
Enhancing Sample Efficiency of Deep Reinforcement
Learning to Master the Mini-games of StarCraft II

ZheJie Hu1,a) Tomoyuki Kaneko2,b)

Abstract: Recently, a variety of challenging domains have been mastered through deep reinforcement learning
methods, and these methods also show great potential in real-world applications, like self-driving and automated
manufacturing. However, most of deep reinforcement learning methods still suffer from requiring a large quan-
tity of interaction samples. In this work, we apply Self-Imitation Learning to pick up past useful experiences
that are similar to expert demonstrations to improve sample efficiency, and thus drive deeper explorations and
obtain more rewards.

Keywords: Deep Reinforcement Learning, Self-Imitation Learning, GPU Asynchronous Advantage Actor-
Critic, StarCraft II

1. Introduction
Recently, deep reinforcement learning methods have

contributed to mastering a variety of challenging do-
mains, such as Atari 2600 benchmarks [2] and the game
of Go [9]. However, most deep reinforcement learning
methods still suffer from requiring a large quantity of
samples obtained from interaction, which indicates weak
exploration and many oscillations during learning. Par-
ticularly, when training the agents to learn video games
with large state and action space, such as StarCraft II,
much trial-and-error is required for tuning policy to ap-
proximate the optimal policy. Intuitively, issues of low
sample efficiency can be mitigated via better guidance
of exploration, which can result in better exploitation.
Some studies attempted to improving sample efficiency
through using expert demonstrations [1], but the agents
may perform poorly when encountering unseen states.
Other studies have shown the advantages of experience
replay [12] [8] in exploration, but extra cost for storing
the experiences are required. In this work, we first apply
GA3C to train agents to learn all mini-games of Star-
Craft II. Then we incorporate Self-Imitation Learning
(SIL) [6] into GA3C to pick up past good experiences
to improve sample efficiency. Our work has three main
contributions as follows:
• Our proposed method, which is called GA3C+SIL,

holds advantages of faster convergence and deeper

1 Graduate School of Interfaculty Initiative in Information Studies,
the University of Tokyo, Japan

2 Interfaculty Initiative in Information Studies, the University of
Tokyo, Japan

a) ko-setsushou@g.ecc.u-tokyo.ac.jp
b) kaneko@acm.org

exploitation than GA3C.
• This work updates our previous work [5] by aug-

menting entropy regularization in the policy loss.
• We design a new neural network structure that is

inspired from study [11]. This well-designed neu-
ral network can deal with the information obtained
in observation of StarCraft II better and help to im-
prove the performance of agents.

2. Background

2.1 StarCraft II Learning Environment
StarCraft II Learning Environment (SC2LE) was de-

veloped by both DeepMind and Blizzard Entertainment
and is open sourced [10]. It consists of three parts: Linux
StarCraft II Library, StarCraft II raw API and PySc2.
Linux StarCraft II Library is a program of game itself,
and is only available for Linux system. StarCraft II API
is an interface that provides full external control of Star-
Craft II and critical for creating scripted bots. PySc2 is
a Python environment that wraps the StarCraft II API to
ease the interaction between Python RL agents and Star-
Craft II. In this work, we use PySc2 to serve as a bridge
for interaction between the agents and StarCraft II envi-
ronment.
2.1.1 State Space

The state (observation) provided by PySc2 consists
of four main different parts, namely screen, minimap,
player information and available actions. The first two
parts are taken as spatial observations that consist of a
group of feature layers. Such layers depict specific game
feature as unit types, hit points and unit density that
are shaped at N (weight) x M (height) pixels. Thanks

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 250 -

to the API provided by PySc2, N and M are config-
urable. Screen is a detailed view of local camera (or
game screen), which is a subsection of the whole game
map. Minimap is a coarse representation of the state of
the whole game map. Player information contains most
of non-spatial observations, which is denoted as an 1-D
vector. Each element in this 1-D vector represents a non-
spatial feature, such as the amount of resources gath-
ered, the amount of supply that has been used and build-
order queue. Available actions is a set of scalars, which
corresponds to the indexes of actions that are currently
available. There are totally 17 different feature layers
in screen and 7 different feature layers in minimap. To
our best knowledge, the scale of state space of StarCraft
II is larger than most video games and all classic board
games, thus large state space is a main challenge for the
agents to master StarCraft II games.
2.1.2 Action Space

