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Abstract:
We have been developing extension tools of Kaldi, an automatic speech recognition toolkit, with Python
language. A part of this toolkit works as wrapper of Kaldi, therefore, some operations, taking feature extrac-
tion and decoding with lattice as examples, are easily performed with Python code. In addition, our tools
support training an acoustic model by using deep learning framework, such as Chainer. We evaluated our
tools on TIMIT corpus and so on, and got a better ASR performance than other ASR systems in some ways.
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1. Introduction

In recent decades, automatic speech recognition (ASR) [1]

technologies have achieved unprecedented progress. Kaldi

toolkit [2], as one of free and open-source ASR toolkits, is

playing a crucial part in various ASR tasks. It provided a

sets of integrated, flexible libraries and tools written in C++

language. With Kaldi, some state-of-the-art ASR systems

[3][4][5] were developed. Recently, instead of those whose

acoustic model consists of Hidden Markov Model and Gaus-

sian Mixture Model (HMM-GMM), A lot of ASR systems

started to introduce Deep Neural Network (DNN) into their

acoustic model that are called HMM-DNN [6], and obtained

better performances in some ways. Deep learning [7] showed

its persuasive power in the progressive improvement of ASR

technologies.

Concerning deep learning, the developments of various

open-source frameworks such as TensorFlow[8], PyTorch[9],

and Chainer [10], are of special importance. In addition,

Python language has become mainstream of these frame-

works, because of its usability and variable extension pack-

ages for machine learning. Thanks to these tools, some

DNN-based ASR systems have sprung up like mushrooms

and gain much attention. ESPnet [11], for instance, is an

end-to-end speech recognition toolkit. It is different from

traditional ASR technologies, and mainly focuses on speech-
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to-text and text-to-speech by using a DNN model directly.

However, traditional ASR systems that are a combination

of acoustic model and language model are still vital nowa-

days, especially those which adopted the hybrid of HMM

and DNN. Therefore, such tools that support building DNN-

based acoustic model even a whole ASR system with Python

language, are being demanded.

PyKaldi [12] is a Python wrapper of the Kaldi toolkit

and is also a free and open-source ASR toolkit. It supports

users in implementing Kaldi-like tools with Python. Differ-

ing from our developing toolkit, which will be introduced

later, PyKaldi does not designedly support deep learning

frameworks to train a DNN-based acoustic model. An-

other Python project, Pytorch-Kaldi [13], is a toolkit that

bridges the gap between the Kaldi toolkit and frameworks

by Python language. It makes users able to process features

and decode with the Kaldi toolkit, and build a DNN-based

acoustic model with PyTorch, which is one of the popular

deep learning frameworks. It provides serval ready-to-use

DNN models and supports users to customize them. While

the concept of our toolkit is similar to the PyTorch-Kaldi

toolkit, we more aim to provide integrated and independent

tools to help ASR users customize the ASR system in a flex-

ible way, including processing feature, building DNN-based

acoustic model, decoding and handling lattice, etc. In addi-

tion, we tend to adapt more deep learning frameworks. Our

toolkit is named ”ExKaldi”.

The ExKaldi focuses on improving the user experience to

train an acoustic model and build an ASR system as simple

as possible. Furthermore, distinct from almost ASR toolkits,

we allow ASR users to record their speech from a microphone

and recognize it by users’ customized ASR system.

We evaluated our toolkit on the TIMIT corpus. Serval

acoustic models were trained with PyTorch and Chainer,
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Fig. 1 An overview of the main usage of the ExKaldi toolkit.

major deep learning frameworks. As a result, the ExKaldi

could achieve almost the same performances as the PyTorch-

Kaldi results.

