
Improving Mahjong Agent by Predicting Types of Yaku

Long Honghai1,a) Tomoyuki Kaneko1,2,b)

Abstract: Over recent years, many great achievements have been made in the area of Artificial Intelligence. There are
AI agents which have already exceeded the level of top human players in perfect information games such as playing
go [1]. On the other hand, there is still some work to do with imperfect information games. In this paper, we have
decided to choose Japanese Mahjong as our research object because of its popularity all over the world and appropriate
difficulty. And in a previous research, an agent trained by a convolutional neural network finally reached a good rating
in online mahjong site Tenhou [2]. In this paper, we tried to use an array of numbers to record the current states and
tried to use Deep Neural Networks to fit the model. Our accuracy on validation data reached 66.81% which is a little bit
lower than that in research [3]. We also tried to train a neural network to predict possible yaku. We showed that if we
added predicted yaku information to the input of the neural networks, the accuracy of our prediction would increase.

Keywords: Japanese Mahjong, Convolutional Neural Networks, Deep Neural Networks

1. Introduction
Many strong agents have been trained by researchers in more

and more types of games these years. Human experts have been
defeated in many perfect information games, such as go and
chess. But it is much more difficult to train an agent in imper-
fect information games.

In this paper, we choose Japanese Mahjong, an imperfect infor-
mation game, as the object of our study because of its popularity
and appropriate difficulty. We collected records, which is also
called ’haifu’, of top players from online mahjong site Tenhou.
We trained our agent to discard the same tile as top players do
as well as possible and the agent finally reached an accuracy of
64.88% with no yaku prediction information and 66.81% with
predicted yaku prediction information.

The paper is organized as follows. Section 2 introduces the
game of mahjong and then rules of Japanese Mahjong. Section 3
shows some related works and studies. In Section 4 , we will in-
troduce the way we represent the information and the neural net-
works we used to train the agent. Section 5 shows some results of
our research. Section 6 will summarize the paper and show some
of our future works.

2. Basic Rules and Terms of Japanese
Mahjong

Mahjong was developed in China from the Qing dynasty. It is
a tile-based game and usually played by four players. Mahjong
is based on draw-and-discard card games which were popular in
18th and 19 century China. In 1924, mahjong was first brought
into Japan.

Japanese Mahjong is a standardized form of Mahjong in Japan
and there are totally 136 tiles in the game. More specifically,

1 Interfaculty Initiative in Information Studies, the University of Tokyo
2 JST, PRESTO
a) longhonghai@g.ecc.u-tokyo.ac.jp
b) kaneko@acm.org

there are 34 types of tiles and each type has 4 same tiles. The 34
types are 1m-9m (man), 1p-9p (pin), 1s-9s (sou), wind tiles (East,
South, West, North), and dragon tiles (Haku, Hatsu, Chun). At
the beginning of one game, the tiles are disordered and arranged
into four walls. Each wall has two stacks high and 17 tiles wide.
26 of the stacks are used for starting hands and 7 of them are
used for a dead wall [4]. Each player will have 13 tiles in his
hand, and after drawing a tile from the wall, there will be 14 tiles.
A player can call win if his hands can be expressed by the follow-
ing combination: x (AAA)+y (ABC)+DD, x+y=4. Three same
tiles compose an AAA, three number tiles with sequential num-
bers compose an ABC and two same tiles compose a DD. One
can also declare a win by other players’ discards. There are some
other types of winning hand such as seven pairs, which means a
player forms even pairs in his hands. In each round, one player
needs to draw a tile from the wall and discard a tile from his hands
(including the drawn tile). A player can also call a pon, chi, or
kan from others’ discards in certain situations. At the beginning
of the game, each player will have a score of 25000, and the score
will change by the result of each subgame. A whole Japanese
Mahjong game usually has four or eight subgames. In addition
to score changes, Japanese Mahjong also has some unique rules
such as richi and dora, which will be explained in the later sub-
section.

2.1 Yaku and Yakuman
Yaku are specific combinations of tiles. A winning hand must

have at least one yaku. Yakuman is a value for some hands which
are very difficult to form. When scoring, each yaku has its own
han value, and the han works as a doubler. A player who is new
at this game usually forms a hand with no yaku, which will cause
that he can not call win in this subgame. So it is very important
and this is why we tried to add this information into the input.

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 206 -



2.2 Richi
A player can declare richi if the player needs only one tile to

complete a legal hand and the player has not claimed other play-
ers’ discards to make open melds. Richi is a kind of yaku and a
player can win on an other players’ discard or a tile drawing from
the wall after declaring richi. The player can not change his hand
except when forming closed quads. The player may win more
scores in a subgame by declaring richi. If another player has de-
clared richi, we have to be careful because we might pay large
scores if we discarded a dangerous tile.

