in the v (∈ [V ])-th view,

Xv,c ∈ Rdv×nv,c , are denoted respectively as dv and nv,c.

In addition, Wv ∈ Rdv×p represents the projection matrix

onto the p-dimensional subspace of the dv dimensional

data of the v-th view. We also define ⟨X,Z⟩ := Tr(XTZ).

2.1 Linear subspace discriminant analysis (LDA)

A representative algorithm is (Fisher) linear discrimi-

nant analysis (LDA) [6], which maximizes the discrepancy

between different classes while minimizing that within the

same classes, where evaluations are performed on a pro-

jected space by W. Therefore, LDA maximizes the ratio

of the between-class scatter (cross-covariance) matrix P

and the within-class scatter matrix Q. Concretely, denot-

ing the average of the sample data of the c-th class, Xc,

as µc, and the average of the sample data of the entire

the classes, X, as µ, the maximization problem is defined

as

max
W∈Rd×p

Tr(WTPW)

Tr(WTQW)
,

where P =
∑C

c=1 nc(µ
c − µ)(µc − µ)T and Q =∑C

c=1

∑nc

i=1(xi − µc)(xi − µc)
T .

2.2 Multi-view extension of LDA

Canonical correlation analysis (CCA) [7], [8]: CCA

maximizes the correlation between X1∈Rd1×n and X2∈
Rd2×n as maxW1,W2

WT

1 Σ12W2√
WT

1 Σ11W1·
√
WT

2 Σ22W2

for the case

of V = 2, whereΣst =
1
nX

s(Xt)T . CCA requires pairwise

evaluations when V > 2 and requires that the number of

samples of the two views be the same. To alleviate that

difficulty, multi-view CCA (MCCA) algorithms have been

proposed [18], [19].

Along another line of research, GMA and MvLDA have

been proposed for general-purpose discriminant analysis

(V ≥ 3). It is noteworthy that, in the following ap-

proaches, the concatenated projection matrix to be cal-

culated is denoted as W = [W1; . . . ;WV ] ∈ Rd×p, where

d =
∑V

v=1 dv.

Generalized multi-view analysis (GMA) [11]:

GMA is a unified framework that includes vari-

ous dimension-reduction algorithms. It considers

maximization of discriminant information within a

single view, but does not consider that between

multiple views. The difficulty is maximization with

respect to W ∈ Rd×p, under
∑V

v=1W
T
vQvWv =

I as Tr(
∑V

s

∑V
t>s λstW

T
s X

s(Xt)T Wt +

∑V
s=1 µs(W

s)TPsWs).

Multi-view LDA (MvLDA) [12], [13]: MvLDA is re-

garded as a straightforward extension of LDA in Section

2.1. This section presents brief overviews of three repre-

sentative methods. Before that, it is noteworthy that the

formulated optimization problem of the three methods is

uniformly defined as maxW∈St(p,d)
Tr(SB)

Tr(SW )
, where W is

calculated using the generalized eigenvalue problem. Also,

St(p, d) is the Stiefel manifold, which is the Riemannian

submanifold of orthonormal matrices M = {X ∈ Rd×p :

XXT = Ip}. The first method, MvDA, maximizes dis-

crepancies between classes between and within multiple

views [12]. The between-class scatter matrix SB and the

within-class scatter matrix SW are defined respectively as

SB =

C∑
c=1

nc(m
c−m)(mc−m)T ,

SW =

V∑
v=1

C∑
c=1

nv,c∑
i=1

(WT
v x

v,c
i −mc)(WT

v x
v,c
i −mc)T ,(1)

where mc is the averaged vector of the c-th class in the

entire views, i.e., mc = 1
nc

∑V
v=1

∑nv,c

i=1 WT
v x

v,c
i , and m

represents the average of all sample data. It is noteworthy

that both are considered on the projected space.

The second method, standard linear multi-view discrim-

inant analysis (S-LMvDA), is intended to seek an opti-

mal W to maximize the distance between two classes [13].

Here, SB is defined as

SB =
V∑

s=1

V∑
t=1

C∑
k=1

C∑
l=1

(
ms,k −mt,l

) (
ms,k −mt,l

)T
,(2)

wheremv,c is the averaged vector of the c-th class in the v-

th view, which is calculated asmv,c = 1
nv,c

∑nv,c

i=1 WT
v x

v,c
i .

