
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

Time Segment Correction Method for Parallel Time
Integration

Akihiro Fujii1,a) Shigeo Kaneko2,b) Teruo Tanaka1,c) Takeshi Iwashita3,d)

Received: April 3, 2019, Accepted: July 25, 2019

Abstract: Parallel time integration methods provide the time integral simulation with parallelism in time direction
and enhance the performance of the applications on parallel machines. Many parallel time integration methods apply
re-discretization with enlarged time step width to propagate prior time step information to later time steps with low
calculation cost. However, this re-discretization tends to create an unstable time integral problem and causes the per-
formance degradation depending on the length of the time step width. Therefore, we paid attention to the correction
scheme involved in the (parallel) TP-EEC method that uses Jacobian matrices of original simulation problem to prop-
agate the prior time step information to later time steps very quickly. This paper showed our parallel time integration
approach using a correction method similar to the TP-EEC method, and proposed the efficient implementation methods
with pipeplined coarse level correction. The performance results for simple non-linear time step simulation show our
method performed well and was faster than other representative parallel time integration scheme.

Keywords: parallel time integration, non-linear problem

1. Introduction

Our target problem is non-linear time evolution simulations
that appear in many kinds of scientific problems. We assume im-
plicit time integration methods and discretization with grids such
as finite difference or finite element method. For these kinds of
problems, supercomputers usually help to accelerate them. Per-
formance levels of supercomputers are known to have been grow-
ing dramatically and exponentially for more than 2 decades. But
the performance growth of supercomputers has been gained by
increasing parallelism especially in recent years. There are many
supercomputers registered in TOP500 list [7] that have more than
1 million cores. Therefore, simulation codes must have much
parallelism to provide work loads for many cores.

The time evolution simulations usually solve the unknown
variables of the current time step from the relationships between
previous time step and the current time step. Then it moves the
current time step forward to the next time step. Since the time
step is forwarded sequentially, the calculation cost will increase in
proportion to the number of time steps. There are many applica-
tions that have less than 1 million unknown variables at each time
step but that have to proceed more time steps than 1,000 steps.
These simulations cannot gain enough parallelism for supercom-
puters with millions of cores by the usual step-by-step time inte-
gration. In order to exploit more parallelism, studies of parallel

1 Kogakuin University, Shinjuku, Tokyo 163–8677, Japan
2 Ark Infomation Systems, Chiyoda, Tokyo 102–0076, Japan
3 Hokkaido University, Sapporo, Hokkaido 060–0811, Japan
a) fujii@cc.kogakuin.ac.jp
b) kaneko.shigeo@ark-info-sys.co.jp
c) teru@cc.kogakuin.ac.jp
d) iwashita@iic.hokudai.ac.jp

time integration attract many researchers’ attention.
Many parallel time integration algorithms such as parareal [1],

[6] and MGRIT [2] were proposed. They usually cut dependen-
cies in the time stepping direction to introduce parallelism. They
update variables over all time steps iteratively until the values
of variables satisfy the governing relationship equations between
neighboring timesteps. The norm of the residuals over all time
steps can be used as an indicator for the correctness of the solu-
tion. A convergence criterion is set as this norm of the residuals
over all time steps. In order to accelerate the convergence, par-
allel time integration algorithms usually create the “coarse grid”
simulation with enlarged time step width to propagate prior time
step information to later time steps at a fast pace but with low ac-
curacy. However, problems with enlarged time step width tend to
cause instability, which leads to difficulty with the time integra-
tion.

On the other hand, the parallel time integration method, par-
allel TP-EEC method (Time-Periodic Explicit Error Correc-
tion) [10], that does not introduce re-discretization with enlarged
time step width was proposed for time-periodic nonlinear mag-
netic field problems. It uses the Jacobian matrix information to
calculate rough solution correction. The algorithm has been al-
ready used for real application in the industry. This paper extends
the correction scheme of the TP-EEC method [9] to an ordinary
nonlinear time integral simulation problem, and we call it TSC
(time segment correction) method. We studied its implementa-
tion method and checked its effectiveness in comparison with the
MGRIT method.

2. Related Works

This section introduces the parareal method, MGRIT method

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

and (parallel) TP-EEC method initially. Then we explain the fea-
tures of the TSC method.

The parareal method [1], [6] uses a time integral function
F(tk+1, tk, uk) that calculates the integral from tk time step vari-
ables uk to tk+1 time step variables accurately, and uses a func-
tion G(tk+1, tk, uk) that calculates it approximately with low cal-
culation cost. Although time integral is ordinarily calculated by
calling the function F at each time step in the order of time se-
quence, Parareal applies the function F in parallel by ignoring the
dependency in the time sequence and corrects the error using the
function G. Here, uold

k , k = 0, . . . ,Nt is assumed to be the ap-
proximate solution of time step k. Superscript “old” means it is
before the parareal iteration. Updated values of parareal iteration
are stored in variables with superscript “new”. Nt is the last time
step number. uold

k , k = 0, . . . ,Nt will be updated by the following
equation.

unew
k+1 = F(tk+1, tk, u

old
k) +G(tk+1, tk, u

new
k) −G(tk+1, tk, u

old
k)

In the parareal iteration, F function can be called in parallel,
because the old superscript variable uold

k is used as an initial point
of the time integration. Then it calls the functions G to correct the
initial point difference between uold

k and unew
k . The function call

of G with unew
k has time step dependency, and it must be called in

the order of time steps.
This parareal iteration repeatedly updates the solution, and

makes it reach convergence. Although dominant part of the com-
putation becomes function F, it can be calculated in parallel.
Since the time integral functions F and G are not specified on
how to construct those functions, many methods of parallel time
integration can be regarded as one of the parareal methods.

