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HyperMatch is a general purpose image retrieval engine made up of three components; a conventional database, a set of high
dimensional image feature indices and a coordinator. Various new and improved high dimensional indexing techniques are
discussed for their applicability to different features and distance measurements. The role of the coordinator is to combine the
search results from individual indices into an overall measure of similarity. Experiments reveals the coordinator must choose
search parameters based on the number of features to be combined, data sct size and the number of similar images requested.
Important future development work includes index improvement and system evaluation.
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1 Introduction

Rapid advances in technology have led to a surge in the
popularity of multimedia for a wide variety of uses. In
particular, this paper is concerned with the growth in
demand for very large image data repositories. Possible
repositories vary from a commercial collection of stock
photography to a representation of the collection of an art
gallery to a time series of satellite images.

The content and purpose of each repository can be very
different, but one of the uniting factors of all large image
databases is that in order for such systems to be useful, it
must be possible to easily retrieve images from the
repository according to a variety of search criteria. It is
imperative that the search facilities be simple to use, have a
fast response time and provide accurate results.

This paper describes a system named HyperMatch that
has been specifically designed to address the issue of image
retrieval in an integrated manner for diverse image
repositories. It relies heavily on the intelligent combination
of existing database technology with a selection of indexing
structures that provide fast search capabilities over image
data. The system is designed for deployment in a
client/server environment.

2 Background

Image database systems have generated significant interest
in recent years. In particular, Stonebraker [1] and Jain [2]
have presented well formed proposals for the general
requirements for the storage architecture and user interface
of such systems. They have highlighted the difficulty of
translating user requests into representations that can be
used to query the image database and the advantages of an
object-oriented approach to data storage and query language
development. Wu [3] described a content based retrieval
engine that recognizes the need for a variety of index
structure types. The design of HyperMatch represents an
attempt to specify more fully how such indexes should be
combined to achieve the fastest possible search without
compromising accuracy.

Broadly speaking there are two approaches to image
searching; keyword retrieval and similarity retrieval. Key
word retrieval relies on the mostly human input of textual
tags that are stored in a database together with the image.
Queries are then used to try and locate images via the content
of the tags. Keyword retrieval alone is not practical for large
databases. Relying on human input introduces
inconsistencies and errors due to the differences in judgment

-167-



f ExSight (GUI) |

SQL interface

T Client

| Strategist |

ExSight
Data
Preprocessor

DataBase
(image data plus
attribute/feature

data)

Server

Figure 1. The HyperMatch Engine

that exist between any two humans. Similarity searching has
been proposed as an alternative. Images can be represented
by a set of feature vectors and advances in image processing
have meant that these vectors can be extracted automatically
from raw image data and stored together with the original
image in a database system. For example, red, green, blue,
hue, intensity, saturation, shape and position are possible
features for describing an image or subsection thereof.
Similarity retrieval is the process of comparing images by
measuring the similarity of their feature vectors, usually
using some type of vector distance measurement such as
Euclidean or Manhattan distance.

In either type of retrieval it is essential to use a data
indexing method to speed up the process. It is not feasible to
conduct an exhaustive search on the entire contents as we
expect the database to contain hundred of thousands of
images, each with as many as ten or more feature vectors
associated with it. Keyword retrieval generally relies on well
established indexing techniques for one dimensional data.
However, feature vectors tend to be of high dimension
(typical ranges are from 16 to 256 dimensions) and so
special high dimensional indexing methods are required.
The most promising advances in high dimensional indexing
have been achieved through modification of the k-d tree and
R-tree structures [4].

3 The HyperMatch Engine

The HyperMatch engine, shown in Figure 1, is an image data
retrieval server that has been designed for use with a variety
of client applications. In particular it is used by the ExSight
[5], an innovative graphical interface for the specification
and manipulation of retrieval requests and result sets. The
basic function of HyperMatch is to provide the client with a
set of images ranked in order of their similarity to the key
image provided by the client.