In StarCraft II, when the agents take actions, addi-
tional arguments are required. Because of this, we fol-
lowed the study [10] and divided a whole action a into
two parts, one is the action identifier a0 and the other
one is a sequence of its arguments (a1, a2..aL), where L
depends on action identifier a0. There are totally 549
different action identifiers with 13 possible types of ar-
guments provided by PySc2 of version 2.0.2. In this
work, we classify all the arguments into two categories:
spatial argument and non-spatial argument. Spatial ar-
guments ([x0, y0] or [(x0, y0), (x1, y1)]) represent a set of
all coordinates of screen or minimap. In StarCraft II,
coordinate is required in many situations. For exam-
ple, when we want a unit to move to a specific point of
screen, the move to command with corresponding coor-
dinate of screen is needed. Additionally, not all of action
identifiers are available at each time step. For example,
if a unit is not selected, then the move command is not
available to this unit. Therefore, available actions are in-
cluded in the input for an agent when learning StarCraft
II.
2.1.3 Mini-game

Study of SC2 have implemented several state-of-the-
art deep RL algorithms on playing full game of Star-
Craft II, but no agents can even defeat the easiest built-
in AI [10]. Therefore, in order to divide a big challenge
into pieces, study of SC2 has offered seven mini-games,
which address different parts of full game of StarCraft
II. These mini-games have been well designed in the fol-
lowing aspects:
• Initial state is reasonable for the agents to do explo-

ration during the rest of game.
• Preset reward structure can help to distinguish one

policy from another policy, and thus the optimal pol-
icy is guaranteed to be found.

In this work, we focus on all the mini-games of Star-
Craft II to evaluate our proposed method–GA3C+SIL.

2.2 A3C and GA3C
A3C is an on-policy algorithm based on the advantage

actor-critic algorithm. It deploys multiple actors running
in parallel, each with its own copy of the environment.
The critic is responsible for policy update. The diversity
of actors experiences contribute to deeper exploration in
different parts of the environment, thus reducing the cor-
relation between samples to stabilize learning. However,
in A3C, gradient updates can be computed on CPU only,
which is slower than GPU in mathematical calculation,
and can therefore be the bottleneck of training.

In order to accelerate gradient update, GA3C has
shown us an effective way to extend A3C by utilizing
GPU. It separates gradient update from interacting with
the environment, and defines two kinds of threads that
are called Predictor and Trainer to serve as the sample
pipelines between Agents (CPU) and DNN (deep neu-
ral network, GPU). In GA3C, Agents only interact with
their own environment like the actors do in A3C, but
Agents do not keep their own copy of the deep neural
network model. The Predictor receives observations de-
queued from a prediction queue and returns policy gen-
erated from the DNN for next action. Trainer receives a
batch of experiences from the Agents to update param-
eters of DNN. Unlike A3C that keeps a single and cen-
tral DNN on CPU, GA3C places its unique central DNN
on GPU and completes all gradient update on GPU. For
both A3C and GA3C, the way to calculate the gradient of
value function and policy gradient function are the same.

2.3 Prioritized Experience Replay
Prioritized Experience Replay (PER) [8] is an effec-

tive way to store past experience with a priority into a
cache called replay buffer. The priority of each experi-
ence is related to the TD-error of RL methods [8]. For
example, when combining Q-learning with PER, the pri-
ority of each experience is defined as the absolute value
of TD error. Then, the agent sample experiences with
probabilities proportional to their attached priority from
replay buffer. PER can be incorporated into many RL
methods, such as Q-learning and A3C. Although it re-
quires a large amount of memory to store past experi-
ences and extra cost of calculating priorities, PER ac-
tually improves performance of many actor-critic algo-
rithms [12] [3]. In this work, we desire to apply PER
to enhance exploitation of past experiences to improve

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 251 -

sample efficiency further.