The remaining of this paper is organized as follows. In sec-

tion 2, we will describe the main architecture of the ExKaldi

toolkit. Then, section 3 will show an example code to bilud a

simple ASR system from feature extracting to decoding and

scoring. The section 4 will present the experimental results

of servel DNN-based ASR systems built with our toolkit and

compared their performances with other ASR systems. Fi-

nally, we will summarize the contribution of our research

and propose the next plan in section 5. References will be

listed in section 6.

2. Development of Kaldi Extension

Tools

Two basic classes, KaldiArk and KaldiDict, are designed

to hold features, alignments and posterior probability of

acoustic model with the binary format and NumPy*1 data

respectively. Both KaldiArk object and KaldDict object

can transform to each other directly. Based on this, we can

finish training an acoustic model and building an HMM-

DNN-based ASR system. With respect to decoding, we de-

signed the third basic class, KaldiLattice, to carry lattice

object in memory in order to further deal with it, such as

scaling lattice and getting 1-best recognized result.

An overview of the primary usage of the ExKaldi toolkit

is shown in Fig. 1. We introduce our ExKaldi toolkit in

detail in the next sections.

2.1 Data Loading and Saving

We provided functions to acquire feature data, such as

Mel-Frequency Cepstral Coefficients (MFCC) feature, from

WAVE file(s) or Kaldi wav-scp file*2. Existed ark file*3, and

*1 NumPy is the fundamental package for sci-
entific computing in Python. available from
〈https://docs.scipy.org/doc/numpy/index.html〉

*2 wav-scp file: One of Kaldi script files. It lists the name and
path of WAVE files.

*3 ark file: One of Kaldi archive files. It saved the name and
feature parameters with binary format

feature-scp file*4 can also be loaded to a computer’s memory

easily. In addition, KaldiDict object can be load from npz

(NumPy compressed) format file which has a specified for-

mat. Especially, to making labels, forced-alignment file(s)

can be loaded and managed uniformly as KaldiDict object.

KaldiArk object can be saved as ark file, and KaldiDict

object can be saved as npz file.

2.2 KaldiArk and KaldiDict Class

The KaldiArk class is designed as an interface with the

Kaldi toolkit. It can, therefore, hold the binary data in

the same format as a Kaldi ark file. The KaldiDict class,

which is a subclass of Python dict class, is the visual form

of KaldiArk. Its keys are utterance names, and its val-

ues are acoustic features, forced-alignment data or proba-

bility of acoustic model presented with NumPy array for-

mat. KaldiArk and KaldiDict objects have some mutual at-

tributes and methods, such as showing all utterances’ names

or splicing front-behind n frames. Because we designed the

KaldiDict class to support deep learning, an KaldiDict ob-

ject has several particular functions, for instance, normaliz-

ing all data to the standard normal distribution, generating

iterative dataset quickly, etc. A part of our tools will return

KaldiArk object or KaldiDict object.

2.3 Feature and Label Processing

We support further processing acoustic features, such

as applying Cepstral Mean and Variance Normalization

(CMVN) [14], adding n orders deltas, etc. For labels,

both context-dependent targets (probability density func-

tion of each state of triphone) and context-independent tar-

gets (phone IDs) can be obtained to perform different or

multiple tasks [15]. As mentioned earlier, we manage labels

with theKaldiDict class by default. Feature data and labels,

therefore, can be grouped to generate training or validation

data quickly.

*4 feature-scp: One of Kaldi script files. It lists the name and
path of feature parameter files.
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2.4 Deep Learning Support

Besides mentioned above, we provided some basic tools

to try to improve deep learning performance. For instance,

when users want to train a sequence acoustic model, such

as Long Short-Term Memory (LSTM) [16] model and Gated

Recurrent Unit (GRU) [17] model, they are able to truncat

long sequences in order to update model parameters more

easily at the beginning of training loops, and pad batch

sequences by randomly choosing start position to improve

robustness of model. Besides, the DataIterator class and

the Supporter class are designed, and the former can ac-

cept Kaldi scp file and split it into n chunks, then manage

and take turns in loading them to computer’s memory par-

allelly, which makes it reliable to train a large-scale corpus

even on a general computer. The Supporter object is used

to observe and grasp the changes of expected values, such as

training loss, during training a DNN model. This informa-

tion will be used efficiently to implement some automatic

operations, such as saving a model depending on training

performance or adjusting the learning rate when updating

the DNN’s parameters.