The MGRIT method [2], [3], [12] is a multi-grid algorithm that
can be seen as one of parareal methods. Multigrid algorithm has
a fine grid problem, a coarse grid problem, and a smoother. Here,
we introduce them in MGRIT method.
• A fine grid problem corresponds to the given time integral

simulation problem.
• Coarse grid problems are constructed by re-discretization

with coarse time step points. Thus the time step width is
enlarged from that of the fine level.

• Smoothers make solution reaching convergence in iterative
process. They cut the dependency in every fixed number of
time steps and calculate time integration in parallel. Repeat-
ing this parallel updates makes the initial time step informa-
tion propagate to the end time step, and finally, the solution
reaches convergence.

One cycle of MGRIT is the same as ordinary multigrid meth-
ods. At first, a smoother is applied at the fine level. Then er-
ror is corrected by solving the coarse level problem. At the end
of the cycle, a smoother is applied again at the fine level. Al-
though this explanation is about 2-level methods, the number of
levels can be increased by applying the process recursively. If the
user code has routines of time integration for arbitrary time step
width, MGRIT can be incorporated to the user application with-
out changing the user codes, which is called non-intrusiveness in
MGRIT papers [2]. The algorithm is introduced in the next sec-
tion.

The parallel TP-EEC [10], [11] method is proposed for parallel
time integration of time-periodic nonlinear magnetic field prob-
lems. It uses the property of time-periodicity and accelerates the
convergence to the steady state solution. The method divides the
time steps among MPI processes. Each process calculates the
time evolution in parallel. The error between processes is cor-
rected by a linear equation calculated from Jacobian matrices of
all time steps. This method does not have a re-discretization pro-
cess with enlarged time step width for coarse level correction.

This paper considers how to extend the parallel TP-EEC
method to the non-periodic time evolution problem. We call
the method Time segment correction (TSC) method. The TSC
method does not have a re-discretization process as with the par-
allel TP-EEC method. The TSC method corrects the error us-
ing Jacobian matrices of all time steps. The concept of introduc-
ing small sized linear equation after linearlization with Jacobian
matrices is the same as is used in the parallel TP-EEC method.
However, as far as authors know, there are no research papers
that apply this concept to solve the non-periodic time evolusion
problems. In addition, the parallel TP-EEC method divides un-
knowns over one period of a time-periodic problem by the num-
ber of processes, and approximates them with one time step un-
knowns at the coarse level. Therefore, we extend the parallel
TP-EEC method as the TSC method in this paper.

Since the TSC method is applied to non-periodic problems un-
like the parallel TP-EEC method, Jacobian matrices of all time
steps become a block lower triangular matrix problem, which is
used for solution correction. This lower triangular structure al-
lows the pipeline execution of corrections that are introduced in
Section 5. The TSC method has also non-intrusiveness as with
MGRIT. It uses only Jacobian matrices at the fine level for solu-
tion correction. Therefore the method does not require changing
the user code if it can output Jacobian matrices.

3. MGRIT

This section explains problem setting and step-by-step time in-
tegration with the Newton-Raphson method to begin with. Then,
the MGRIT method that parallelizes the time integration process
is described.

The solution vector and the right hand side vector at the i-th
time step are denoted as ui and gi, respectively. This paper as-
sumes that the relationship of the i-th and (i − 1)-th time step
can be expressed as Eq. (1). A is non-linear operator with 2 ar-
guments of i-th and (i − 1)-th time step variables, ui and ui−1.
ui−1 in Eq. (1) is given value, and ui is unknown variables to be
fixed by the equation. Nt is the end time step number. In the
Newton-Raphson method it solves linear problem of Eq. (2) at
first, where u0

i means initial value of ui, and Jacobian matrix is
Ji =

∂A
∂ui

(u0
i , ui−1). Then, it assigns ui to u0

i , and it solves Eq. (2)
repeatedly until it converges.