The last method, linear multi-view modular discrimi-

nant analysis (L-MvMDA), maximizes the distance be-

tween classes in different views [13]. Consequently, SB is

defined as

SB =

V∑
s=1

V∑
t=1

C∑
k=1

C∑
l=1

(ms,k −ms,l)(mt,k −mt,l)T .(3)

3. Proposed multi-view Wasserstein dis-
criminant analysis

After introducing the Wasserstein discriminant analysis

briefly, details of the proposed MvWDA are given.

3.1 Wasserstein discriminant analysis (WDA)

Wasserstein discriminant analysis (WDA) applies dis-

criminant analysis exploiting the Wasserstein distance

with an entropic regularizer [15]. Given xi and zj which

form X = [x1, . . . ,xn] ∈ Rd×n and Z = [z1, . . . , zm] ∈
Rd×m, respectively, when two empirical distributions ν =
1
n

∑
i δxi

and ξ = 1
m

∑
j δzj

are defined, the Wasser-
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stein distance with an entropic regularizer is defined as

Wλ(ξ, µ) := Wλ(X,Z) = ⟨Tλ,MX,Z⟩. Defining MX,Z =

[∥xi − zj∥22]ij ∈ Rn×m, Tλ is obtainable as a solution of

a entropy-smoothed optimal transport problem as

Tλ = arg minT ∈ Unm
λ⟨T,MX,Z⟩ − Ω(T),

where Ω(T) is defined as a discrete joint probability

distribution Ω(T) := −
∑

ij tij log(tij). This minimiza-

tion problem is solvable efficiently using Sinkhorn’s fixed-

point iterations [20]. Here, let Unm be the polytope

of n × m nonnegative matrices such that their row and

column marginals are respectively equal to 1n/n and

1m/m. Then, we have Unm := {T ∈ Rn×m
+ : T1m =

1n/n,T
T1n = 1m/m}. Finally, the problem formulation

of WDA is defined as

max
W∈St(p,d)

J(W,T(W)) =
⟨WTW,P⟩
⟨WTW,Q⟩

,

where

P =
∑
k,l>k

∑
i,j

[Tl
k]ij(x

k
i − xl

j)(x
k
i − xl

j)
T ,

Q =
∑
k

∑
i,j

[Tk
k]ij(x

k
i − xk

j )(x
k
i − xk

j )
T ,

and Tl
k = arg minT ∈ Unknl

λ⟨T,MWXk,WXl⟩−Ω(T).

It is noteworthy that WDA considers global and local

interplays between classes. It must be emphasized that T

itself amplifies the small errors, which is more necessary

for within-class evaluation.

3.2 Proposed multi-view WDA (MvWDA)

This section presents a multi-view extension of Wasser-

stein discriminant analysis, designated herein as MvWDA.

The main motivation is consideration of the optimal trans-

port of the discrepancies between and within multi-view

datasets. For this particular purpose, a transport matrix

Tt,l
s,k from the k-th class of the s-th view to the l-th class

of the t-th view is newly introduced. Furthermore, and

more importantly, concatenated scatter between-matrices

and within-matrices across multiple views are newly con-

structed. Then, designating two such matrices as G ∈
Rd×d and H ∈ Rd×d and following the single-view WDA,

we formally define a minimization problem of MvWDA as

max
W∈St(p,d)

J(W,T(W)) =
⟨WTW,G⟩
⟨WTW,H⟩

, (4)

s.t. Tt,l
s,k = arg min

T ∈ Uns,knt,l

λ⟨T,MWsXs,k,WtXt,l⟩

−Ω(T),

where G and H are defined respectively in (5) and (6).

Algorithm 1 MvWDA algorithm

Require: Hyper-parameter λ, # of maximum iterations
Tmax.

1: Initialize W0.
2: for t = 1, 2, . . . , Tmax do
3: for s = 1, 2, . . . , V do
4: for t = s, s+ 1 . . . , V do
5: for k = 1, 2, . . . , C do
6: for l = k, k + 1 . . . , C do
7: Calculate Ψ in (7), Φ in (8) and Υ in (9).
8: end for
9: end for

10: Update Gst and Hst as in Table 1.
11: end for
12: end for
13: Construct G in (5) and H in (6) .
14: Update Wt by Riemannian steepest descent.
15: end for

G =


G11 · · · · · · · · · G1V

... · · · Gst · · ·
...

