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Speech Recognition-based Evaluation of a Noise
Reduction Method in Known-Noise Environment
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Takehito Utsuro†2,d)

Abstract: This paper investigated a noise reduction method from speech which was recorded in the noisy
environment in a factory, and the noise reduction method was evaluated in speech recognition experiment. In
the proposed, first, noise is estimated from the speech which should be speech-recognized, and then, the noise
sounds are superimpose to clean speeches. The noise-mixed speeches are used to train the noise reduction
model. In the experiment of noisy speech recognition using the model, the WER of the noise-reduced speech
reduced more than 10%.

1. Introduction

In recent years, many applications, such as Google

Home R⃝, Amazon Alexa R⃝ have shown the usefulness of au-

tomatic speech recognition (ASR) in real-life applications.

The improvement of performance in ASR leads to these var-

ious applications to be able to be developed. Most of the

state of the art ASR systems are trained with clean speech

data for preventing the mismatch of data distribution. To

maintain the performance of the ASR, frontend preprocess-

ing such as voice activity detector (VAD) [1] and speech

enhancement is often being to use to preprocess the input

speech. In a noisy environment, a stable way to clean the

speech is by using a multichannel microphone-array beam-

forming method [2]. However, for a single-channel ASR sys-

tem, it still suffers from environmental noise, which causes

a degradation of the performance.

Recently, many deep learning-based speech enhancement

[3] has been proposed by directly estimating the clean log

magnitude spectrum(LMS) [4], [5], [6] or estimating the ideal

ratio mask (IRM) [7], [8], [9] from a noisy power or magni-

tude spectrum. However, most proposed methods were eval-

uated with Perception Speech Quality (PESQ) [10],short-

time objective intelligibility (STOI)[11] metrics, or experi-

ment on public datasets [12], [13], [14], [15], [16], [17] which

could lead to the mismatch target noise to denoise in real
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noisy environments.

In our previous work [18] on a semi-automatic task manual

creation from an instruction talk on machining operation, we

found that ASR could help the factory engineers to make the

task manual by transcribing the engineer’s talk while they

are explaining their specific skill with a single-channel mi-

crophone *1. However, plant engineers often work in a noisy

environment while the various machine is running, such as

milling machine, NC machine tool, or hammer hit sounds.

These types of sounds can be considered as a known tar-

get noise that we would like to denoise these factory noises.

For improving ASR performance in such a noisy environ-

ment, a frontend speech enhancement system is needed, and

it should be trained with a low resource of target noise only

from the known noise environment.

In this study, we evaluate methods of estimating the ideal

ratio mask or directly estimating the clean LMS from a noisy

sound. We tested with the various architectures of deep

denoising neural networks (DDNN) to denoise speech with

noise and evaluated the denoised speech by using an open-

source ASR system Kaldi [19], in which an acoustic model

was trained with only clean speech. In the experiments, our

DDNN models improved the speech quality in the subjec-

tive perceptional experiment, and they also achieved 41.1%

of the word error rate (WER) from 51.2% of the original

speech without any denoising method.

The contributions of this paper are as follows:

• This paper first shows a way to use a very-low noise

resource to train a DDNN model.

• This paper experimentally shows that even the very-low

noise resource is sufficient to train a DDNN model be-

cause the trained model can generate the noise-reduced

*1 In a plant, an engineer cannot use any special microphone de-
vice for speech recording.
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Fig. 1 Flow of making synthesize data and training a deep de-
noising neural network.

speech well against the noisy speech recorded in the real

environment at the machining plant.

The remaining of this paper is organized as follows. In

Section 2, we will show a synthesis method to make a train-

ing dataset to train a DDNN model. Then, Section 3 de-

scribes the architecture of the DDNN models, and Section 4

introduces denoising experiments. Finally, we will conclude

our research and describes future works in Section 5.