A(ui, ui−1) = gi, i = 1, . . . ,Nt (1)

ui = u0
i − J−1

i (gi − A(u0
i , ui−1)) (2)

In step-by-step time integration, this process solves one-time step
integration, and this is repeatedly applied until it reaches the end

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 1 C points, F points, and Smoothers.

time step.
The MGRIT method exploits parallelism by cutting the depen-

dency in time evolution direction, and calculates time integra-
tion from the appropriate initial value. Here, F-smoothing and
C-smoothing are described. All time steps are labeled as F or C
as shown in the Fine level of Fig. 1. C points are the time steps
that are left on the coarser level. Thus, in the case of Fig. 1, the
time step width at the coarser level will be 4 times larger than
that of the original problem setting. This ratio is called coarse to
fine ratio in this paper. F-smoothing calculates time integration
from each C time steps. It updates the variables at F time steps.
In Fig. 1, 4 groups of F time steps are updated group by group in
parallel, which is shown as 4 dotted arrows. Next, C smoothing
updates variables at C time steps from F point that is previous to
the C point, which is shown as 4 solid arrows between F and C
time steps.

When F-smoothing and C-smoothing (FC-smoothing) is ap-
plied, the information of the initial condition propagates m time
steps, where m is the coarse to fine ratio. Thus, FC-smoothing can
make the solution convergent by repeating itself Nt/m times. Nt

is the number of time steps of the problem. Since FC-smoothing
has the same degree of parallelism of Nt/m, it is not possible to
speed up the step-by-step time integration by FC-smoothing, even
if it is fully parallelized.

In order to speed up the propagation to future time steps,
MGRIT generates the coarse problem by enlarging the time step
width m times. At the coarse problem, only the time steps labeled
with C at Fine level are calculated. By solving the coarse prob-
lem with step-by-step time integration, coarse approximate solu-
tion propagates to the future time steps fast. The 2-level MGRIT
method is calculated in the following procedure.
step 1 F-smoothing, C-smoothing, and F-smoothing is applied

to the problem in order, which is called FCF-smoothing.
step 2 The solution is copied to u0

i as in Eq. (3). It calculates
the residual each C point as in Eq. (4).

u0
i = ui (3)

ri = gi − A(u0
i , ui−1) (4)

step 3 It copies the solution values at C points to coarse level
solution vector uΔ,0. Then, the right hand side vector gΔI is
calculated by Eq. (6) . The superscript Δ means that it is a
coarse level variable. Coarse level index I corresponds to the
fine level index i in the following equations. AΔ operator is
obtained by re-discretization with enlarged time step width.

uΔ,0I = ui, i ∈ Cpoints (5)

gΔI = ri + AΔ(uΔ,0I , u
Δ,0
I−1) (6)

Fig. 2 Cycle shape: MGRIT.

step 4 It solves coarse level problem Eq. (7) by step-by-step
time integration from the initial time step.

AΔ(uΔI , u
Δ
I−1) = gΔI (7)

step 5 The C points’ solution vector is updated using coarse
level solution of uΔI as in Eq. (8).

ui = u0
i + (uΔI − uΔ,0I), i ∈ Cpoints (8)

step 6 Since step 5 updates only C points, F smoothing must
be applied for all variables to be updated. In this paper, FC
smoothing is applied in order to connect the pre-smoothing
of step 1. It goes to step 1 until it converges.

Step 1 and Step 6 list typically used smoother settings. The op-
timal smoother setting depends on the problem and computing
environment that specifies the upper bound of parallelism. You
can change the type of smoothers accordingly. As for the multi-
grid scheme for nonlinear problems, it uses a full approximation
scheme that determines the coarse level correction method as in
Eq. (6), Eq. (7) and Eq. (8). The shape of the MGRIT cycle in
this paper is shown in Fig. 2. The dashed line shows the fine
and coarse levels. Calculation at the fine level uses the original
time step width for time integration, and calculation at the coarse
level uses the enlarged time step width. Circles and a triangle
correspond to time integration operations, and arrows show data
movements and the order of calculation.

4. Time Segment Correction Method

In time evolution or time periodic problems, the method that
uses projection matrix (interpolation matrix) described in the next
Section 4.1 is called Time Segment Correction (TSC) method in
this paper. The TSC method calculates a linear coarse level prob-
lem using both Jacobian matrices of all time steps and projection
matrices. Therefore, its coarse level correction is different from
that of MGRIT which uses the re-discretized coarse level non-
linear problem. This section explains the coarse level correction
mechanism and then describes an iteration procedure of the TSC
method.

4.1 Coarse Level Correction
Governing equation Eq. (1) can be written as the following

non-linear simultaneous equations.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 = g0

A(u1, u0) = g1

A(u2, u1) = g2

...

A(uNt , uNt−1) = gNt

(9)

The TSC method considers a linear equation with variables of all
time steps by Newton-Raphson method as follows.

LΔu = r (10)

The bold font is used to show a vector of variables over all time
steps in this paper. The matrix L can be regarded as the Jacobian
matrix over all the time steps. The solution vector Δu in Eq. (10)
is used to update the solution u ← u0 + Δu in Newton Raphthon
method. Δu is the difference from the initial aproximate values
u0.

