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Abstract: A hierarchical matrix (H-matrix) is an approximated form that represents N × N correlations of N objects.
H-matrix construction is achieved by partitioning a matrix into submatrices, followed by calculating the element val-
ues of these submatrices. This paper proposes implementations of matrix partitioning using task parallel languages,
Cilk Plus and Tascell. Matrix partitioning is divided into two steps: cluster tree construction by dividing objects into
clusters hierarchically, and block cluster tree construction by observing all cluster pairs at the same level of the cluster
tree that satisfy an admissibility condition. As the two types of trees constructed and traversed in these steps are un-
predictably unbalanced, it is expected that we can efficiently parallelize both these steps using task parallel languages.
To obtain sufficient parallelism in the cluster tree construction, we not only execute recursive calls in parallel but also
parallelize the inside of each recursive step. For the block cluster tree construction, we assigned each worker its own
space so that the workers can store the cluster pairs without using locks. As a result, compared to a sequential imple-
mentation in C, we achieved up to an 11.5-fold speedup using Cilk Plus and a 12.6-fold speedup by Tascell for the
cluster tree construction. For the block cluster tree construction, up to a 37.7-fold speedup by Cilk Plus and a 38.8-fold
speedup using Tascell are achieved. In regard to the entire process of matrix partitioning, we achieved up to a 12.2-fold
speedup by Cilk Plus and a 14.5-fold speedup using Tascell. All experiments were executed on two 18-core Xeon
processors with real datasets to generate coefficient matrices used in the surface charge method.
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1. Introduction

In the boundary element method (BEM) and N-body simula-
tions, using a coefficient matrix that represents the interaction be-
tween physical elements to solve simultaneous linear equations is
common. However, as the quantity of all interactions between N

elements is N2, such a matrix is dense, and when N is extremely
large, the execution time and memory usage will be unaccept-
able or even unavailable. Therefore, various approximation tech-
niques have been proposed to reduce execution time and memory
usage.

Hierarchical matrices (H-matrices) [1], [2], [3] are used as one
such approximation technique. An H-matrix is constructed di-
rectly from the interactions between element sets, not from its
dense counterpart, to reduce the memory usage from O(N2) to
O(N log N) by hierarchically dividing the matrix into many sub-
matrices and replacing them (if possible) with their small-size
low-rank approximated forms. Though this technique can signif-
icantly reduce computation cost and memory usage with reason-
able accuracy, the computation cost is still large. Thus, accelerat-
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ing the computation for H-matrices, including not only calcula-
tions such asH-matrix-vector andH-matrix-H-matrix multipli-
cation but also H-matrix construction, using parallel computing
is critical.
H-matrix construction is achieved by dividing a matrix into

submatrices (partitioning), followed by calculating the element
values of these submatrices (filling). We can find many propos-
als [4], [5], [6], [7], [8], [9] to parallelize the filling operation
and they are applied to H-matrix libraries such as Hlib [3] and
HACApK [7], but the partitioning operation still remains sequen-
tial. This is partly because the cost of the partitioning operation
is much lower compared to the filling operation, approximately
one thousandth when N � 106. However, this cost is becoming
considerable because hundreds of speedups have been achieved
for the filling operation using MPI, GPU, and SIMD vectoriza-
tion [4], [5], [9]. For example, Ref. [9] shows that, when con-
structing a H-matrix derived from 1,188,000 elements, it takes
0.736 s for partitioning and 1,479 s for filling in sequential com-
putation, and the filling operation is accelarated by 214.8 times
using 256 cores. We can expect more speedups using more com-
puting resources in the near future. Then the partitioning oper-
ation will be a bottleneck if it remains sequential, and it will be
significant for larger datasets. Thus, we should also consider par-
allelizing the partitioning operation. Therefore, in this paper, we
propose parallel implementations for matrix partitioning in the
construction ofH-matrices, based on the sequential version pro-
posed in Ref. [2].
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The matrix partitioning operation is divided into the follow-
ing two steps: construction of cluster tree (CT) and construction
of block cluster tree (BCT) *1. As trees constructed and traversed
in these steps are unpredictably unbalanced, we employed task
parallel languages to parallelize these operations solving the load
imbalance problem with reasonable programming cost. Among
task parallel languages, we used Cilk Plus [10] and Tascell [11]
and evaluated and compared the performance of our implementa-
tions using these two languages.

The contributions of this paper are summarized as follows:
• We propose parallel implementations for matrix partitioning

in the construction of H-matrix using Cilk Plus and Tascell
based on the sequential implementation of theHACApK li-
brary.

• We evaluated the performance of our parallel implemen-
tations; the results indicated that we obtained reasonable
speedups with both languages.

• We showed that, in CT construction, our implementations
using task parallel languages significantly overperform a
naı̈ve implementation using OpenMP.