2. Synthesize Noisy Speech for DDNN

Training

2.1 Trainnig Pipeline

The flow of our training pipeline is shown in Fig.1. To

synthesize the training data for DDNNs, we used an oper-

ation video, including an introduction speech recorded in a

real plant, from the previous work [18]. From the video,

we extracted the non-speech part of the video as noise;

that is known noise. The total duration of noise extracted

from the video is only 56 seconds. We use this low re-

source noise sound to create DDNN training data. The

noise data is being augmented with clean speeches by mixing

the factory noise with clean speeches to produce noisy-clean

speech pairs.‘’ The short duration of noise extracted from

the video is randomly concatenated to match the length of

clean speech. We compute the log10 LMS with the following

formula.

S = log10 |F [Y ]| (1)

2.2 Data Augmentation

The noisy speech training data is mixed in a range of -10

dB, -5 dB, and 0 dB to 20 dB. This allows us to increase

the number of training data by 23 times to train the model.

The negative dB range that we choose as -5 dB and -10 dB

is because the noise level of our environment is about 0 dB

to 5 dB. To prevent the model from overfitting on nega-

tive dB, we make the positive dB to be more data. We use

the Corpus of Spontaneous Japanese (CSJ) [20] as a clean

speech dataset. The clean speeches from CSJ are randomly

chosen in 4,988 utterances; the total duration is about 7.6

hours. Finally, we can get 114,724 noisy-clean speech pairs

(174.8 hours) for DDNN training by the data augmentation

(speech and noise sound synthesis).

3. Speech Denoising Model

3.1 Model Structure

To denoise the frame-wise noisy log LMS, we used

recurrent-based DDNNs which consist of a gated recurrent

unit (GRU) [21] or long short-term memory (LSTM) unit

[22]. Besides, we adopt convolutional neural network (CNN)

layers for acoustic feature extraction. The architectures

of DDNNs are shown in Fig.2. We prepare four types of

DDNNs; (a) GRU-based DDNN (“GRU”), (b) the com-

bination of CNN and Bi-directional LSTM layers (“CNN-

BiLSTM”), (c) LSTM-based DDNN with a local atten-

tion mechanism (“LSTM w/ Att.”), and (d) BiLSTM-based

DDNN which estimates directly clean magnitute spectrum

and a noise mask (“MT-BiLSTM”). “(a) GRU” in Fig. 2

consists of two layers of GRU with 1024 units, a batch nor-

malization layer and 257 units of a dense layer with sigmoid

function. In “(b) CNN-BiLSTM” we use three layers of CNN

with filters of 32/64/128 whose kernels are 2x2/3x3/3x3 re-

spectively, and two layers of BiLSTM with 256 units with

feature concatenation. In addition, we adopted an attention

mechanism-based speech enhancement[23] in “(c) LSTM w/

Att. ” “LSTM w/ Att.” has an local attention method

in between the two layer of LSTM with a context length of

five frames. Finally, “(d) MT-BiLSTM” is composed of sim-

ple two layers of BiLSTM with multi-task (MT) loss which

adopted from [9]. All of the models are trained with mean

squared error (MSE) loss. Note that the activation function

of the output layer should use sigmoid function to estimate

an ideal ratio mask in each DDNN except for (“LSTM w/

Att.”) model, and we do not use any activation function at

the output layer when a log LMS is directlry estimated.

3.2 Local Attention Layer

The local attention layer is shown in Fig. 3. The local

attention layer is adopted by extending Bahdanau Atten-

tion[25] which first calculates the score by following formula:

x̄ = TANH(x) (2)

EO,H = LSTM(x̄) (3)

score = FC(TANH(FC(EO) + FC(H))) (4)

where, the FC is a fully connected layer, TANH is a fully

connected layer with hyperpolic tangent activation func-

tion, H is the LSTM layer states, EO is the outputs of

a LSTM encoder layer. Then, we added the local atten-

tion with context width of 4 which uses the casual 4 frames

time steps,[xt−4, ..., xt] and multiplies to the current frames.