For example, the linear equation with variables of Δu0..Δu5

over 6 time steps is described as in Eq. (11), when the relation of
variables of i-th and (i − 1)-th time steps are expressed as Eq. (1),
where Ji and Ki is defined as ∂A

∂ui
(u0

i , u
0
i−1) and ∂A

∂ui−1
(u0

i , u
0
i−1), re-

spectively.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J0

K1 J1

K2 J2

K3 J3

K4 J4

K5 J5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δu0

Δu1

Δu2

Δu3

Δu4

Δu5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r0

r1

r2

r3

r4

r5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

Equation (11) linearly approximates the non-linear relationship
of variables of all time steps.

The coarse level matrix Lc is generated as 3 matrix product
BT LB, where the matrix B is the prolongation matrix that projects
coarse level variables to fine level variables. The matrix BT cor-
responds to restriction operation. Thus the coarse level equation
becomes Lcuc = rc, where Lc, uc, and rc are coarse level ma-
trix, coarse level correction vector, and coarse level right hand
vector. rc is calculated by BT r, where r is the residual vector
at fine level. Therefore, the solution vector u at the fine level
is corrected by the following operation, similarly as an ordinary
multigrid method for linear problems.

u← u + B(L−1
c rc) (12)

The prolongation matrix B can be constructed in many ways.
This paper proposes to use the prolongation matrice as in Eq. (13).
It shows examples of prolongation matrix B for 6 time step anal-
ysis as in Eq. (11).

1st-order B1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I

I

I

I

I

I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 2nd-order B2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I

I

I

I

I

I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(13)

I in Eq. (13) is the identity matrix with Ns rows, where Ns rep-
resents the number of unknown variables at each time step. By

aligning identity matrices at the same column of the matrix B,
coarse level matrix BT LB can approximate the constant or low
frequency mode of the solution in the time direction. When we
use first-order B1 as prolongation matrix B, the coarse level prob-
lem size becomes the size of one time step variables, Ns. It cor-
responds to the correction of constant mode for all time steps. If
we use second-order B2 as prolongation matrix B, then the coarse
level problem size becomes 2Ns. It corresponds to the constant
mode correction for the first half and the second half time steps.
As for the sparsity of the coarse level matrix BT LB, it has the
same sparsity patterns of the matrix L in many cases. It can be
calculated with low calculation cost just by adding elements of
the matrix L like additive correction multigrid method [5]. For
example, BT

2 LB2 becomes as follows, when the matrix L is as-
sumed to be the matrix in the Eq. (11).

BT
2 LB2 =

⎛⎜⎜⎜⎜⎝ J0 + J1 + J2 + K1 + K2

K3 J3 + J4 + J5 + K4 + K5

⎞⎟⎟⎟⎟⎠
The n-th order matrix Bn has n columns of identity matrices.

It means that all time step variables are represented with n time
step sized variables at the coarse level. Since identity matrices
are aligned contiguously at each column, it divides all time steps
into n blocks of contiguous time steps. Each block variables are
reduced to one time step variables at the coarse level. In this pa-
per, we allocated each block a process so that each blocked time
steps can be calculated in parallel. Although it is possible to al-
locate multiple blocks to one process, we consider it may lead
to more dependency cuts between contiguous time steps than is
needed by the degree of parallelism. The optimized relationship
between the order n of Bn and parallelism will be investigated in
the future.

It is possible to consider a multi-level correction scheme. The
additive Schwarz type multi-level correction scheme is given by
Eq. (14), where ri is calculated as restricted residual BT

i r.

u← u +
∑

i=1,..l

Bi((B
T
i LBi)

−1ri) (14)

This scheme uses all levels at the same time and calculates the
average correction vector. (BT

i LBi)−1 can be calculated by some
smoothing method instead of direct method for lower calculation
cost. As a first step, this paper evaluates the TSC method as two
level method.

4.2 TSC iteration
The previous subsection describes how to generate a coarse

level equation using an interpolation matrix B. This subsection
explains two-level TSC iteration procedure.
step 1 TSC method applies smoothers in time direction with

initial approximate solution. Here, we used the same type
smoother as MGRIT. Smoother setting is described in Sec-
tion 5.

step 2 It calcuates Jacobian matrix L that was introduced in the
previous subsection. It generates coarse level problem ma-
trix equation

Lcuc = BT r,

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

where Lc is BT LB, and r is the residual vector for all time
steps, that is, a vector of ri expressed in Eq. (4). Since the
matrix L is based on Jacobian matrix depending on the ap-
proximate solution, coarse level matrix Lc must be updated
every iteration.

step 3 It gets the coarse level correction vector uc by solving
coarse level equation.

step 4 It applies correction vector to the solution vector as in
u← u + Buc.

step 5 It applies the smoother again. Then it goes to step 1 until
it reaches the convergence. Here, the smoother applied after
coarse level correction is called post smoother.

Coarse level matrix Lc has the similar sparsity pattern as the
matrix L as in Eq. (11), and it becomes block lower triangular
form. Therefore the coarse level equation can be easily solved by
blocked forward substitution.