During the initialization phase of an installation of
HyperMatch all image data is subject to preprocessing for

the extraction of component image objects from the original
images. Each object is further preprocessed to extract a set
of feature vectors.

There are three basic components found in the
HyperMatch engine. First, a conventional database system
that can be used to store the image with its associated
attribute and feature vector data. Second, a set of data
indexes that can be used to achieve high performance
searching in high dimensional feature vector space. Third, a
coordinator that is responsible for executing searches on
individual indices and optimizing, for speed and accuracy,
the combination of individual index results to form one
result set ranked by overall similarity. All communication
with the HyperMatch engine takes place though an SQL like
interface.

3.1 Conventional Database Component

The database look-up component of the system is used to
locate the image data and other data derived from the image
data such as feature vectors, key words and image
identifiers. All communication with a database is carried out
using a standard database protocol (e.g. ODBC) so that there
is significant flexibility in accommodating existing image
databases or a particular user’s requirements. In fact, there is
no requirement that the data be stored in only one database
since the coordinator will be provided with enough
information to retrieve needed data from the correct
information source. The database can also provide standard
indexing and search procedures for the more traditional data
elements such as image identifiers and key words.

3.2 High Dimensional Indices

Conventional database indexing methods cannot be applied
in high dimensions and so special high dimensional indexing
must be provided in order to search the feature vector
spaces. Our research has focused on two distinct types of
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index; variants of the R-tree data structure and the multiple
inverted array system (MIAS).

The R-tree Structure

An R-tree [6] is an extension of the B-tree indexing method
for multidimensional objects. A complex data element is
represented by its minimum bounding hyper-rectangle
(MBR) and a tree is constructed by recursively grouping
MBRs which can in turn be represented by an enclosing
MBR.

Currently, one of the most successful implementation of
the R-tree for indexing high dimensional data appears to be
the VAMSplit R-tree proposed by White[7]. This tree is
created by recursively choosing splits of the data set using
the maximum variance dimension and then choosing a split
that is approximately the median. The tree has a fast
construction time and does take advantage of examining the
entire data set before choosing the first split. -

Once the index tree has been built, a search algorithm
must be implemented to find the k-nearest neighbors to a
given data element. The branch and bound search algorithm
for the nearest neighbor searching technique in [8] gives the
basis for the search process for almost all the R-tree
variations. They detail the concept of using minimum and
maximum distance metrics between the key data element
and the minimum bounding hyper rectangles of a set of
non-leaf nodes to estabhsh a prioritized search order among
the nodes.

Memory vs. Disk Based Implementation

Given the size of the image database and the number of
different indices that will be made available, it is unrealistic
to assume that the indices will all fit in memory. Therefore
we developed a version of the VAMSplit R-tree index that
resides partially in memory and partially on disk. This is
achieved by allowing the system to choose the number of
levels of the tree that are read into memory. If a node at a
deeper level is required during the search process then it is
read from disk.
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Figure 2. The speed up in search time as the percentage of
mdex stored in memory mcreases

The proportion of the index stored on disk can be altered
dynamically by the coordinator in response to prevailing
patterns of usage. If one or more indices is used heavily and
there is room in memory, then it makes sense for those

_ indices to reside wholly in memory. Allowing the maximum
amount of index in memory is obviously the most ideal

solution and so the index is capable of immediate
performance improvement if more memory is able to be
made available to it. In general it'is hoped:that the flexible
design will allow for more intelligent divisions between the
in memory and on disk portions of an index to be developed.
Figure 2 shows how the performance of an index can be
improved as a greater percentage of the nodes of the tree are
stored in memory.

C-tree

The C-tree [9] was developed in order to take advantage of
situations where the construction speed of the index can be
sacrificed in order to speed up retrieval performarnce. It uses
a non-hierarchical clustering method to attempt to optimize
an- R-tree initially constructed using one of.the standard
construction methods. It is created as an unbalanced tree in
an attempt to keep the cluster radii minimized. However, this
unbalance can lead to difficulties in the disk based
implementation of the index and initial tests did not show
significant improvement over the VAM Split R-tree in these
situations. However, we believe that the C-tree may be used
advantageously with less traditional distance measures such
as-a multi-resolution distance metric.