2.4 Self-Imitation Learning
If the agents learn good past transitions frequently, the

sample efficiency is expected to be improved. SIL algo-
rithm makes use of advantage function of A2C [7] to de-
termine whether a past transition is worth being learned
or not. For example, given a past transition, a positive
advantage value suggests that this transition can help to
gain more rewards and is worth being learned twice or
more times. When combined with PER, the priority of
each transition is equal to its corresponding advantage
that is clipped as Asil = min(max(ε, A), 1) (ε is a very
small positive constant). Since sampling probability of
each transition is proportional to its attached priority,
better past transitions will be learned more frequently,
and thus sample efficiency is expected to be improved
further. Otherwise, as sampling of SIL only requires the
advantage value, we can theoretically incorporate SIL
into many advantage actor-critic based algorithms, such
as A3C and GA3C.

3. Proposed Methods

This section describes our proposed methods. We first
apply GA3C as the basic algorithm to training agents
in SC2LE, and then we describe our implementation of
GA3C+SIL in the latter part of this section.

Due to the complexity of StarCraft II, training time
can cost a lot in some mini-games. Therefore, we de-
sign a simple neural network architecture. In order to
compare sample efficiencies of different deep-RL meth-
ods implemented in this work, we also limit the amount
of episodes for each mini-game.

3.1 Proposed GA3C
In the original GA3C, the agents are trained to learn

Atari games. However, in our work, GA3C is applied
to train agents to learn mini-games of StarCraft II. Thus,
we modified the part of environment in GA3C. Figure 1
sketch the architecture of proposed GA3C.

In SC2LE, Agents take actions according to the pol-
icy that is brought from Deep Neural Network (DNN),
and state and reward will be generated. For prediction,
generated states are enqueued into a Predictor queue and
will be dequeued when a Predictor does prediction. For
Training, composition of generated states, rewards and
corresponding actions can be taken as one experience.
Such experiences are enqueued into a Trainer queue and
will be dequeued when a Trainer does training. All the
gradient update is executed by GPU in DNN. In a con-
clusion, the proposed GA3C is almost the same to the

Agent

PySc2 Linux

StarCraft II

LibrarySC2LE

Action

State

Predictor queue Training queue

Predictor Trainer

Deep Neural Network

State Policy Experience

Gradient

update

Experience (State,

Reward, Action)

Policy

Fig. 1 Architecture of the proposed GA3C applied to SC2LE

original GA3C apart from training environment.

3.2 GA3C with Self-Imitation Learning
In the original study of SIL, SIL is combined with

A2C algorithms. However, as described in Section 2.3,
SIL determines the priorities of past experiences ac-
cording to the corresponding advantage values, and thus
gives us a way to incorporate SIL into any advantage
actor-critic based algorithm. In this work, we incorpo-
rate SIL into GA3C, which is denoted as GA3C+SIL.
Figure 2 shows the architecture of proposed GA3C+SIL.
This architecture is similar to the one of our previous
work [5], but three things are modified to achieve better
performance.
• In our previous work, we define a new queue called

RecorderQueue that is not defined in study of orig-
inal GA3C. This queue is used to receive experi-
ences from agents and send past experiences to re-
play buffer. In this work, we implement this queue
on receiving experiences from agents only, and we
also delete thread of Trainer and define a new thread
called Recorder to send experiences to both the
deep neural network model and the replay buffer.
Recorder can also receive sampled experiences from
the replay buffer.

• In our previous work, we have only tested
GA3C+SIL and GA3C on one mini-game called
DefeatRoaches only. In this work, we conduct
more experiments on more different mini-games
of StarCraft II to compare performances of agents
trained GA3C+SIL and GA3C respectively.

• In our precious work, we made mistakes of miss-
ing entropy regularization when incorporating SIL
into GA3C, so our results are not as well as ex-

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 252 -

Agent

PySc2 Linux

StarCraft II

LibrarySC2LE

Action

State

Experience (State,

Reward, Action)

Predictor queue Recorder queue

Predictor Recorder

Deep Neural Network

State Policy

Gradient

update

Policy

Prioritized

Experience

Replay

Buffer

Experience

Sampled

Experience
Sampled

Experience

Fig. 2 Architecture of the proposed GA3C+SIL applied to SC2LE

Screen Minimap Player

Screen state Minimap state Inputnon-spatial

Inputspatial

Outputspatial

Policy logits of

non-spatial

arguments

Policy logits of

spatial

arguments

Outputspatial_argu

Outputnon-spatial

Deconvolving

Flatten
+

Inputshared

Estimated

Baselines V

Mask Available

action

Policy logits of

main action

Embedding

Action_identifier

Outputshared

Action_identifiertiled

Tiling

Flatten

+

Sampling

-- Convolutional layers

-- 1-D layers

-- Policy logits

-- Baselines

Fig. 3 Architecture of Neural Network Architecture

pected. However, in this work, we correct such mis-
takes, and results of our preliminary experiments
have shown the strength of GA3C+SIL in sample
efficiency in contrast with proposed GA3C.