The remainder of this paper is organized as follows. We intro-
duceH-matrices in Section 2 and the sequential algorithm of ma-
trix partitioning in Section 3. In Section 4, we introduce Cilk Plus
and Tascell, task parallel languages used in our implementations.
In Section 5, we present our proposed parallel algorithms and
their implementations using these task parallel languages. We
evaluate the performance of our implementations in Section 6
and present related work in Section 7. Finally, we provide our
conclusions and describe our future work in Section 8.

2. Hierarchical Matrices

2.1 Overview
An H-matrix is a collection of submatrices created by matrix

partitioning where all submatrices neither overlap with each other
nor hold gaps among them. Submatrices are also called leaf ma-
trices. Figure 1 (a) shows an example of a structure of an H-
matrix. This H-matrix is derived from the input data illustrated
in Fig. 1 (b) and represents the interactions among the elements
distributed on the surface of the two spheres *2.

A l×m leaf matrix will be approximated by the product of two
low-rank matrices of sizes l × k and k × m, where k denotes the
rank of these two matrices and is far less than l and m. Therefore,
restricting the memory usage to O(NK log N), where K is the up-
per limit of k, is possible. K can be tuned based on the accuracy
requirements, but it is usually far less than l and m. Not all these
submatrices can be approximated, depending on judgment results
of an admissibility condition. Thus, anH-matrix is combined by
both approximated submatrices and unmodified submatrices (full
submatrices).

For a matrix X, we let R(X) denote the range of X’s indices.

*1 Though our implementations presented in this paper do not create the
whole tree structure but only the list of the leaf nodes of the BCT, we
still call this operation BCT construction according to convention in this
research area.

*2 The surface in Fig. 1 (b) is composed of triangles and the gravity centers
of the triangles are treated as elements in this example. This is also for
Fig. 12 appearing later in Section 6.

Fig. 1 Examples of a structure of H-matrix and input data. The number of
elements is 10,400.

Moreover, we let [n1, n2] denote a set of successive natural num-
bers {i ∈ N | n1 ≤ i ≤ n2}. Let A be a square matrix of or-
der N. Thus, we have R(A) = [1,N] × [1,N] and a subrange p

of R(A) can be defined as p = Ip × Jp where Ip = [i1, i2] and
Jp = [ j1, j2] for some i1, i2, j1, j2 ∈ N such that 1 ≤ i1 < i2 ≤ N

and 1 ≤ j1 < j2 ≤ N. We define a partition P of R(A) as a
set of subranges that satisfies the following two conditions: (1)
⋃

p∈P p = R(A) and (2) p1 ∩ p2 = ∅ for all p1, p2 ∈ P such that
p1 � p2. We let A|p denote a part of A corresponding to the sub-
range p ∈ P. When theH-matrix Ã approximates A, it comprises
leaf matrices corresponding to A|p for all p ∈ P, each of which is
denoted by Ã|p. If a submatrix A|p can be approximated, the leaf
matrix Ã|p is represented by the product of two low-rank matrices
Vp ·Wp shown below:

Vp ∈ R#Ip×kp , Wp ∈ Rkp×#Jp , kp ≤ min(#Ip, #Jp)

where #S denotes the number of elements in the set S . Then, we
define kp ∈ N as the rank of Ã|p. Usually, kp is far less than #Ip

and #Jp. When Ã|p is a full submatrix, we have Ã|p = A|p. Thus,
if Ã|p = A|p for any p ∈ P, theH-matrix Ã is equal to A.

2.2 Construction ofH-matrix
As mentioned in Section 1, anH-matrix can be constructed by

the following two steps:
( 1 ) Partitioning the matrix into submatrices.
( 2 ) Filling in element values of the submatrices.

In this section, we first explain the principle of matrix partition-
ing with an example. We will present the partitioning algorithms
in detail later in Section 3.

Generally, a dense matrix does not have an obvious structure.
However, in dense matrices appearing in numerical analyses such
as BEM, we can usually observe an implicit structure that can be
represented as approximated submatrices. InH-matrix construc-
tion, we should find as large and as many of such submatrices as
possible to obtain better compressibility. H-matrices achieve this
using the underlying implicit hierarchy in the interactions among
N elements representing the matrix A. For instance, in an astro-
nomical simulation, N elements are distributed in the space and
the interaction between each element pair quadratically decreases
according to the distance between them. In this condition, if the
distance between two sets of elements E1 and E2 are far enough,
we do not need to strictly consider the interactions between all
elements in E1 and E2. Instead, we can choose some representa-
tives from these sets and approximate the interaction between the
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sets as the interactions between the representatives of one set and
all elements in the other set, which can be represented as an ap-
proximated submatrix. Thus, we can find a good partition by the
following recursive procedure for a pair of element sets, or clus-

ters in short, (E1, E2), starting from the self-pair (E, E) where E

is the set of all elements.
( 1 ) Split each of Ei (i ∈ {1, 2}) into two subsets Ei,1 and Ei,2

according to the geometric distribution of elements in Ei.
( 2 ) For each cluster pair (E1, j, E2,k) ( j, k ∈ {1, 2}), we estimate

the approximation accuracy depending on the size of the sub-
spaces containing the clusters and the distance between clus-
ters.