2.5 Decoding and Scoring

We accept log-like outputs of acoustic model and decode it

with lattice by cooperating with existed HMM andWeighted

Finite-State Transducer (WFST) [18]. This operation will

generate a KaldiLattice object. KaldiLattice provides some

tools to further deal with lattice, such as scaling, adding in-

sertion penalty and getting n best words or phone sequences

of these words with/without likelihood. These are useful to

help users fine-tune their ASR systems. KaldiLattice object

can be saved as and loaded from a lattice file with Kaldi

format.

In the end, we provided functions to compute the

frequently-used Word Error Rate (WER) score or Edit Dis-

tance score between the decoding result and reference text.

3. Example Code

Fig. 2 is an example to bulid a simple ASR system. The

script first extracts MFCC feature data from wav-scp file

with a sampling frequency of 16 kHz. It outputs a KaldiArk

object feat 1, which is next normalized with CMVN state.

CMVN state can be calculated with our toolkit. Then ap-

pend two orders change information between adjacent fea-

ture frames by add delta, and obtain feat 3, which is a

KaldiArk object whose splice method is used to splice front-

behind 5 frames on itself. So far, feature data have been pro-

cessed simply. By using array method, a KaldiDict object,

feat 5, is obtained. It will be used to forward the neural net-

work. After forwarding, a new KaldiDict object, amp 1, is

produced and transformed back to KaldiArk object with its

ark method. Then use decode lattice function to decode it

with HMM and HCLG graph. After this step, a KaldiLat-

tice object, lat, is produced. In the end, we select 1-best

result by calling its get 1best method and compute WER

score with wer function.

# example.py
import exkaldi as E

# Compute MFCC feature from the wav scp file
# "feat_1" is a KaldiArk object.
feat_1 = E.compute_mfcc('test_wav.scp', 
                        rate=16000)

# Apply CMVN to MFCC feature.
# "feat_2" is a KaldiArk object.
cmvnState = 'test_cmvn.ark'
uttSpk = 'test_uttSpk'
feat_2 = E.use_cmvn(feat_1, cmvnState,uttSpk)

# Add 2 orders deltas and splice front-behind 
# 5 frames.
# "feat_3" and "feat_4" are KaldiArk objects.
feat_3 = E.add_delta(feat_2, order=2)
feat_4 = feat_3.splice(5)

# Transform binary data to numpy data.
# "feat_5" is a KaldiDict object.
feat_5 = feat_4.array

# Forward the neural network acoustic model 
# and get log-like NumpPy array data.
# "amp_1" is a KaldiDict object.
amp_1 = E.KaldiDict()
for utt in feat_5.utts:
  amp_1[utt] = acoustic_mode(feat_5[utt])

# Transform NumPy array back to binary data.
# "amp_2" is a KaldiArk object.
amp_2 = amp_1.ark

# Decode and generate a lattice.
# "lat" is a KaldiLattice object.
# HMM and HCLG files are generated
# with the original Kaldi tools. 
hmm = 'test_graph/final.mdl'
hclg= 'test_graph/HCLG.fst'
wordSymbol = 'test_graph/words.txt'
lat = E.decode_lattice(amp_2, hmm, hclg, 
                       wordSymbol, acwt=1)

# Get 1-best result from the lattice and 
# compute the WER score.
outs = lat.get_1best(acwt=0.2)
score = E.wer(hyp=outs, ref='reference.txt')
print(score['WER'])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Fig. 2 An example code for building a symple ASR system using
the ExKaldi toolkit.