Multi-resolution R-tree

We believe that it is possible to take the type, construction
method and likely distance measure of a particular feature
vector into account in order to design an efficient tree index
for :that feature. For example, the construction of a 256
dimension color feature vector involves recording 'the
number of pixels in the image for each level of the color
scale. Images with close, but not exactly the same color
levels, will therefore be found on adjacent dimensions and a
dimension reduction procedure that simply groups adjacent
dimensions together will preserve similarity.

This observation led to the development of a multi-
resolution R-tree where each level of the tree represents the
feature vector space at a different dimensional granularity.
By taking advantage of calculating distances to nodes in
lower dimensions in order to reduce the search space,
significant time savings can be achieved. Construction of the
tree is straightforward, with the VAMSplit R-tree algorithm
used. The only change is that dimension reduction is carried
out on the data set at each level before the maximum split
dimension and MBRs are calculated. The search algorithm
carries out equivalent dimensional reduction on the key
vector so that the most likely node for continued searching
can be identified at each level.

MIAS

The Multiple Inverted Array Structure (MIAS) [10] is a data
structure which has one inverted array for each dimensional
axis of the feature space. The advantage of the data structure
is that it is completely independent of any kind of similarity
measure. Thus the query response can be improved by
selecting the optimal search method for a given query.
Moreover since each inverted array can  be handled
independently it is ‘suitable for parallel/distributed
processing. The structure is trivial to construct and dynamic
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insertion and deletion is also much easier than for a tree
structure. The search algorithm takes advantage of a type of
dimension reduction to achieve efficiency.

3.3 Coordinator Functionality

The coordinator is responsible for ensuring the optimal
execution of the search requested from the client or
strategist. It is aware of the existence of the database system
and the external index structures. As part of the initialization
phase of the system the coordinator is given information
concerning the database schema, the types of index available
and the relationships between the index information and the
data stored in the database. For example, the coordinator
needs to be able to match the results of an index search to
actual image data contained in the database.

HyperMatch expects requests to find similar images based
on a particular set of features. For example, a request to find
images similar to a key image based on the red, green and
blue feature vectors. The role of the coordinator is to
combine the results from each individual index into a
coherent single set of results. The overall similarity of an
image is determined by a function of its similarity distance to
each feature. Typically this function is a linear combination
of the individual feature distances with each distance
assigned a weight to describe its importance in the overall
distance calculation.

The result set returned by each individual feature vector
will be different and the ranking of images in the individual
feature space is not the same as its ranking using the overall
distance measurement. For example, an image can be ranked
below the top twenty in all individual vector spaces but be
ranked inside the top twenty for the total distance. Therefore
it is obvious that simply retrieving and combining the top k
ranked images from individual feature spaces in order to
achieve the top k images overall is not satisfactory and will
lead to inaccurate results.

However there is no currently available method for
deciding what is the correct number of image rankings that
should be retrieved in each feature space in order to achieve
an overall accurate result. Therefore we conducted several
experiments in order to show that the number of rankings
required from individual indices depends on the number of
images required in the final result set, the size of the data set
and the number of feature vectors that are to be combined. It
will also be dependent on the weight assigned to the feature
and probably to a lesser extent on the nature of the data set.

The data set used to conduct the experiments consisted of
real image data. The number of images requested by the user
is denoted by k. The number of images retrieved from each
individual vector space is denoted as r. It is assumed that r is
constant over all feature spaces: in-the same search, even
though this may eventually not be the most optimal solution.
N refers to the size of the data set. The percentage of correct
results featured in each of the graphs refers to the percentage
of the k ranked images found by the system that are correct
when compared to an exhaustive search of the images, i.e. r
= N. Finally N;refers to the number of feature spaces/indices
considered in the search. The feature spaces considered in

the experiment were red, green, blue, hue, saturation and
intensity.