( 3 ) If the accuracy is admissible, we decide the range of the low-
rank matrix for the cluster pair based on the elements con-
tained in the pair.

( 4 ) If the accuracy is not admissible, apply ( 1 )–( 4 ) to the clus-
ter pair recursively.

The filling operation follows the matrix partitioning and cal-
culates the element values of the leaf matrices. ACA (Adaptive
Cross Approximation) [12], [13] and ACA+ [3] are well-known
algorithms for this operation. See these papers for more details
because this is beyond the scope of this paper.

3. Matrix Partitioning Algorithm

Though Section 2.2 outlined one single recursive procedure for
the matrix partitioning, it can be broken into the series of the fol-
lowing two procedures so that a cluster is split just once:
( 1 ) Cluster tree (CT) construction to split clusters recursively.
( 2 ) Block cluster tree (BCT) construction to examine the admis-

sibility of the cluster pair and to determine the matrix struc-
ture recursively.

In this section, we provide details about the algorithms for con-
structing CT and BCT.

3.1 Cluster Tree Construction
First, we show the algorithm to construct a CT. The cluster

E1
(0) = {e0, ..., eN−1} containing all input elements is treated as

the root node of CT. The children of a CT node are created by
dividing the cluster into two sub-clusters. We can create the chil-
dren of each child node by dividing the corresponding cluster in
the same manner. Such division operations are repeated recur-
sively until the size of the cluster becomes less than the threshold
Nmin. Figure 2 shows an example of a cluster tree structure.

In each recursive step, there are many ways to divide a clus-
ter. In BEM, elements are often divided by pivoting. For ex-
ample, in the case where elements are placed in the 1D space,
E = {e0, . . . , en−1} can be divided into EL = {e ∈ E | e.x < M} and
ER = {e ∈ E | e.x ≥ M} where e.x is the x-coordinate of e and
the pivot value M is (maxe∈E e.x +mine∈E e.x)/2. Figure 3 shows
the pseudocode of the CT creation algorithm using this division
strategy.

In the 3D space, the largest value is taken from xd =

(maxe∈E e.x − mine∈E e.x), yd = (maxe∈E e.y − mine∈E e.y), and
zd = (maxe∈E e.z−mine∈E e.z), which corresponds to the length of
edges of the bounding box surrounding the cluster. Then, the cor-
responding axis is chosen as the pivot axis. The pivot value M is

Fig. 2 Example of a cluster tree structure.

Fig. 3 Pseudocode of the algorithm for CT construction (for simplicity, we
show the case where elements are placed in the 1D space).

set to (maxe∈E e.x+mine∈E e.x)/2, (maxe∈E e.y+mine∈E e.y)/2, or
(maxe∈E e.z +mine∈E e.z)/2 based on the pivot axis, and elements
are divided based on the coordinate values of the pivot axis.

In each recursive step, the numbers of elements contained in
two sub-clusters are generally uneven. Thus, a CT constructed
using this algorithm is unbalanced. In addition, because the com-
putational cost of dividing a cluster is proportional to the number
of elements, the computational cost of constructing a CT whose
root node contains N elements varies from O(N log N) to O(N2)
depending on the unbalancedness of the CT (as is the case in the
Quicksort algorithm). Therefore, we cannot estimate the compu-
tational cost of constructing each sub-CT simply from the number
of elements contained in its root.

3.2 Block Cluster Tree Construction
In BCT construction, we use the CT constructed in the previ-

ous step. A node of BCT in an arbitrary level corresponds to a
pair of two nodes of CT (corresponding to two clusters) in the
same level. If a pair of clusters satisfies an admissibility condi-

tion, the corresponding BCT node does not have its child nodes
as it means that the interaction between the clusters can be ap-
proximated by a low-rank submatrix. If the admissibility condi-
tion cannot be satisfied and one of both CT nodes are leaves, we
determine the corresponding submatrix cannot be approximated
and make the BCT node leaf for a full submatrix. Otherwise, i.e.,
if the non-leaf cluster pair is not admissible, the BCT node has
four children corresponding to all pairs of two children of the CT
nodes. As any self-pairs of CT nodes cannot be admissible, the
depth of BCT is equal to that of CT. The number of BCT nodes
in a level is at most the square of the number of CT nodes in the
level corresponding to all possible combinations of CT nodes but
is usually much less than that, especially in deep levels.

The admissibility condition can protect the error of approxi-
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Fig. 4 Pseudocode of the algorithm for BCT construction.

mation from getting too large. Thus, it can be tuned based on
accuracy requirements and the nature of problem setting. For ex-
ample, the common setting of the admissibility condition in BEM
or N-body simulation is that the distance between the two clus-
ters is longer than a certain multiple of the diameter of these two
subsets and can be expressed as the inequalities below:

η × diam(τ) ≤ dist(τ, σ) ∧ η × diam(σ) ≤ dist(τ, σ)

where diam(τ) is the diameter of cluster τ, dist(τ, σ) is the dis-
tance between the clusters τ and σ, and η is a constant. Note
that diam(τ) and dist(τ, σ) can be defined in various ways. In
our implementation, diam(τ) is the length of the diagonal of τ’s
bounding box, while dist(τ, σ) is the distance between two near-
est points in the surfaces of corresponding bounding boxes.