Next, we compute the attention weights and the context vec-

tor by the following formulas:

attention weights = softmax(score) (5)

context vector = EO × attention weights (6)

Furthermore, the inputs from x̄ is multiply to the

context vector to get the attention weighted vector before

2ⓒ 2019 Information Processing Society of Japan

Vol.2019-SLP-130 No.6
2019/12/6



IPSJ SIG Technical Report

Batch
Normalization

Ideal Ratio Mask

GRU

Activation

Batch 
Normalization

Convolution 
Layer

CNN Block

BiLSTM

BiLSTM

Ideal Ratio Mask

Dense
(tanh)

LSTM

Local 
Attention

LSTM

Dense

Ideal Ratio Mask

log magnitude spectrum

BiLSTM

BiLSTM

Ideal Ratio Mask
Clean magnitude 

spectrum

Dense
(sigmoid)

Dense
(linear)

GRU

Batch
Normalization

CNN Block

CNN Block

Dense
(sigmoid)

Dense
(sigmoid)

(a) GRU

log magnitude spectrumlog magnitude spectrum log magnitude spectrum

(b) CNN-BiLSTM (c) LSTM w/ Att. (d) MT-BiLSTM

Fig. 2 Various DDNN architectures.

LSTM LSTM LSTMLSTM

!"#$ !"!% ・・・ ・・・

Dense Dense
H from
LSTM encoder

States C from 
LSTM encoder

tanh

Dense

Softmax

LSTM LSTM LSTMLSTM

Dense(tanh)

・・・ ・・・・・・

context vector

attention weights

Dense

!&・・・

Fig. 3 Local attention layer

next LSTM layer, which is the following formula:

attention weighted vector = context vector × x̄ (7)

The attention weighted vector is passed to the lstm and

dense layer to estimate the IRM.

3.3 Training Losses

All the DDNN models estimate an ideal ratio mask [7]

which is used to decide the ratio of target domain power.

An ideal ratio masks IRM(t) is computed with the follow-

ing formula:

IRM(t) = (
SNoise(t)

2

SNoise(t)2 + SClean(t)2
)

1
2 (8)

, where SNoise(t) is the noisy log10 LMS, SClean(t) is the

clean log10 LMS. Input features inputted to a DDNN are

extracted as a log LMS with a hamming window size of 25

Table 1 Hyper-parameters for DDNN training

Hyper-parameters Condition

Mini-batchsize 100
Num. of epochs 20
Hidden layer Activation ReLU
Dropout 0.3
Loss func. Minimum Square Error
Optimizer Adam
Init. learning rate 0.0001

ms, shift 10 ms which produces each frame as 257 dim. of

Discrete Fourier transform (DFT) bins. The log10 LMS is

normalized on each bin to mean 0, global variance 1. Note

that the clean speech data is used as a label and also for

computing the ideal ratio masking labels. For the multi-

task (MT) model (d), we defined the loss as the following

formula (9):

losstotal = LMS lossMSE + IRM lossMSE (9)

For the MT-BiLSTMmodel, it outputs the IRM and directly

estimated LMS. Therefore, we can use the IRM to masked

the directly estimated LMS to produce a clean speech.

4. Denoising Experiments

In the experiments, ewe trained each DDNN model with

the hyper-parameters shown in Table 1. To evaluate WERs

of ASR and speech quality, we should reconstruct the speech

waveform from the denoised LMS. The denoised speech

waveform Y can be calculated with the following formula

(10) from the LMS using the estimated IRM:

Y = F−1[SNoise(t) ∗ (1− IRM(t))] (10)

Figure. 4 shows the estimated IRM and the LMS of clean

speech with the respective DDNN model. From Fig. 4, we

can see that most of the DDNNs can denoise the noisy LMS

to the clean LMS well. However, although the (“LSTM w/
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Fig. 4 Estimated clean LMS examples by the DDNN models.

Att.”) model can denoise the speech with including the

white spectrogram area, this is due to the final layer which

didn’t use the sigmoid function that made estimated mask

value to be too big. We would like to investigate more with

the (“LSTM w/ Att.”) model to find out the best way to

use the attention for speeches denoising.