The speed at which an index search is completed is
proportional to the value of r, the number of most similar
images that should be found in order to guarantee a
particular level of correctness. in the final combined result
set. Therefore the coordinator always attempts to minimise
the value of r for all searches.
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Figure 3. The effect of overall result set size on individual
index retrieval set size and accuracy

Figure 3 shows the effect of increasing the value of k while
N=11620 and N; =3 remain constant. It is clear that as k
increases, r must also be increased in order to maintain the
same percentage correctness in the result.
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Figure 4. The effect of the number of component indices on
individual index retrieval set size and accuracy

Figure 4 shows the effect of increasing N. when N=11620
and k=20 remain fixed. As Nyincreases from 2 to 3, » must be
increased to maintain accuracy. This is as expected as
increasing the number of feature spaces increases the
likelihood that an image close to the key in one feature space
will be discarded because it is far from the key image in all
other spaces. However, as N, increase to 6, a decrease in the
required value of r is observed. This-can be explained by
considering that as the number of feature spaces is increased
and r is kept constant, the total number of images returned
by the feature spaces increase as a percentage of the total
image set size. Therefor it becomes more probable that the
overall closest images are included in the result set.

Figures 5 and 6 examine the case for constant k=20 and Ny
=2 but N increasing ftom 5,000 to 75,000. In Figure 6 we
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examine the value of r needed to produce 90% and 100%
correctness. For guaranteed correctness » must be increased
in proportion with the data set size. However, if some
inaccuracy is tolerable to the user, significant savings can be
obtained by reducing r to the level of 90% correctness.
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Figure 5. The effect of data set size on individual index
retrieval set size and accuracy
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Figure 6. Comparison of retrieval set sizes needed to
achieve certain accuracy in overall result

In addition to being responsible for combining search
results from different indices, the coordinator is also
responsible for combining the results with conventional
searches carried out on data attributes in the database.

3.4 General Implementation Issues

HyperMatch is implemented as a server that responds to
requests from incoming client programs. Current plans call
for a multi-threaded implementation that will allow for
multiple users at multiple locations to query the system
simultaneously. This also has the important advantage that
the client interface can be a small program that can be run
successfully with significantly less computational resources
than are needed by the HyperMatch engine.

An extremely important issue which is not directly
addressed in this paper is how a choice can be made as to
which indices to use in order to best satisfy a user request.
For example, if a user is primarily concerned with finding
objects of a similar color, then the search procedure must
place emphasis on the results obtained from search the color
feature vector space. The position or shape feature vectors
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spaces can probably be safely ignored. This decision is made
prior to the use of the HyperMatch server, either directly by
the client application or by a special module known as the
strategist which may be accessed by the client. These special
strategist modules are intended to provide domain specific
assistance in achieving good retrieval resulits. .

The external interface presented by HyperMatch is
designed to allow the connected user interface maximum
flexibility in its design without propagating any design
changes to the HyperMatch retrieval engine. A version of
extended SQL was decided upon for two reasons. The
object-oriented nature of the language allows the query
language to be easily extended in future versions of
HyperMatch via the use of object functions without
rendering previous clients obsolete. Also, a familiar SQL
interface is expected to be easy for the implementers of
client programs to understand and use.

The nature of the index search method also makes it an
ideal candidate for parallel implementation over several
processors. Each index can be searched simultaneously and
the results combined. Preliminary tests have shown this
leads to faster search times although there is significant
overhead involved in assigning searches and reassembling
results from the various sources. The advantages of
parallelism are expected to increase significantly as we hope
show how the accuracy of the result can be significantly
improved by increasing the number of indices searched.

4 Future Directions

We have identified three principle areas for concentrating on
future research with the HyperMatch system. These are
further development of the retrieval optimizing capabilities
of the coordinator, continued development and
improvement of high dimensional index structures and a
comprehensive evaluation of the system performance.