The pseudocode of the algorithm for BCT construction is
shown in Fig. 4. The two walkers t and s traverse the cluster tree
from its root node, checking the admissibility condition. Note
that the execution tree of this recursive algorithm forms a struc-
ture of the BCT; however, we do not create the structure of the
tree but only the list of the leaf nodes of the BCT, which corre-
sponds to the set of submatrices, because the tree structure is not
used in subsequent operations such as the filling operation and
H-matrix arithmetic.

Note that a BCT constructed using this algorithm is unpre-
dictably unbalanced due to not only the unbalancedness of the
CT but also the fact that each BCT node may not have its chil-
dren depending on the admissibility condition.

4. Task Parallel Languages

As mentioned in Sections 3.1 and 3.2, it is difficult to estimate
the computational cost of construction of each sub-CT and sub-
BCT in advance. Thus, we cannot get good load balance when
we statically assign computational cores to subtrees. Therefore,
we parallelized CT and BCT constructrion using task parallel
languages, by which we can parallelize such tree recursive al-
gorithms easily and efficiently employing the dynamic load bal-
ancing strategy.

In this section, we provide a brief introduction of the task par-
allel languages used for our parallel implementations of CT and
BCT construction.

4.1 Cilk Plus
Cilk Plus [14] is a commercial version of Cilk [15] that was

Fig. 5 Doubly recursive Fibonacci in Cilk Plus.

Fig. 6 Finding the maximum element in a list in Cilk Plus.

first created in CSAIL, MIT. It became a default part of the In-
tel C++ Compiler since version 12 and works with both C++
and C. Cilk Plus employs the oldest-first work stealing strategy:
a Cilk Plus worker, usually corresponding to an OS thread, can
push (parent) tasks that can be stolen by other workers into its
own queue. When a worker is idle, it randomly chooses another
worker as a victim and steals the oldest task from the victim’s task
queue. A task parallel program can be easily implemented using
the following three Cilk Plus constructs: cilk spawn (for parallel
execution of function calls), cilk for (for parallel for-loops) and
cilk sync (for synchronization). Cilk Plus also provides useful
APIs such as cilkrts get nworkers() to obtain the total number of
workers and reducers to help programmers parallelize computa-
tions with reduction. We provide two sample programs written in
Cilk Plus in Fig. 5 and Fig. 6. In Fig. 5, cilk spawn and cilk sync

are used to parallelize the calculation of the (n−1)-th and (n−2)-
th fibonacci numbers at each recursive step. Figure 6 shows how
to find the maximum element in a list using cilk for with the help
of reducers.

4.2 Tascell
Tascell [11] is a task parallel language that employs the

backtracking-based work stealing strategy. A Tascell worker al-
ways chooses not to spawn a task at first and performs sequential
computations. When a worker is chosen as a victim and receives
a task request, it temporarily rewinds the execution of its task to
backtrack to the oldest point of task spawning and then spawns a
task. After that, the victim returns from the backtracking and re-
sumes its own task. While the cost for each work-steal in Tascell
is higher than Cilk Plus, the parallelization overhead is lower be-
cause it does not have to manage task queues. Tascell provides the
do-two (for parallel execution of the following two statements)
and do-many (for parallel loops) constructs. Figures 7 and 8
show examples of Tascell programs *3. Figure 9 shows the man-
ner in which backtracking-based task spawning occurs when a
Tascell worker performs the program in Fig. 7.

*3 The actual Tascell language has an S-expression-based syntax [16], but
we write programs with a C-like syntax here for readers’ convenience.
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Fig. 7 Doubly recursive Fibonacci in Tascell.

Fig. 8 Finding the maximum element in a list in Tascell.

5. Parallel Implementation

In this section, we explain our proposed parallel algorithms and
implementations of CT and BCT construction.

5.1 Cluster Tree Construction
As explained in Section 3, a CT is constructed using a recursive

algorithm. It is obvious that the two recursive calls in Fig. 3 can
be executed in parallel and thus these can be parallelized using
the cilk spawn or do two constructs.

However, after preliminary evaluations, we found that the par-
allel performance is far below our expectations and that we can
only achieve 5.3 times speedup at most using two 18-core proces-
sors. This is because the computation cost of each recursion step
(lines 4–9 in Fig. 3) is proportional to the size of e and the critical
path thus cannot be shortened when only recursive calls are exe-
cuted in parallel. To obtain better performance, we also need to
parallelize inside the recursion step. The costly operations in the
recursion step are two-fold: 1) finding the maximum and mini-
mum x, y, and z-coordinate values to decide the pivot value and
axis and 2) the pivoting operation, i.e., reordering elements based
on the coordinate values of them.