3.3 Neural Network Architecture
Our neural network architecture is inspired from

the one of Control Agent described in the study of
RDRL [11], but has a smaller scale and a set of fewer
parameters without Memory processing and Relational
processing. The neural network architecture consists
of three parts: Input preprocessing, State encoding and
Output processing. Figure 3 sketches this neural network
architecture.

Input prepocessing: the actor receives four kinds of
information from SC2LE: screen, minimap, player infor-
mation and available actions. These features are handled
in the same way of RDRL. Here, we describe the way of
logarithmic transformation and embedding in our work.
Numerical features are transformed as y = log(x + 1),
where x is the value of a numerical feature. Categorical
features are embedded into a continuous n-dimensional

space, where n = log2(d)*1 and d represents the number
of categories.

State encoding: screen and minimap are fed to two
independent residual convolutional blocks [4]. The con-
figuration of both residual convolutional blocks in this
work is the same to those of study of RDRL. The output
of blocks are concatenated along the dimension of output
channels to form a spatial input, denoted as inputspatial.
Output of player information is handled in the same way
of the study of RDRL to form a non-spatial input, de-
noted as inputnon-spatial.

Output processing: inputspatial is flattened along
the first two dimensions and passed to the neural net-
work composed of two fully connected layers (512
units per layer, ReLU activations) to form a output,
denoted as outputnon-spatial. Then, inputnon-spatial
and outputnon-spatial are concatenated along the last
dimension to form a set of shared features, denoted
as inputshared. In order to get policy logits of
the action identifier and estimation of given state,
inputshared is passed to a fully connected layer (256
units, ReLU activation), followed by a fully connected
layer (|action identi f ier| units). Here, unavailable ac-
tions is masked according to available action. To get
values of baseline V , we feed inputshared to another
neural network composed of two fully connected layers
(256 units, ReLU activation, 1 unit).

Action identifier is sampled according to
computed policy logits and embedded into a
log2(|action identi f ier|) dimensional tensor, denoted
as action identifier. This tensor and inputshared are
concatenated along the last dimension to form a set of
new shared features, denoted as outputshared. We use
outputshared to generate policy logits for all non-spatial
arguments through independent neural networks made
of one fully connected layer (one for each argument).
For spatial arguments, we first tile the action identifier
along dimension of output channels of inputspatial to
form a tiled output, denoted as action identi f iertiled.
Then we deconvolve inputspatial to a set of layers
through two Conv2DTranspose layers (both 4 x 4
kernels, stride 2), whose output channels are 16 and 32
respectively. This output is denoted as outputspatial.
Outputspatial and action identi f iertiled are concate-
nated along dimension of output channels, and passed
to independent convolution layers (1 x 1 kernels,
stride 1 and one for each spatial argument). Then, we
flatten the output layers along the first two dimensions
to form a output of spatial arguments, denoted as

*1 https://github.com/simonmeister/pysc2-rl-agents

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 253 -

outputspatial argu. Finally, spatial arguments (x, y) are
sampled from outputspatial argu.

4. Experiments and Results

We focus on all seven mini-games of StarCraft II
provided by study of SC2, and train agents by pro-
posed GA3C and GA3C+SIL described in Section
3.2. The names of these mini-games are MoveToBea-
con, CollectMineralShards, FindAndDefeatZerglings,
DefeatRoaches, DefeatZerglingsAndBanelings, Collect-
MineralsAndGas and BuildMarines. In this work, we
take results from the study of SC2 as baselines for our
experiments, and attempt to explore that how much SIL
can contribute to improving sample efficiency in differ-
ent mini-games. All introductions of seven mini-games
are based on document*2 offered by DeepMind. In this
work, all the experiments are conducted for three times.
All results shown in the following figures are the best one
of three runs. We also provide all results of three runs in
Table 1, where DHP denotes DeepMind Human Player,
SGP denotes StarCraft GrandMaster Player, RP denotes
Random Policy, FCL denotes FullConnected LSTM, and
G denotes proposed GA3C, S denotes SIL.