5. Efficient Implementation of TSC Method

This section describes the efficient implementation of the TSC
method in comparison with MGRIT. The smoother and the
coarse level correction is mainly described. For explanation, C-
points in TSC method are supposed to be set on the initial time
step of blocked time steps. A C-point and the following F-points
constitute the blocked time steps. Fig. 1 also shows the situation
of the TSC method with four-th order prolongation matrix. It has
4 C-F time step blocks. The TSC method uses this C-F labeling
for smoothers. At the coarse level of the TSC method, a C-F time
step block is reduced to one time step variables.

The coarse level correction of MGRIT updates only C labeled
points at the fine level. Therefore, F smoothing must be applied
after the coarse grid correction. On the other hand, the TSC
method corrects all time step variables by coarse level correc-
tion. Therefore, the TSC method has more options on smoothers
than MGRIT. The TSC method in this paper applies F smooth-
ing before it goes to the coarse level, and applies CFC smooth-
ing after coarse level correction. Although we can select some
other smoother setting, this F and CFC smoother is expected to
be one of the lightest cost smoother setting. It requires only FCFC
smoothing for one cycle.

Next coarse level correction of the TSC method is described.
At first, data distribution with 4 processes in parallel in time is
described in Fig. 3. Unknown variables over all time steps can
be shown as a rectangular shape with axes of space and time di-
rections. For simplicity, space direction parallelism is not used
in the figure. In time direction, unknowns are divided in block
distribution. Time step blocks are assumed to be allocated to the
processes in the order of the rank number. Rank 0 process has
the initial time step block variables, and the last process, rank 3
process has the last time step block.

The coarse level problem of the TSC method is a linear prob-
lem, and its matrix is block lower triangular form, if our proposed
prolongation matrix B is used. It is because contiguous time step
variables are aggregated at the coarse level, and because time step
information does not depend on the future time step variables.
Thus, forward substitution is applied here at step 3 described in
Section 4.2, and the solution of the coarse level equation is cal-

Fig. 3 Data distribution in parallel in time with 4 processes.

Fig. 4 Cycle shapes: TSC loop1, 2 and 3.

Fig. 5 Simplified image of coarse level correction: TSC loop2 and 3.

culated in the order of time steps, which is the same order of the
rank number.

To improve the convergence, repeated coarse level correction
would be considered in one TSC iteration. In that case, step 2 to
step 4 will be repeated. Rank 0 process will get the correction
vector at first in step 3, and it can proceed to step 4 without wait-
ing for other processes to calculate step 3. Since all calculation of
step 2 to step 4 does not depend on the future time step variables,
the steps can be repeated in pipeline fashion.

We call the TSC iteration that applies coarse level correction
once, which is described in Section 4.2, TSC loop1. The TSC
iterations that apply coarse level correction twice and three times
before post smoothing are called TSC loop2 and 3 respectively
in this paper. Figure 4 describes the cycles of TSC loop1, 2 and
3. Blue circles corresponds to step 1 and 2 in the TSC iteration.
White circles correspond to step 4 and step 2. Blue squares are
step 3. Red circles are step 4 and step 5. Figure 5 shows the sim-
plified image of coarse level calculation time of TSC loop2 and
3. The execution time of coarse level correction of TSC loop1
corresponds to First coarse level correction in the figure.

6. Numerical Tests and Discussion

6.1 Numerical Tests
This section investigates the effectiveness of the TSC method

for the non-linear heat diffusion problem. The TSC methods were
compared with the MGRIT method and step-by-step time inte-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

gration. Although the heat diffusion problem is simple, it is used
for performance evaluation of parallel time integration in many
cases. For example, Gahvari et al. [4] used similar heat diffusion
problem for evaluation of time space parallel solvers.

Problem setting is listed as follows.
• 2 Dimensional non-linear heat diffusion problem

∂T
∂t
=
∂

∂x

(
k(T)
∂T
∂x

)
+
∂

∂y

(
k(T)
∂T
∂y

)

– Heat diffusion coefficient k(T) is set as non-linear function
depending on the temperature T . This experiment uses dif-
fusion coefficients of steel as in Fig. 6. We used degree 2
polynomial least squares fitting over several diffusion coef-
ficients data. The problem is discretized in the following
equation using centered difference in right hand side terms
and forward difference in the left side term.

∂T
∂t
= k(T)

∂2T
∂x2
+
∂k(T)
∂T

·
(
∂T
∂x

)2

+ k(T)
∂2T
∂y2
+
∂k(T)
∂T

·
(
∂T
∂y

)2

The problem domain is assumed to be square of 50 cm by
50 cm, and time step width is 0.1 second. As an initial
condition, center point of the object was set at 1000 k and
the dirichlet boundary condition was set at 0 k as shown in
Fig. 7.

– Newton-Raphson method is used for solving nonlinear
equation in the backward Euler method. The Jacobian ma-
trix linear problem is solved by direct method.

• Parameter setting and Computing environment
– Parallelization in time integration is done by Flat MPI with

64 processes. Reedbush-U Supercomputer [8] at Tokyo
University was used.