We conducted two experiments: perception experiment

and ASR experiment for denoised speech. The sound wave-

forms are converted from the estimated clean LMSs based on

the IRMs by the DDNN models. Then, we conducted a sub-

jective evaluation of speech quality for the speech recorded

in the machining plant, where various types of noise with

high amplitude always occurred. Totally 14 subjects evalu-

ated the denoised speech waveform and scored a range from

1 to 7 to calculate the mean opinion score (MOS). The sub-

jective evaluation result is shown in Table2.

Table 2 shows that all the DDNN models can remove the

noise from the noisy speech and the listenability of clean

speech is better than the original noisy speech. We can see

that “MT-BiLSTM” model of inputs-masked and directly

estimated LMS had the score of 3.14, which performs the

best to denoising the noisy speech, compared with the score

1.54 of the original noisy speech. This result can infer that

the low resource noise is enough to train DDNNs to remove

the specific noise from the noisy speech in perceptional ex-

periment.

To evaluate our DDNN models from the point of view of

ASR performance, first, we prepared the ASR system Kaldi,

in which the acoustic and language models were trained with

the “NNET1” setup of the Kaldi CSJ Recipe[24]. We con-

ducted ASR experiments with two kinds of data. We used

the 0 dB augmented noisy speech as closed data in which the

data was used to train the DDNN models and the real noisy

speech from the instruction video of machining operation

recorded in the previous work[18].

Table 2 Perceptual evaluation of denoised speeches in MOS score
(averaged for 14 subjects).

DDNN models MOS

w/o denoising 1.54
(a) GRU 2.71
(b) CNN-BiLSTM 2.14
(c) LSTM-Attention 2.64
(d-1) MT-BiLSTM (inputs-masked) 3.14
(d-2) MT-BiLSTM (directly estimated LMS) 3.14
(d-3) MT-BiLSTM (LMS-masked) 2.64

Table 3 WERs [%] of each DDNN model.

DDNN model closed open

w/o denoising 94.9 51.2
(a) GRU 30.9 48.8
(b) CNN-BiLSTM 54.5 51.2
(c) LSTM w/ Att. 51.0 46.5
(d-1) MT-BiLSTM (input-masked) 45.5 41.1
(d-2) MT-BiLSTM (estimated LMS) 44.9 45.7
(d-3) MT-BiLSTM (LMS-masked) 75.9 55.0

Table 3 shows the ASR performance in WERmetrics. The

“MT-BiLSTM” model got the best performance in both the

MOS and WER. From Fig.4, we can see the predicted IRM

remains more in high-frequency bandwidth, which allows the

ASR system which trained with clean only data to match the

distribution more, comparing to the other denoising model.

On the other hand, from Table 3, we found that most DDNN

models have been able to remove the noise from the speech

because the models achieved the improvement of the WERs.

The best performance came from the “MT-BiLSTM” model

against the IRM-adapted speech because it used the multi-

task loss that could train the model robustly to be more

generalized to denoise the speech.

5. Conclusion

We proposed the way to train the DDNN models with

very-low noise resource extracted from the ASR target

speech recorded in the noisy environment. We have tried

four sorts of the DDNN models, which estimated the IRM
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to remove noise in the frequency domain. In the experi-

ments, we showed that the DDNN model that trained with

the very-low noise resource could easily remove the target

noise from the speech recorded in the noisy-terrible envi-

ronment because both perceptual evaluation by 14 subjects

and the ASR performance were improved. In particular, the

WER was reduced to 41.1% from 51.2% of without denoising

the speech.

However, although the WER was improved, it is not

enough to make the denoised speech to reach the state-of-

the-art performance of ASR. The DDNN model with very-

low noise resource in the speech enhancement research field

should be done in other ways. Therefore, in future work,

we are going to search a best neural network architecture

for training denoising model especially model with atten-

tion layer, investigate the way to train a DDNN model and

an acoustic model with connectionist temporal classification

(CTC) loss simultaneously in the multi-task learning scheme

for more improvement of the ASR performance.
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