Fig. 9 Spawning a task lazily while computing fib(40). When a Tascell
worker detects a task request (at fib(37)), it (1) backtracks to the old-
est task-spawnable point, (2) spawns a task for fib(38), (3) returns
from backtracking, and (4) resumes its own computation.

Figure 10 shows the pseudocode of the parallel algorithm for
CT construction. Finding the maximum and minimum numbers
can be easily implemented using the cilk for construct and reduc-
ers in Cilk Plus, and the do many construct in Tascell, as shown
in Figs. 6 and 8.

Parallelizing the pivoting operation is more difficult. In se-
quential implementation, we can easily reorder the elements in-
place using the commonly used algorithm for Quicksort, wherein
two pointers scan the array from both the left and right sides and
swap the elements when the left/right pointer finds the value to
be more/less than the pivot. However, this in-place algorithm is
difficult to be parallelized.

Therefore, we employed two arrays L1 and L2. Initially, the
element data are stored in L1, the result of reordering at the first
level of CT is stored in L2. Similarly, at the second level, elements
in L2 are reordered and the result is stored in L1. This operation
is repeated recursively until the number of elements is less than a
threshold TS. After that, pivoting is sequentially performed using
the in-place algorithm.

We parallelized the pivoting operation using the following
steps (elements in L1 are reordered and stored in L2).
step 1: Divide the array L1 into Nc chunks.
step 2: For each chunk, count the number of elements whose

value is less than and not less than the pivot. The counts for
the i-th chunk are stored in less[i] and more[i], respectively.

step 3: Calculate Nless =
∑Nc−1

k=0 less[k].
step 4: Calculate Iless[i] = PS(less[i]) and Imore[i] =

PS(more[i]) + Nless, where PS(A[i]) is the i-th prefix-sum of
A, i.e., PS(A[i]) = A[0] + A[1] + . . . + A[i − 1].

step 5: For each i-th chunk, copy the elements whose values
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Fig. 10 Pseudocode of the parallel algorithm for CT construction (for sim-
plicity, we show the case in which elements are placed in the 1D
space).

are less than the pivot into the subspace of L2 starting from
L2[Iless[i]]. Similarly, copy the elements whose values are
not less than the pivot into the subspace of L2 starting from
L2[Imore[i]].

In these steps, steps 2, 3 and 5 can be easily parallelized over
chunks. In addition, we parallelized step 4 in two ways. One
used the parallel prefix-sum algorithm proposed in Ref. [17], and
the other implements a more simple algorithm as follows: 1) we
divide the array into chunks and calculate the prefix-sum of each
chunk, 2) calculate the prefix-sums of C[ ] where C[ j] is the total
sum of the j-th chunk, and 3) add PS(C[i]) to all array elements
in the (i + 1)-th chunk. Here, 1) and 3) are executed in parallel
over chunks and 2) is sequentially executed.

However, in both implementations, we obtained only slight
speedups when we measured the performance of prefix-sum com-
putation independently, and the performance degraded when the
parallel prefix-sum implementation is embedded to CT construc-
tion. Therefore, we employed the sequential implementation for

Fig. 11 Pseudocode of the parallel algorithm for BCT construction.

the prefix-sum computation in the evaluations in Section 6.
One of the obvious drawbacks of this parallel algorithm is that

there are additional costs to scan the element list multiple times
and to compute prefix-sums. When the number of elements is
small, the parallelization overhead would be larger than the par-
allel speedups. Therefore, we apply the sequential pivoting algo-
rithm when the number of elements is not greater than the thresh-
old TS.

In addition, we employed another parameter TN to achieve bet-
ter performance. A worker calls the recursive function sequen-
tially when the number of elements is lower than TN. This pa-
rameter should be set considering the tradeoff between overheads
for parallelization (e.g., cilk spawn and do two) and load imbal-
ance. Note that the execution will fall to sequential when both TS

and TN are greater than N.

5.2 Block Cluster Tree Construction
Compared to CT construction, our parallel implementation of

BCT construction is relatively simple. As the computation cost
for each recursion step is small, we can obtain sufficient speedups
only by parallelizing recursive calls (line 15 in Fig. 4). Figure 11
shows the pseudocode of the parallel implementation of BCT
construction.

The only concern is about the space to which leaf nodes of BCT
are stored. In the sequential implementation, they are stored to the
global array. However, sharing such a single array controlled by
a lock among workers brings large overheads. Therefore, we al-
located space for each worker. We can implement such allocation
naturally in Tascell as it provides features that enables workers
to have their own storage. As Cilk Plus does not provide such
features, we allocated a two-dimensional array of the size nw × s,
where nw is the number of workers and s is an arbitrary size *4 of

*4 In our current implementation, s is estimated based on the number of CT
nodes. If s is not enough at run time, the program will abnormally stop.
We can enhance our implementation to dynamically resize the space but
we did not do that for the sake of simplicity of the implementation and
for reducing overheads.
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the space assigned to each worker.
Cilk Plus for C++ provides list-reducers through which we can

build an array in parallel with very simple code. However, as
list-reducers are implemented for creating linked lists, they lead
to worse performance compared to the implementation using the
two-dimensional array. Therefore, we did not use this feature.