4. ASR Experiment

4.1 Experimental Setup

We evaluated the ExKaldi toolkit on the TIMIT cor-

pus[19]. We built serval HMM-DNN hybrid ASR systems

by using our toolkit. We used Maximum Likelihood Linear

Regression fratures (fMLLR) which have been already ex-

tracted from the training data set and the core test data set

by running the Kaldi TIMIT recipe up to tri3 *5. Train-

ing data consists of 3,696 utterances of 3.14 hours from

462 speakers. It was used to train the DNN-based acous-

*5 tri3 : One of training steps of Kaldi TIMIT recipe, which ap-
plied Linear Discriminant Analysis (LDA) and Maximum Like-
lihood Linear Transformation (MLLT) and Speaker Adaptive
Training (SAT).
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Table 1 WER [%] for the test data set of the TIMIT with various
architectures.

DNN LSTM GRU

Kaldi beseline 18.67 — —
PyTorch Kaldi 18.16 17.01 15.63
ExKaldi 16.94 16.44 15.61

tic model. Test data includes 192 utterances of 0.16 hours

from 24 speakers. It was used to forward the model and

decode with a lattice. And finally, we computed the WER

score.

We evaluated three sorts of neural network models: DNN

model (with dense layer only), LSTM model and GRU

model. Both the DNN and LSTM models were programed

with Chainer, and GRU is a Pytorch model. We would com-

pare our architectures with the Kaldi TIMIT baseline and

Pytorch-Kaldi’s TIMIT architectures. The baseline of Kaldi

DNN model is Karel ’s DNN model*6. With respected to

the GRU model, we used the existed architecture which was

developed in the PyTorch-Kaldi project. The version of the

PyTorch-Kaldi toolkit is 0.1. All of our architectures and

Pytorch-Kaldi’s architectures are carried out with multiple

tasks which used phone IDs as condition to restrict that

neural network’s outputs. Our machine had such configu-

ration: CPU was Core i7 6950X 3.0GHz; Memory was 128

GB; GPU was GeForce GTX1080Ti 12GB; OS was Ubuntu

18.04.

4.2 Experimental Result

Table 1 shows the best performance we obtained of WER

score on the TIMIT test data set. In terms of DNN, we

did some fine operations, for example splicing more front-

behind frames than both Kaldi and Pytorch-Kaldi model,

and initializing network parameters by standard normal dis-

tribution, and manually reducing the learning rate. Thanks

to these, we got a good performance (WER=16.94%). As a

result of making use of speech sequence information, LSTM

and GRU model did better jobs. We mainly implemented

fewer nodes without Dropout[20] as well as using a large

acoustic model weight to decode when training the LSTM

model. Together with other settings, we have achieved a re-

sult with WER of 16.44%. Finally, we re-implemented the

GRU model developed in Pytorch-Kaldi project with our

toolkit and configured almost the same value of hyperpa-

rameters. It obtained a similar WER (WER=15.61%) score

with the result of Pytorch-Kaldi.

5. Discussion

In this paper, we proposed the ExKaldi automatic speech

recognition toolkit, which is based on the Kaldi toolkit. The

ExKaldi provided a set of functions to support training a

DNN-based acoustic model with Deep Learning frameworks

and further customizing an ASR system easily with Python

language. As experimental results, we built serval HMM-

*6 Karel’s DNN: One of TIMIT DNN architecture. available from
⟨https://kaldi-asr.org/doc/dnn1.html⟩.

DNN systems with our toolkit, and they showed a good

performance.

The ExKaldi tookit is released on

https://github.com/wangyu09/exkaldi

under the Apache License v2.0. We hope to improve

ExKaldi toolkit to support computing fMLLR feature and

making n-grams language model and HCLG graph in the

next phase, then being able to implement more lattice oper-

ations and further support online recognition in the further.

The ExKaldi toolkit is expected to contribute to more de-

velopers of automatic speech recognition technologies.
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