4.1 Coordinator Development

We have identified three areas in- which we will concentrate
on the development of the coordinator. These are:

Index Choice

Preliminary research shows that the accuracy of retrieval
performance can be greatly improved by the consideration
of different types of index or distance metric in different
situations. For example, although the user may think that a
color match is best found by consulting the red, green, and
blue feature vector spaces, experiments have shown that the
additional inclusion of the:hue vector space can significantly
improve retrieval accuracy. It is intended that the client and
strategist modules will be primarily  responsible for

- determining index choice. However, the coordinator, being

directly connected with the database and index structures is
best aware of what index choices exist, i.e. which feature
spaces and distance metrics are provided for. Provision
should be made for this information to be communicated to
the client or strategist-on request. E



Dynamic Evaluation of Results
If an appropriate distance metric is employed it can be
possible to discern a clear cut-off point between images that
may be close to the key image and those that are definitely
not. Since the user is usually more interested in obtaining
matching images rather than a particular number of images,
significant performance improvement may be gained by
dismissing these non matching candidate images when they
are first encountered, even at the possible sacrifice of
returning less images than the user has requested. User
interaction in the setting of this type of cut-off is anticipated.
If the candidate set of possibly similar images can be
narrowed down ‘sufficiently using fewer than the total
number of suggested indices then it may become more
efficient to evaluate the candidate set exhaustively rather
than continuing to use preformatted indices. The coordinator
needs to be able to identify these situations and respond
accordingly. . )

Feedback . :

An important feature for any image retrieval system is the
ability to improve the accuracy of a retrieval given some
additional information from the end user about the quality of
its initial retrieval- result. The most common scenario is
where the user selects a number of images from the result set
as closely matching their requirements and asks the system
to return images that are more similar to this new group of
images.

In order to be able to fulfill this request, the coordinator
must be able to supply information about properties the
images have in common, and how-these commonalities are
expressed using a combination of - particular index
measurements with appropriate weighting adjustments
applied. The search for common features need not be limited
to the original feature vectors searched but can encompass
the full range of features available for those images.

4.2 Index Performance

The overall speed performance of the system relies on both
the speed at which an individual index can be searched and
the speed with which individual results can be combined.
Therefore it is worthwhile to continue investigating possible
new index structures in addition to refining the behavior of
the coordinator.

The speed of an index depends on its fundamental type, the
number and dimension of the data and the distance metric
used. As part of the system evaluation proposed in the next
section we emphasize accuracy which is greatly affected by
the distance metrics employed. As new distance metrics are
proposed it is very important to consider creating new index
methods that are optimized for this particular distance
measurement. We will also continue to emphasize the need
to provide for disk based indices as even with the rapidly
increasing machine capacity, it is unlikely that for such large
scale image database systems, all the indices required by the
system will be able to reside in memory, given the large
scale dimensionally of the problem. Reducing the number of
indices available in the system is not seen as a valid option as

this has a large negative impact on retrieval accuracy.

4.3 Evaluation

One of the most important aspect of large scale image
database development has been largely ignored, is the
extensive evaluation of the database performance under a
variety of conditions and using a variety of performance
metrics.

For even the most preliminary evaluation there are two
basic categories under which the system should be tested -
speed and accuracy. For the first, speed of query retrieval is
obviously most important, but this itself is made up of at
least two components, speed of query execution and speed
of data transmission from storage to user display. The
second metric, accuracy, is significantly harder to quantify,
since ultimately accuracy is compared to the user’s
perception of the correct result and so varies considerably
from user to user and is extremely dependent on the user’s
environment and the type of image data under consideration.

Preliminary comparisons between human and computer
generated result sets have shown wide discrepancies, but
also that being able to combine information from a wide
variety of image indices based on a selection of distance
metrics can lead to a vast improvement in ‘query
performance. It is this advantage that we are trying to exploit
with HyperMatch.

5 Conclusion

This paper has outlined a proposal for a large image
database similarity retrieval engine to be used with a variety
of client applications. Thus far, the research has focused on
the need to efficiently combine the results from multiple
feature space and attribute indices into one coherent result
set ranked according to overall similarity. In the future, there
remain many more issues concerning optimization, index
performance and evaluation to be addressed.
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