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1．Abstract 

This paper discusses the performance of Deep Q-Network 

(DQN) in 2D and 3D game environments. In this paper, we 

analyze reasons for the poor performance of DQN in the 3D 

game environment. We then propose to use Inverse 

Reinforcement Learning (IRL) to solve the detected issues. 

2．Introduction 

  Recent years, reinforcement learning methods are applied to 

some 2D-games and perform well. For example, Random 

Network Distillation (RND) [1] scores over 10000 points in an 

Atari game called Montezuma’s Revenge, which is beyond the 

average of human players. Hierarchical Reinforcement Learning 

(HRL) with feature control [2] also gets outstanding performance 

in Montezuma’s Revenge and Zaxxon. 

However, we speculate that those methods are only optimal for 

2D environments and do not demonstrate whether the 

outstanding performance can be similarly achieved in 3D 

environments, which is our research question in this work. To 

answer the aforementioned research question, we choose DQN [3] 

with the TensorFlow framework for both environments to 

compare the DQN’s performance in them. 

As a 2D-game environment, we used CartPole (Fig.1) [4] of 

OpenAI Gym and set the learning rate to 0.001, maximum 

training time steps to 100000 (about 700 episodes), discount rate 

to 1.0, and neural network to Multi-Layer Perceptron. 

 
(a) 

 

(b) 

Figure 1: CartPole—(a) gets reward and (b) loses reward 

because the pole has inclined 
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The reason why we choose this problem is that CartPole is a 

classic and excellent problem for DQN, and it is always used into 

the research of DQN and related methods. 

For a 3D-game environment, we used Animal-AI (Fig.2) [5] 

with our config having two positive rewards (a big green ball and 

a small green ball), one agent (a blue one) and two obstacles. 

We choose this environment because it is a typical simulated 

3D animal playground with sparse rewards. Therefore, we can 

use it to test the performance of DQN in a sparse reward 3D 

environment.                           

In the 3D environment, we test two versions of DQN: one with 

the training time step of 100000 (about 100 episodes) and the 

other of 400000 (about 400 episodes); the other parameters are 

the same as those in the 2D environment. 

(a) 

(b) 

(c) 

Figure 2: Animal-AI—(a) default camera, (b) agent camera 

aiming at a goal (the big green ball), and (c) agent camera 

aiming at a wrong object (the green box) 
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3. Results 

After training in the CartPole environment, the DQN model 

could make the trained agent always get the max reward of 200.0 

in every episode among 10 test-run episodes. In other words, the 

agent performed well in all the episodes. 

After training in the Animal-AI environment, DQN with 

100000 steps could not find any rewards in among 10 test-run 

episodes. DQN with 400000 steps could find the max reward of 

3.0 (the big green ball) in episode 1 and the reward of 1.0 (the 

small green ball) in episode 2, but could not find any reward in 

the subsequent episodes. The agent always became confused in 

the arena, which is the game space. 

4. Analysis 

  The first reason why the agent can not find more rewards in the 

3D Animal-AI environment is that the environment is complex 

and that rewards are sparse. The agent might, for example, touch 

a reward when it is falling back in the first training episode, and 

it will learn that the falling back action is a rewarding action and 

will always do the action in subsequent episodes. Therefore, in 

future episodes the agent cannot learn the fact that the real 

rewards are the two types of green balls, but not the falling back 

action. 

 
Figure 3: A scenario where an overshoot occurs 

  The second reason is that each action—among go forward, fall 

back, turn left and turn right—has inertia, so if the agent takes an 

action for a long period of time, it will easily overshoot (Fig.3) 

and reach an unknown area. Therefore, if the agent cannot 

accurately always aim the current target, it will get lost in the 

arena and cannot obtain more rewards. 

5. Discussion 

  To solve these problems, our idea is to introduce IRL [6] into 

DQN. Figure 4 outlines our idea. 

IRL can find a reward map or a reward function from the 

environment and the behavior of the agent, and it is also used in 

video games. 

From Fig.4, in step (1), we use DQN and spend enough time to 

train the agent to find rewards. Then, we record the agent’s 

trajectories where rewards are found and select the best one as 

the expert trajectory for step (2). 

Figure 4: DQN with IRL 

  In step (2), we use the expert trajectory from step (1) and the 

observation-table from the camera input to train IRL. Then, we 

can get a dense reward map with the access frequency or reward 

function to solve the sparse reward problem. We can get better 

trajectories where the agent can find more rewards quickly. 

  With this idea, we can expect that the agent will not do 

excrescent actions, which solves the first problem, and that the 

proposed idea will make the agent’s movement more accurate, 

which solves the second problem. 

6. Future work 

We will continue optimizing DQN in the Animal-AI 

environment, and actually combine it with the IRL method for 

the agent to perform well in sparse reward environments. We will 

also test the efficiency and practicability of this idea in more 3D-

game environments and try to also apply it to robot navigation [7] 

[8]. 

Acknowledgement 

The authors wish to thank all the members in our seminar for 

their fruitful discussion and support, in particular, the members 

of the Animal AI project. This research was supported in part by 

Strategic Research Foundation Grant-aided Project for Private 

Universities (S1511026), Japan, and by Grant-in-Aid for 

Scientific Research (C), Number 19K12291, Japan               

Society for the Promotion of Science, Japan. 

 

References 

 
[1] YuriBurda, Harrison Edwards, Amos Storkey, and Oleg 

Klimov. EXPLORATION BY RANDOM NETWORK 

DISTILLATION.   arXiv:1810.12894v1  [cs.LG]  30 Oct 2018. 

 

[2] Nat Dilokthanakul,  Christos Kaplanis,  Nick Pawlowski, and 

Murray Shanahan. Feature Control as Intrinsic Motivation        

for Hierarchical Reinforcement Learning.   

DOI: 10.1109/TNNLS.2019.2891792  

 

[3] Volodymyr Mnih, et al. Human-level control through deep 

reinforcement learning. Nature volume 518, pages 529–533, 

2015. 

 

[4] Ádám Budai and Kristóf Csorba.  Deep Reinforcement 

Learning: A study of the CartPole problem.  Cscs2018, page 17. 

 

[5] Animal-AI Olympics: http://animalaiolympics.com/ 

 

[6] AaronTucker, Adam Gleave, and Stuart Russell. Inverse 

reinforcement learning for video games. arXiv:1810.10593v1  

[cs.LG]  24 Oct 2018. 

 

[7]. Liulong Ma, Yanjie Liu and Jiao Chen.  Using RGB Image 

as Visual Input for Mapless Robot Navigation. arXiv preprint 

arXiv:1903.09927, 2019 - arxiv.org. 

 

[8]. Liulong Ma, Yanjie Liu, Jiao Chen and Dong Jin.  Learning 

to Navigate in Indoor Environments: from Memorizing to 

Reasoning. arXiv preprint arXiv:1904.06933, 2019 - arxiv.org. 

http://animalaiolympics.com/
http://animalaiolympics.com/