– 2 dimensional space size is 50 × 50 = 2,500 points.
– The number of time steps Nt is between 256 and 16384. 7

different sized problems in time direction were measured.
– Step-by-step time integration program has the convergence

criterion that is used for termination of Newton iteration at
each time step. It is specified by 2 norm of residual vector
of one time step variables. In Table 1, this criterion is writ-
ten in “one time step” row. As for parallel time integration
methods like MGRIT or TSC, all time step variables are
updated repleatedly. Therefore they need convergence cri-
terion for all time step variables in addition to one time step
convergence criterion. This criterion is written as “all time
steps” row in Table 1. The convergence criterion is set so
that solution would have almost the same quality between
step-by-step time integration method and parallel time in-
tegration methods.

– Coarse to Fine Ratio Cr setting
∗ Since the TSC method generates smaller sized prob-

lem as coarse level by aggregating multiple time step
information, the ratio between coarse level problem
size and original problem size Nt can be specified.
Here, we set the coarse level problem size as small as
64 time step variables so that each time step variables

Fig. 6 Diffusion coefficient.

Fig. 7 Temperature distribution at initial time step:
T=1000sin(πx/50) · sin(πy/50).

Table 1 Convergence criterion.

2 norm of residual step-by-step integration MGRIT or TSC
one time step 10−7 10−8

all time steps 10−7
√

Nt

can be dealt with by each process. Thus the coarse to
Fine ratio Cr is set at Nt/64, which is just from the
number of processes.

∗ MGRIT re-discretizes the problem with different time
step width at the coarse level. Since the performance
strongly depends on the time step width at the coarse
level, the highest performance is chosen among several
cases with different coarse to fine ratio Cr settings.

The results are shown in Fig. 8, and Tables 2 and 3. Figure 8
shows the execution time of each method when the problem size
corresponding to the number of time steps is enlarged. From the
figure, step-by-step time integration takes the execution time in
proportional to the number of time steps from 256 time steps
to 2,048 time steps. Since we could not allocate computing re-
sources to one process execution more than 30 minutes, the ex-
ecution time of more then 2,048 time steps is extrapolated with
dashed line. It shows that MGRIT shortens the execution time
in comparison with the step-by-step method for problems with
larger than 8,192 time steps in this numerical test setting.

The TSC method that generates a linear equation at the coarse
level reached convergence faster than the step-by-step method for
all problems including small sized problems. In comparison with
the MGRIT method, TSC methods are faster than the MGRIT
method for almost all problems. The TSC loop3 was the fastest.

Table 2 has the execution results of TSC loop1, TSC loop2,

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 8 Execution time with different number of time steps.

Table 2 Execution time and iteration number of TSC. First, second and
third rows corresponds to TSC loop1, TSC loop2 and TSC loop3
respectively.

of time steps 256 512 1024 2048 4096 8192 16384
Total time [s] 280 438 801 1463 2261 3413 5601
C lev. time 189 235 309 452 724 1062 2173

of iter. 9 11 14 16 15 12 10
Total time [s] 158 283 523 1019 1688 2596 4559
C lev. time 110 158 214 344 570 867 1836

of iter. 5 7 9 11 11 9 8
Total time [s] 128 205 354 753 1247 2346 4051
C lev. time 91 119 153 266 457 797 1686

of iter. 4 5 6 8 8 8 7

and TSC loop3. While TSC loop1’s iteration number increases
depending on the number of time steps, repeating coarse level
correction methods such as TSC loop2 and TSC loop3 reduced
the number of iterations for convergence. The error including
nonlinearity of the problem is considered to be corrected more by
repeating the coarse level correction. The table has also “C lev.
time” that shows the execution time for Jacobian matrix calcula-
tion and coarse level correction. Although TSC loop2 and TSC
loop3 repeats the coarse level correction twice or three times in
one TSC iteration, “C lev. time” per one TSC iteration is almost
the same as that of TSC loop1. Because the coarse level correc-
tions of TSC loop2 and loop3 are executed in pipeline manner as
described in Section 5. Since all time steps were distributed to 64
processes, “C lev. time” of TSC loop2 is considered to be longer
than that of TSC loop1 by the rate of 1/64. It has turned out that
repeating the coarse level correction in pipeline manner enhances
the stability of the TSC method with low additional cost.

In Table 3 with the results of MGRIT, the first column shows
the coarse to fine ratios, and first row shows the number of time
steps of the problem. It records the execution time when coarse
to fine ratio Cr is changed to several values. Bold values means
the fastest time among several cases with different coarse to fine
ratios. From these tables, TSC loop3 was faster than MGRIT by
80% even with the largest problem, and it was three times faster
at most.

Table 3 Execution time [sec] of MGRIT with different Coarse to Fine ratio.