GV 1 · · · · · · · · · GV V

 (∈ Rd×d), (5)

H =


H11 · · · · · · · · · H1V

... · · · Hst · · ·
...

HV 1 · · · · · · · · · HV V

 (∈ Rd×d). (6)

The core contribution is a proposal of new formulations

of the elements of Gst ∈ Rds×dt and Hst ∈ Rds×dt be-

tween the s-th and t-th views by exploiting optimal trans-

port matrices. The three proposed new matrices are de-

tailed below.

The first two methods are derived from L-MvMDA in

Section 2.2. The first approach specifically considers

maximization of the distance between difference class cen-

ters across different views. Concretely, we address that

the first term in (3) represents the difference between the

averaged vector of the k-th class in the s-th view, µs,k,

and that of the l-th class in the s-th view, µs,l. This

approach newly considers Ts,l
s,k of such averaged vectors.

Analogously, the second term is obtained by Tt,l
t,k. Thus,

a new scatter matrix Ψst
klij ∈ Rds×dt is created as

Ψst
klij =

√∑
i,j [T

s,l
s, k]ij

ns,k · ns,l

∑
i,j [T

t,l
t,k]ij

nt,k · nt,l

·(µs,k − µs,l)(µt,k − µt,l)T , (7)

where µv,c = 1
nv,c

∑
i x

v,c
i . As the second approach, ad-

dressing the error between the samples, another new scat-

ter matrix Φst
klij is obtained as

Φst
klij =

√[
Ts,l

s,k

]
ij

[
Tt,l

t,k

]
ij

·(xs,k
i − xs,l

j )(xt,k
i − xt,l

j )T . (8)
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Table 1 Between-/within-class matrices in MvWDA.

Proposal Gst Hst

MvWDA-A
∑

k,l>k

∑
i,j Φ

st
klij

∑
k

∑
i,j Φ

st
kkij

MvWDA-B
∑

k,l>k

∑
i,j Ψ

st
klij

∑
k

∑
i,j Υ

st
kkij

MvWDA-C
∑

k,l>k

∑
i,j Φ

st
klij

∑
k

∑
i,j Υ

st
kkij

MvWDA-D
∑

k,l>k

∑
i,j Ψ

st
klij

∑
k

∑
i,j Φ

st
kkij

The final approach is to extend the within-class matrix

of Sw in (1) , which engenders Υst
kkij defined as

Υst
kkij =


[
Tt,k

s,k

]
ij
(xs,k

i − xt,k
j )(xs,k

i − xt,k
j )T (s = t),

− ns,k · nt,k

ns,k + nt,k
µs,k(µt,k)T (s ̸= t).

(9)

It is noteworthy that an extension of S-LMvDA defined in

(2) is not trivial because of the different dimensions of data

samples to calculate Tt,l
s,k. Also, because [13] reports that

L-MvMDA achieves experimentally better results than

S-LMvDA, this paper addresses the two approaches de-

scribed above derived from L-MvMDA. Hence, from these

three approaches in (7), (8) and (9), Gst,Hst ∈ Rds×dt

are calculated as presented in Table 1.

As pointed out in Theorem 1 of [20], MX,Z must be a

valid metric. In addition, considering the structural dis-

tance, the square root cosine distance proposed in [21] is

used instead of ℓ2 distance, which is defined as

MX,Z =

[√
2−2 cos(xi, zj)

]
ij

=

[∣∣∣∣∣∣∣∣ xi

∥xi∥2
− zj

∥zj∥2

∣∣∣∣∣∣∣∣
2

]
ij

.

Finally, for the optimization perspective, because T de-

pends on W, W cannot be obtained from the generalized

eigenvalue problem. Therefore, we use an alternative op-

timization algorithm between a manifold optimization on

the Stiefel manifold St(p, d) [22] and W. The overall al-

gorithm of MvWDA is presented in Algorithm 1.

4. Conclusion

This paper presented a novel multi-view Wasserstein
discriminant analysis, designated as MvWDA. The main
contribution is exploitation of a recently developed opti-
mal transport theory to evaluate the discrepancy across
multi-view data. The presentation will show some numer-
ical evaluations using several real-world datasets which
demonstrate the effectiveness of the proposed MvWDA.
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