As in CT construction, we employed a parameter TN to control
the granularity of parallel tasks. A worker calls the sequential
version of the recursive function when both of the numbers of el-
ements of given two clusters are greater than TN. As discussed
in Section 3.2, we cannot accurately estimate the depth of (a sub-
tree of) BCT using the number of elements because it depends on
admissiblity conditions, but the upper bound of the depth can be
estimated in this way.

6. Performance Evaluation

6.1 Evaluation Setup
We evaluate our proposed parallel implementations with the

following four datasets from which coefficient matrices of the sur-
face element method are generated [18].
Sphere: a sphere having 5 × 107 elements in its surface.
SphereCube: 10×10×10 spheres placed cubically. Each spher-

ical surface is composed of 101,250 elements.
SpherePyramid: 12 + 22 + . . . + 142 = 1015 spheres placed

pyramidally. Each spherical surface is composed of 101,250
elements.

Humans: 50× 100 pairs of human-shaped objects. The surface
of each object pair is composed of 19,664 elements.

These four datasets are illustrated in Fig. 12 *5 and their charac-
teristics are summarized in Table 1. We set Nmin to 10 and η to 2
for all measurements.

We measured the performance using a single node of Laurel 2,
a supercomputer at the Academic Center for Computing and Me-
dia Studies, Kyoto University. The details of the evaluation envi-
ronment are summarized in Table 2.

When evaluating the performance of the parallel implementa-
tions, we use the performance of the sequential implementations
using C as the baseline of speedups. The performance of the se-
quential implementation for CT and BCT construction is shown
in Table 3.

6.2 Cluster Tree Construction
6.2.1 Performance Parameter Tuning

First, we need to tune the three parameters presented in Sec-
tion 5.1 that can significantly affect the performance.

TN denotes the threshold of the number of elements that de-
cides whether recursive function calls are executed in parallel in
CT construction.

TS denotes the threshold of the number of elements for decid-
ing whether computations inside a recursive step are parallelized
in CT construction. As presented in Section 5.1, we parallelized
finding the maximum and minimum elements and the pivoting
operation. Workers perform the parallel algorithm when the num-
ber of elements to be divided is more than TS and performs the

*5 Figure 12 (d) illustrates only 6 × 10 pairs to make it easy to recognize.

Fig. 12 Input datasets used in the evaluations.

Table 1 Characteristics of the input datasets used in the evaluations.

Sphere SphereCube SpherePyramid Humans

depth of CT, BCT 30 30 31 30
# elements 50,000,000 101,250,000 102,768,750 98,320,000
# nodes in CT 14,489,439 28,648,159 28,969,539 27,043,359
# leaf nodes in BCT 36,696,448 189,114,616 199,092,703 123,061,030

Table 2 Evaluation environment.

CRAY CS400 2820XT (Laurel 2) (1 node)

CPU Intel Xeon Broadwell × 2 sockets (2.1GHz, 18 cores/socket)
with Hyper-Threading enabled.

Memory DDR4-2400 128 GB (154 GB/s)
OS Red Hat Enterprise Linux Server release 7.4 (Maipo)
Compiler Cilk Plus: Intel C++ Compiler version 17.0.6 with -xavx2 -O3 option

Tascell: Tascell Compiler version of Jan. 21, 2019 *6

+ GCC version 4.8.5 with -O3 option
+ Trampoline-based implementation of nested functions in GCC.

Table 3 Performance of the sequential implementation in C (elapsed time
in seconds)

Sphere SphereCube SpherePyramid Humans

CT 19.8 41.9 43.0 42.9
BCT 2.6 15.6 17.6 10.5
Total 22.4 57.5 60.6 53.4

sequential (in-place) algorithm otherwise.
C is the chunk size used in parallel executions of the pivoting

operation in CT construction. When C decreases (the number of
the chunks increases), the degree of parallelism increases but the
computation cost for prefix-sums also increases.

We tuned these parameters by measuring the performance of
36-worker executions of the Cilk Plus and Tascell implementa-
tions using the Sphere dataset by the following parameter search.
( 1 ) Set TS = 104 and C = 104.
( 2 ) Find the optimal value of TN within the range TN ∈ {10, 102,

103, 104, 105, 106, 107, 5 × 107} while fixing TS and C.
( 3 ) Find the optimal value of TS within the range TS ∈ {10, 102,

103, 104, 105, 106, 107, 5 × 107} while fixing TN and C.
( 4 ) Find the optimal value of C within the range C ∈ {1, 2, 4, 8,

16, 32, 64, 128, 103, 104, 105, 106, 107, 5 × 107} while fixing

*6 https://bitbucket.org/tasuku/sc-tascell/commits/
158c691ce4059afbbca6c437a6714e8b911756be
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Fig. 13 Effect of the three parameters on the performance of CT construc-
tion (36-worker executions, Sphere).