Time steps 256 512 1024 2048 4096 8192 16384
Cr =4 575 1431

8 438 859 1845 3658
16 519 729 1260 2532 4993
32 879 1324 1905 3788 6938
64 2581 3119 5830
128 4790 5194 9750
256 7126 7384
512 11912

Fig. 9 Pipeline execution effect on total time with 256 time step problem:
“w/o P” means without pipelining. The execution time of “w/o P” is
estimated using TSC loop1’s one iteration coarse level time.

6.2 Discussions
This subsection considers two points of the TSC method. First

is the analysis on performance improvement by pipeline execu-
tion. Second is the TSC method for larger space sized problems.

The execution time of TSC loop2 and 3 without pipeline exe-
cution is considered first. The iteration number for convergence
does not change, because pipeline execution does not change
the arithmetic operactions. The non-pipelined version calculates
Jacobian matrices of all time steps, the coarse level matrix, and
solution update synchronously with all processes. The TSC loop1
calculates only one time coarse level correction in a cycle, and it
can not be executed in pipeline fashion. Thus the “C lev. time”
of TSC loop1 shows the syncronous execution time of the coarse
level correction. One iteration of TSC loop2 without pipeline ex-
ecution contains twice of TSC loop1’s one iteration “C lev. time”,
which is calculated as “C lev. time” divided by the iteration num-
ber.

When the number of time steps is 256, “C lev. time” of TSC
loop2 and 3 without pipeline exection can be estimated as 210 and
252 seconds from TSC loop1 “C lev. time”. Since pre and post
smoothers are calculated syncronously with all processes, the in-
crease of “C lev. time” is reflected directly to total execution time
of non-pipeline version. Thus, the total execution time of TSC
loop2 and 3 without pipelining is estimated as 258 and 289 sec-
onds. Figure 9 shows the situation. Although just repeating the
coarse level correction twice without pipeling will decrease the
execution time by about 10%, pipeline execution enhances the
performance more like the black arrow of TSC loop2 in Fig. 9.
When coarse level correction is repeated 3 times, then the to-
tal execution time is estimated to be degraded from TSC loop1,
because of the overhead of coarse level calculation three times.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

However, pipeline execution decreases the overhead, and TSC
loop3 becomes the fastest method among TSC loop1, 2, and 3.

In numerical tests, we checked different sized problems in time
direction. Here we consider the TSC method for a large space
sized problem. When the size of the space direction is enlarged,
each time step equation becomes large, and it should be solved
by an iterative method. The coarse level matrix shape is block
lower triangular matrix, and the block size corresponds to the
space size. Thus, each block row of coarse level matrix should
be solved by an iterative method, and the coarse level matrix can
be solved by forward substitution. Therefore, the pipeline execu-
tion can be applied to coarse level correction even if an iterative
solver is used for each time step problem. In the case that repeated
coarse level correction enhances the convergence, pipeline exe-
cution method is considered to be one of a good implementation
candidate.

7. Conclusion

This paper extends the parallel TP-EEC method that was pro-
posed for periodic non-linear electro-magnetic field problem to
an ordinary non-linear time integral problem. We call this method
the Time segment correction (TSC) method. We proposed its ef-
ficient implementation method and evaluated the TSC method in
comparison with MGRIT method for simple nonlinear time inte-
gration problem. It is important to note that MGRIT has many
parameters such as number of levels, smoother types, and coarse
to fine ratios. It is difficult to optimize the parameters accord-
ing to each problem. Therefore the performance of our MGRIT
implementation is used as a performance baseline.

Our method uses pipelined coarse grid correction for the TSC
method. In our numerical test, TSC methods were up to three
times faster than MGRIT method. The TSC method repeat-
ing coarse level correction in pipeline manner was faster than
the step-by-step method for all problems including a small sized
problem of 256 time steps.

Although a non-linear problem is assumed for this paper, the
TSC method can be applied to the linear problem. In that case,
the governing linear equation can be directly used to generate the
coarse level problem with the same prolongation matrix B de-
scribed in Section 4.1. For linear problems, the coarse level equa-
tion does not depend on the approximate solution vector. Thus,
repeating the coarse level correction is not effective. However,
TSC loop1 is applicable to the problem and the effectiveness for
linear problems must be evaluated in the future.

As for applicability to existing application codes, the TSC
method uses only Jacobian matrices for calculation of the coarse
level problem. Therefore, the TSC method becomes “non-
intrusive” method for applications that can output Jacobian ma-
trices. We will increase the evaluation cases in various simulation
fields.

Acknowledgments We would thank Prof. Yasuhito
Takahashi (Doshisha University) and Prof. Kengo Nakajima (The
University of Tokyo) for their useful comments for the research.
This paper is partially supported by “Joint Usage/Research Cen-
ter for Interdisciplinary Large-scale Information Infrastructures”
and “High Performance Computing Infrastructure” in Japan.

References

[1] Gander, M.J.: 50 years of time parallel time integration, Multi-
ple Shooting and Time Domain Decomposition Methods, pp.69–113,
Springer (2015).