Table 1 Results of all mini-games.
1-MoveToBeacon(Figure 4).
2-CollectMineralShards(Figure 5).
3-FindAndDefeatZerglings(Figure 6).
4-DefeatZerglingsAndBanelings(Figure 8).
5-DefeatRoaches(Figure 7).
6-CollectMineralsAndGas(Figure 9).
7-BuildMarines (Figure10)

.
Agent 1 2 3 4 5 6 7

DHP [10] 26 133 46 729 41 6880 138
SGP [10] 28 177 61 727 215 7566 133
RP [10] 1 17 4 23 1 12 < 1
FCL [10] 26 104 44 96 98 3351 6

G 1st 27 116 46 73 83 3349 1
G 2nd 27 117 47 89 94 3360 2
G 3rd 27 119 47 89 96 3361 4
G+S 1st 26 116 47 84 89 3323 11
G+S 2nd 27 124 47 86 97 3344 14
G+S 3rd 27 136 49 86 110 3353 40

4.1 General Configurations
In this work, most of the experiments are run with

Nvidia GTX 2080Ti graphic cards, and the other experi-
ments are run with Nvidia GTX 1080Ti graphic cards.
Our implementation of GA3C is based on the open-
sourced implementation of GA3C *3, and our imple-

*2 https://github.com/deepmind/pysc2/blob/master/docs/

mini_games.md
*3 https://github.com/NVlabs/GA3C

Fig. 4 MoveToBeacon of proposed GA3C, GA3C+SIL

mentation of SIL is based on OpenAI Baselines *4 and
implementation of original SIL *5. Additionally, Son-
net library, which is built on top pf Tensorflow for con-
venience of building complex neural networks, is used
in this work, and Tensorflow library of stable version
1.13.1 with cuda of version 10.0 is also used in this work.
More details of hyperparameters and configuration can
be found at Appendix 5.

4.2 MoveToBeacon
In the beginning of this mini-game, one marine

and one beacon is put on the map randomly. The
agent is required to move the marine to the position
of beacon(reward +1). When marine reaches current
beacon, another beacon will be put on a different random
position of the map. This process will be repeated until
120 seconds elapsed since the beginning of this mini-
game.

Figure 4 shows the results of MoveToBeacon. For both
GA3C and GA3C+SIL, the maximum mean score of 30
episodes are 27, which is larger than the one of study of
SC2. Thanks to SIL, agents trained by GA3C+SIL learn
faster than those trained by proposed GA3C.

4.3 CollectMineralShards
There are two marines on the center of the map and 20

Mineral Shards at the beginning of this mini-game. The
goal of agent is to move the marine to collect the Min-
eral Shards, and rewards are earned (+1) when one min-
eral shard is collected. Whenever all 20 Mineral Shards
have been collected, a new set of 20 Mineral Shards are
spawned at random locations. The mini-game will be
over until 120 seconds elapsed since the beginning of
this mini-game.

Figure 5 shows the results of CollectMineral-

*4 https://github.com/openai/baselines
*5 https://github.com/junhyukoh/

self-imitation-learning

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 254 -

Fig. 5 CollectMIneralShards of proposed GA3C, GA3C+SIL

Fig. 6 FindAndDefeatZerglings of proposed GA3C, GA3C+SIL

Shards. The maximum mean score of 30 episodes for
GA3C+SIL is 136, which is better than the one of
GA3C. Thanks to SIL, the agents trained by GA3C+SIL
learn faster and perform better than the agents trained
by proposed GA3C through the whole training. We
can also know the learning stability of GA3C+SIL is
stronger than the one of proposed GA3C from figure
5. We think the better exploitation caused by SIL can
result in more stable and deeper exploration.

4.4 FindAndDefeatZerglings
At the initial state of this mini-game, 3 marines are

positioned in the center of the map and 25 zerglings(a
kind of melee unit) are distributed randomly around the
marines. Only in this mini-game the Fog-of-war is en-
abled to hide the information around the marines, so the
agent is required to using marines to explore the map
firstly, and then defeat the zerglings that are found dur-
ing exploration. Rewards are earned when 1 zerglings is
defeated (+1) or losing 1 marine (-1). When all 25 zer-
glings have been defeated, a new set of 25 zerglings are
spawned at random positions in the map. The mini-game
will be over if 120 seconds elapsed or all marines have
been defeated.