TN and TS.
( 5 ) Repeat ( 2 )–( 4 ) until the optimal parameter settings do not

change.
As a result, we found the optimal parameter settings (TN, TS,C) =
(102, 104, 1) for Cilk Plus and (TN, TS,C) = (104, 104, 1) for Tas-
cell.

We used these parameter settings for all other performance
measurements. The effects of these parameters on the perfor-
mance are shown in Fig. 13. We can see that the performance
drops to a 5.3-fold speedup compared to C when TS = 5 × 107.
This proves the necessity of parallelizing operations inside the
recursive step.
6.2.2 Performance Evaluation

The performance of our parallel implementations for CT con-
struction using Cilk Plus and Tascell is shown in Fig. 14. Ta-
ble 4 shows the best performance and the number of workers
with which the performance is obtained. We can see that for both
Cilk Plus and Tascell, the speedups increase proportionally until
the number of workers goes up to approximately 28, but the im-

Fig. 14 Performance of Cilk Plus and Tascell in CT construction.

provement is saturated, or even becomes negative, with a larger
number of workers. The possible reasons for this are the addi-
tional costs for the parallel pivoting algorithm discussed in Sec-
tion 5.1 and memory bandwidth saturation.

In addition, we can see that Cilk Plus demonstrated better per-
formance than Tascell until the number of workers went up to
28, probably due to the more powerful optimization by the Intel
Compiler. Cilk Plus and Tascell showed similar performances
for 28 to 72 workers. Tascell achieved slightly better perfor-
mance than Cilk Plus in 72-worker executions for three out of
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Table 4 Best performance (speedup to C) achieved by the Cilk Plus and
Tascell implementations of CT construction.

Sphere SphereCube SpherePyramid Humans

Cilk Plus 10.6 10.7 10.5 11.5
(36 workers) (36 workers) (36 workers) (72 workers)

Tascell 11.0 10.6 11.0 12.6
(72 workers) (36 workers) (72 workers) (72 workers)

four datasets. One possible reason for this is because the memory
pressure caused by the Cilk Plus runtime is larger than Tascell
due to its management of task queues.
6.2.3 Comparison to Implementation without Lightweight

Task Parallelism
We also compared our implementations using the task parallel

languages to the implementation using OpenMP, which does not
have features for lightweight task parallelism. The algorithm of
this implementation is summarized as follows.
( 1 ) Construct the shallower part of the CT, the part of the CT

where the number of elements is less than TN. During this
process, all recursive calls are executed sequentially and the
inside of each recursive step is executed in parallel using omp
parallel for loops until the first time that the number of
elements is less than TN. At the same time, add two tasks
into the task list for constructing the two subtrees of the CT
whose roots are the two children of the node.

( 2 ) Construct the deeper part of the CT by executing the tasks
created in ( 1 ) in parallel using an omp parallel for loop
with the option schedule(dynamic,1), we use the sequen-
tial version in the parallel for loop.

Performance comparison among the implementations using
OpenMP and the task parallel languages is shown in Fig. 15.
When TN is large, we cannot get good load balance because
coarse-grained tasks are not parallelized. When TN is small, we
can expect good load balance but the overhead for creating plenty
of tasks would be large. In both cases, the OpenMP implementa-
tion cannot overperform the implementations using task parallel
languages.

6.3 Block Cluster Tree Construction
6.3.1 Performance Parameter Tuning

As presented in Section 5.2, BCT construction has only one ex-
ecution parameter TN, which is the threshold that decides whether
recursive function calls are executed in parallel.

We tuned TN by measuring the performance of 288-worker ex-
ecutions using the Sphere dataset. As a result, we obtained the
best parameter settings TN = 10000 both for Cilk Plus and Tas-
cell, as shown in Fig. 16.
6.3.2 Performance Evaluation

The performance of our parallel implementations of BCT con-
struction using Cilk Plus and Tascell is shown in Fig. 17. Ta-
ble 5 shows the best performance and the number of workers
with which the performance is obtained. In BCT construction,
both the Cilk Plus and Tascell implementations achieved good
parallel performance. Tascell achieved its best performance with
fewer number of workers than Cilk Plus. Tascell achieved good
speedups until the number of workers goes up to 72 and its perfor-
mance drops down with a larger number of workers. In contrast,

Fig. 15 The performance for CT construction of the OpenMP, Cilk Plus and
Tascell implementations (36-thread/worker executions).

Fig. 16 The effect of TN on the performance of BCT construction (288-
workers, Sphere).

Table 5 Best performance (speedup to C) achieved by the Cilk Plus and
Tascell implementations of BCT construction.