[2] Falgout, R.D., Katz, A., Kolev, T.V., Schroder, J.B., Wissink, A.M.
and Yang, U.M.: Parallel time integration with multigrid reduction for
a compressible fluid dynamics application, Lawrence Livermore Na-
tional Laboratory Technical Report (2015).

[3] Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P. and
Schroder, J.B.: Parallel Time Integration with Multigrid., SIAM J. Sci-
entific Computing, Vol.36, No.6, pp.C635–C661 (2014).

[4] Gahvari, H., Dobrev, V.A., Falgout, R.D., Kolev, T.V., Schroder, J.B.,
Schulz, M. and Yang, U.M.: A performance model for allocating the
parallelism in a multigrid-in-time solver (2016).

[5] Hutchinson, B.R. and Raithby, G.D.: A Multigrid Method based on
the Additive Correction Strategy, Numerical Heat Transfer, Vol.9,
No.5, pp.511–537 (1986).

[6] Lions, J.-L., Maday, Y. and Turinici, G.: Résolution d’EDP par un
schéma en temps �pararéel�, Comptes Rendus de l’Académie des
Sciences - Series I - Mathematics, Vol.332, No.7, pp.661–668 (on-
line), DOI: https://doi.org/10.1016/S0764-4442(00)01793-6 (2001).

[7] Meuer, H.W., Strohmaier, E., Dongarra, J. and Simon, H.D.: The
TOP500: History, Trends, and Future Directions in High Performance
Computing, Chapman & Hall/CRC, 1st edition (2014).

[8] Reedbush-u: Information Technology Center, The University of
Tokyo, available from 〈http://www.cc.u-tokyo.ac.jp〉.

[9] Takahashi, Y., Tokumasu, T., Kameari, A., Kaimori, H., Fujita,
M., Iwashita, T. and Wakao, S.: Convergence Acceleration
of Time-Periodic Electromagnetic Field Analysis by the Sin-
gularity Decomposition-Explicit Error Correction Method, IEEE
Trans. Magnetics, Vol.46, No.8, pp.2947–2950 (online), DOI:
10.1109/TMAG.2010.2043721 (2010).

[10] Takahashi, Y., Iwashita, T., Nakashima, H., Tokumasu, T., Fujita,
M., Wakao, S., Fujiwara, K. and Ishihara, Y.: Parallel Time-Periodic
Finite-Element Method for Steady-State Analysis of Rotating Ma-
chines, IEEE Trans. Magnetics, Vol.48, No.2, pp.1019–1022 (2012).

[11] Takahashi, Y., Tokumasu, T., Fujiwara, K., Iwashita, T. and
Nakashima, H.: Parallel TP-EEC Method Based on Phase Conversion
for Time-Periodic Nonlinear Magnetic Field Problems, IEEE Trans.
Magnetics, Vol.51, No.3, pp.1–5 (2015).

[12] XBraid: Parallel multigrid in time, available from 〈https://
computation.llnl.gov/projects/parallel-time-integration-multigrid〉.

Akihiro Fujii was born in 1975. He re-
ceived his B.S., M.S., and Ph.D. of In-
formation Science and Technology from
Tokyo University in 1999, 2001, and
2004, respectively. In 2004-2006, he
worked as a lecturer professor at CPD
center in Kogakuin University. In 2006,
he moved to the faculty of informatics,

and currently works as an associate professor in Kogakuin Uni-
versity. His reserch interest includes high performance comput-
ing, numerical linear algebra and hierarchical algorithms. He is a
member of IPSJ, IEEE-CS and IEICE.

Shigeo Kaneko was born in 1992. He re-
ceived his B.Sc. and M.Sc. from Kogakuin
University in 2016 and 2018, respectively.
He studied parallel time integration meth-
ods for a master thesis. From 2018, he
works in Ark Infomation Systems.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Teruo Tanaka was born in 1958. He re-
ceived his B.E., M.E., and Ph.D. from The
University of Electro-communications in
1981, 1983, 2007, respectively. In 1983–
1997, he worked at Central Research Lab-
oratory, Hitachi Ltd. He currently works
as a professor in the Department of Com-
puter Science, Faculty of Informatics, Ko-

gakuin University from 2011. His research interests include High
Performance Computing, Software Auto-tuning, High precision
Calculation. He is a member of IPSJ, IEEE CS and JSIAM.

Takeshi Iwashita was born in 1971. He
received his B.E., M.E., and Ph.D. from
Kyoto University in 1992, 1995, and
1998, respectively. In 1998–1999, he
worked as a post-doctoral fellow of the
JSPS project in the Graduate School of
Engineering, Kyoto University. He moved
to the Data Processing Center of the same

university in 2000. In 2003–2014, he worked as an associate pro-
fessor in the Academic Center for Computing and Media Studies,
Kyoto University. He currently works as a professor in the Infor-
mation Initiative Center, Hokkaido University. His research inter-
ests include high performance computing, linear iterative solver,
and electromagnetic field analysis. He is a member of IEEE,
SIAM, IPSJ, IEEJ, JSIAM, JSCES, and JSAEM.

c© 2019 Information Processing Society of Japan