Fig. 7 DefeatRoaches of proposed GA3C, GA3C+SIL

Figure 6 shows the results of FindAndDefeatZer-
glings. The maximum mean score of GA3C+SIL is a
little higher than the one of GA3C. Similar to the results
of MoveToBeacon, thanks to SIL, the agents trained by
GA3C+SIL learn faster than the agents trained by pro-
posed GA3C at the early stage of training, and ultimately
perform better.

4.5 DefeatRoaches
Initially, 9 marines and 4 roaches are positioned on

opposite sides of the map. The agent is required to use
marines to defeat as many roaches as possible, and re-
wards are earned when one roach is defeated (+10) or
one marine is defeated (-1). Whenever all 4 roaches
have been defeated, another 4 roaches are spawned and
the agent is awarded 5 additional marines with other re-
maining marines retaining their health. Whenever new
units are spawned, all unit positions are reset to oppo-
site sides of the map. This mini-game can be over when
120 seconds elapsed or all marines are defeated. Fig-
ure 7 shows the results of DefeatRoaches. In contrast
with the performance of MoveToBeacon, both agents of
GA3C+SIL and proposed GA3C perform nearly to each
other at the early stage of the training. However, SIL
helps the agents trained by GA3C+SIL perform better
than the those trained by proposed GA3C ultimately.

4.6 DefeatZerglingsAndBanelings
This mini-game will start with 9 marines on the op-

posite side from a group of 6 zerglings and 4 banelings.
Since the banelings can cause dangerous area of effect
(AOE) attack, and such splash damage is destructive to
marines when they are bunched up, the agent is required
to first defeat banelings and then defeat the remaining
zerglings to gain more scores. Rewards are earned when
one baneling or zergling is defeated (+5) or one ma-
rine is killed (-5). Whenever all zerglings and banelings

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 255 -

Fig. 8 DefeatZerglingsAndBanelings of proposed GA3C,
GA3C+SIL

have been defeated, a new group of 6 zerglings and 4
banelings is spawned, and the agent is awarded another
4 marines at full health, with all other surviving marines
retaining their existing health. Whenever new units are
spawned, all unit positions are reset to opposite sides of
the map. This mini-game can be over when 120 sec-
onds elapsed since the beginning of the mini-game or all
marines are defeated.

Figure 8 shows the results of DefeatZerglingsAnd-
Banelings. Unlike the performances of DefeatRoaches,
the agents trained by GA3C+SIL in this mini-game per-
form a little worse than those trained by proposed GA3C.
Since the reward is the same for both defeating a zer-
gling and defeating a baneling, it can be a confusion
for the agents to learn the optimal policy of defeating
banelings firstly rather than defeating zerglings firstly.
Additionally, since SIL depends a lot on the cumula-
tive rewards of n-step playing to determine the advan-
tage value of a certain state-action pair, reward configu-
ration of DefeatZerglingsAndBanelings can also confuse
the agents when distinguishing good experiences of de-
feating banelings from the other experiences.

4.7 CollectMineralsAndGas
In this mini-game, there are 12 SCVs, 1 Command

Center, 16 Mineral Fields and 4 Vespene Geysers ini-
tially. The agent can use SCVs to collect minerals from
Mineral Fields, and gather gas from Vespene Geysers.
Rewards are based on the total amount of minerals and
gas collected. Spending Minerals and Vespene Gas to
train new units does not decrease your reward. The opti-
mal policy of this mini-game require the agent construct
additional SCVs to improve the efficiency of collecting
minerals and gas to gain more rewards. The game can
be over when 300 seconds elapsed since the beginning
of the mini-game.

Figure 9 shows the results of CollectMineralsAndGas.

Fig. 9 CollectMineralsAndGas of proposed GA3C, GA3C+SIL

Fig. 10 BuildMarines of proposed GA3C, GA3C+SIL

At the early stage of the training, the agents trained by
GA3C+SIL learn faster than those trained by proposed
GA3C. Although both agents perform nearly to each
other, there are some degrees of instabilities during both
trainings. This is because in the original GA3C, the pol-
icy of DNN is potentially several updates ahead of the
Agent’s policy. Furthermore, the optimal policy of this
mini-game is hard to learn because one inappropriate ac-
tion caused by stochastic policy can result to very low
score finally. We think better control over policy update
can mitigate issues of instabilities in this mini-game.