Sphere SphereCube SpherePyramid Humans

Cilk Plus 18.9 33.0 37.7 32.1
(540 workers) (540 workers) (540 workers) (432 workers)

Tascell 22.7 38.0 37.6 38.8
(144 workers) (144 workers) (72 workers) (72 workers)

Table 6 Best total performance (speedup to C) achieved by the Cilk Plus
and Tascell implementations of matrix partitioning.

Sphere SphereCube SpherePyramid Humans

Cilk Plus 10.7 11.6 11.3 12.2
(72 workers) (72 workers) (72 workers) (72 workers)

Tascell 11.5 12.8 13.9 14.5
(72 workers) (36 workers) (72 workers) (72 workers)

Cilk Plus achieved its best performance with a much larger num-
ber of workers than the number of cores and its performance does
not drop even when the number of workers goes up to 540.

One possible reason that we can obtain better performance with
more workers than CPU cores is because we can hide the mem-
ory access latency for storing BCT leaf nodes. We need a sig-
nificantly large number of workers in Cilk Plus to obtain better
performance. The reason for this is uncertain, and we will inves-
tigate it in a future study.

6.4 Total Performance of Matrix Partitioning
Finally, we demonstrate the total performance of matrix parti-

tioning, i.e., both CT and BCT construction in Fig. 18. Table 6
shows the best total performance achieved by these parallel im-
plementations. As seen in Table 3, the elapsed time to construct
CT is longer than that for BCT construction. Thus, the total per-
formance of matrix partitioning is mainly impacted by the perfor-
mance of CT construction.
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Fig. 17 The performance of Cilk Plus and Tascell in BCT construction.

The results showed that we achieved reasonable and sta-
ble speedups for all datasets. Specifically, Cilk Plus achieved
10.7–12.3 times speedups and Tascell achived 11.5–14.5 times
speedups compared to the sequential implementation for matrix
partitioning.

7. Related Work

As mentioned in Section 1, numerous studies have been con-
ducted that deal with the parallelization of the filling operation in
H-matrix construction. Kriemann parallelized H-matrix arith-
metic and proposed a parallel implementation of the filling oper-

Fig. 18 Total performance of the Cilk Plus and Tascell implementations of
matrix partitioning.

ation on shared memory system in Ref. [6]. Besides filling, they
also parallelized matrix-vector multiplication, matrix multiplica-
tion, and matrix inversion. Ida et al. proposed implementations of
the filling operation on distributed memory systems both by flat-
MPI and MPI+OpenMP hybrid parallelization in Ref. [7]. They
also packaged these implementations into HACApK, a library
for parallel H-matrix computing. In Ref. [9], Munakata et al.
applied dynamic load balancing to hybrid MPI+OpenMP imple-
mentations of the filling operation and matrix-vector multiplica-
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tion.
CT construction in our research can be considered as a special

instance of k-D tree construction for k = 3. There are many stud-
ies dealing with parallelization of the construction of k-D trees
using GPU [19], [20] and multicore CPUs [21], [22], [23], [24].
Especially in Ref. [21], Byn Choi et al. proposed a parallel k-D
tree construction algorithm that parallelizes both inside of and
across recursive steps. However, their algorithm is different from
ours in that they parallelize inside of recursive steps only in the
shallower part of the k-D tree and parallelize recursive calls only
in the deeper part. We combine both levels of parallelism across
the entire tree. Besides, they also propose an in-place parallel
algorithm for pivoting, which we can take into our implementa-
tions.

In terms of parallel tree construction for other approximation
methods for N-body simulations, Taura et al. implemented the
tree construction of Fast Multiple Methods (FMM) using task
parallelism [25]. In Refs. [26], [27], parallel implementations of
tree construction for the Barnes–Hut algorithm are proposed.

In Ref. [28], Saleem et al. parallelized Quicksort using
Cilk Plus, which includes a similar pivoting operation with our
CT construction. However, they did not realize very good
speedups because they did not parallelize the pivoting operation.

8. Conclusion and Future Work

In this paper, we proposed parallel implementations of matrix
partitioning in the construction ofH-matrix, using Cilk Plus and
Tascell. Matrix partitioning is done in two steps: cluster tree (CT)
construction and block cluster tree (BCT) construction. In CT
construction, we parallelized not only the recursive function call
but also the computation inside of recursive steps. Our parallel
implementations of BCT construction are relatively simple com-
pared to CT creation, but we needed to assign a private space for
each worker to store the BCT leaf nodes.

As a result, compared to a sequential implementation in C,
we achieved 10.5–11.5 times speedups by Cilk Plus and 10.6–
12.6 times speedup by Tascell for the CT construction. For
the BCT construction, speedups using Cilk Plus are 18.9–37.7
times and those using Tascell are 22.7–38.8 times. In regard to
the whole process of matrix partitioning, we achieved 10.7–12.2
times speedups by Cilk Plus and 11.5–14.5 times speedups by
Tascell.

In future work, we will improve the performance of CT con-
struction by improving the locality of memory accesses by en-
hancing the work stealing strategy. We will also extend our im-
plementations for distributed memory environments.
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