4.8 BuildMarines
There are 12 SCVs, 1 Command Center, and 8 Min-

eral Fields initially in this mini-game. Rewards are
earned by building marines. This is accomplished by us-
ing SCVs to collect minerals, which are used to build
Supply Depots and Barracks, which can then build
marines.

Figure 10 shows the results of BuildMarines. The
agents trained by GA3C+SIL can find a way to obtain
better exploration and get higher scores with training
goes by. However, the agents trained by GA3C with the
same amount of experiences can not obtain scores over

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 256 -

5. Such bad performance is similar to the one of study of
SC2. They have trained the agents with much more ex-
periences, but the scores can not even beyond 10. There-
fore, we think that the optimal policy of this mini-game
is hard to be found via A3C based methods only.

5. Conclusion
In five of seven mini-games (MoveToBeacon,

CollectMineralShards, FindAndDefeatZerglings, De-
featRoaches and CollectMineralsAndGas), the results
demonstrate that combined with GA3C, SIL indeed
makes the learning and the training faster, and the
trained agents achieve better performance with fewer
experiences generated from SC2LE. Additionally, our
simpler neural network shows its ability to capture
the underlying informations in the observations better
than that of study of SC2. We also hope this work can
be inspiration of other work that focus on improving
sample efficiency.

References
[1] Y. Aytar, T. Pfaff, D. Budden, T. Paine, Z. Wang, and N. de Fre-

itas. Playing hard exploration games by watching youtube.
In Advances in Neural Information Processing Systems, pages
2930–2941, 2018.

[2] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The ar-
cade learning environment: An evaluation platform for general
agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

[3] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih,
T. Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning, et al.
Impala: Scalable distributed deep-rl with importance weighted
actor-learner architectures. In Proceedings of the 35th Inter-
national Conference on Machine Learning, pages 1407–1416,
2018.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[5] Z. Hu and T. Kaneko. Reinforcement learning with effective
exploitation of experiences on mini-games of starcraft ii. 2018.

[6] J. Oh, Y. Guo, S. Singh, and H. Lee. Self-imitation learning. In
International Conference on Machine Learning, pages 3878–
3887, 2018.

[7] OpenAI. Openai baselines: Acktr&a2c.
https://openai.com/blog/baselines-acktr-a2c/.

[8] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized ex-
perience replay. In International Conference on Learning Rep-
resentations(ICLR), 2016.

[9] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershel-
vam, M. Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484–489,
2016.

[10] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhn-
evets, M. Yeo, A. Makhzani, H. Küttler, J. Agapiou, J. Schrit-
twieser, et al. Starcraft ii: A new challenge for reinforcement
learning. arXiv preprint arXiv:1708.04782, 2017.

[11] V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li,
I. Babuschkin, K. Tuyls, D. Reichert, T. Lillicrap, E. Lock-
hart, M. Shanahan, V. Langston, R. Pascanu, M. Botvinick,
O. Vinyals, and P. Battaglia. Deep reinforcement learning
with relational inductive biases. In International Conference
on Learning Representations, 2019.

[12] W. Ziyu, B. Victor, H. Nicolas, M. Volodymyr, M. Remi, K. Ko-
ray, and F. Nando de. Sample efficient actor-critic with experi-
ence replay. In International Conference on Learning Repre-
sentations, 2017.

Appendix

Table A·1 Hyperparameters of GA3C and GA3C+SIL

Hyper-parameters Value
Learning rate 1e-4

Screen resolution 32x32
Minimap resolution 32x32
Number of Agents 32

Number of Predictor 4
Number of Trainer 8

Number of Recorder 8
Batch size 128

N-step 16
Baseline loss scaling 1.0
Entropy loss scaling 0.001

SIL update per iteration (M) 4
SIL batch size 512

Replay buffer size 150000
Exponent for prioritization 0.6

Bias correction for prioritized replay 0.4
Discount γ 0.99

Clip global gradient norm 100.0
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1e-8

Small positive constant ε 1e-6

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 257 -