2.3 Dora
Dora is a bonus tile that adds han value to a hand. It may cause

a big winning score in some subgames. At the beginning of each
subgame, there will be a dora indicator which are shown to all
players. Every time a player calls a kan, a new dora indicator will
be added and there are at most five dora indicators. The next tile
of the dora indicator is regarded as dora. More specifically, the
next tile of 9man (pin or sou) is 1man (pin or sou). The order of
wind tiles are: East, Sorth, West and North. The order of dragon
tiles are: Haku, Hatsu, Chun.

Depending on the type of games, there can also be some akado-
ras which are three five tiles (one 5-man tile, one 5-pin tile, one
5-sou tile). Akadoras will be colored red in the game and they
can be regarded same function as normal dora tiles.

There is an uradora indicator under each dora indicator and
uradora indicators are only revealed and calculated when a player
wins after calling richi. It can bring a big winning score in some-
times.

2.4 Wind Tiles and Dragon Tiles
As explained above, there are four types of wind tiles and three

types of dragon tiles in each game.
Two type of wind tiles are very important for each player: pre-

vailing wind and own wind. Prevailing wind is set at the begin-
ning of a subgame and all four players have the same prevailing
wind in a certain subgame. Prevailing wind is East at first and
may change in the game. On the other hand, every player has dif-
ferent own wind in a certain subgame. The player who first draw
a tile from the wall (we also call this player ’oya’ or ’dealer’) has
East as his own wind. The next player’s own wind is North, and
so on. A player can use a triplet of prevailing wind tiles or own
wind tiles as a yaku.

For dragon tiles, a player can use a triplet of them as a yaku in
arbitrary subgames.

2.5 Winning
A player can call win from drawing a tile or an another player’s

discard. Winning from a wall is also called Tsumo. When a
player declares win by tsumo, all other players will pay scores
to him. On the other hand, if a player declares win by a discard
from another player, only the player who discarded this tile will
pay the winner scores. The dealer always pays more and wins
more when scoring.

3. Related works
In research [3], three networks have been trained. The first

one is discarding network. Discard is recognized as a 34-
classification problem. A player has most 13 tiles in his hand
and he can only choose one of them to discard. But after training
as a 34-classification problem, the agent successfully learned to
discard a tile that appears in its hand and it performed better than
agent trained as a 14-classification problem. The second network
is stealing network. Pon is recognized as a binary classification
problem: 0 for cancel and 1 for calling a pon. Chi is recognized
as a 4-classification problem: 0 for cancel and 1 to 3 represent
3 types of chi. The third one is richi network. The agent will
declare richi once it can and the discard selection after declaring
richi is the same as the normal discarding network.

In research [5], prediction of the final rank is recognized as a
4-classification problem. Then the prediction will be used to de-
cide whether ori (give up winning and discard a safe card) should
be chosen or not.

In research [6] an one-player mahjong agent is trained as first.
This agent only gets a tile from the wall and discard a tile after
that. It will choose how to act as a one-player mahjong agent only
after it does not choose to ori. Whether it should choose ori or not
depends on some other features. Current strategy is trained as a
2-classification problem.

A new data structure called plane has been designed and it has
been used to train an agent with convolutional neural network in
research [3], but information such as akadora and current rank
have not been considered. The agent finally achieved a rating of
1822 after 76 battles.

One player mahjong agent has been extended to be used in 4-
players mahjong games and reached a rating of 1507 in research
[5].

The agent trained with Expected Final Rank (EFR) can play
fast in the game and reached a rating of 1844 with 1508 battles in
research [6].

4. Data Structure and Neural Networks
In paper [3], the author used a data structure named as ’plane’

to represent the current game and then used a convolutional neural
network to train the agent. In research [7], reinforcement learn-
ing and deep neural networks were combined and strong agents
have been trained in playing Atari 2600 games. In this paper,
we suppose to use simple data structures to store the information
of current situation and then use deep neural networks to let the
agent imitate top human players.

4.1 Data Structure
To store the information, we use an array of numbers to repre-

sent the features as shown in Table 1.
We firstly use an array of length 472 to save the information of

the game. The first value of the array is our seat number. The fol-
lowing 34 values are our hands because there are totally 34 types
of tiles in this game. Each value saves the number of a certain
tile in our hand. For example, if we have a tile ’1m’ in our hands,

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 207 -



Table 1 Features Represented in Array

Feature Name Length Index in Array Possible Value

Seat Number 1 [0,0] 0,1,2,3

Hands 34 [1,34] 0,1,2,3,4

Discards 136 [35,170] 0,1,2,3,4

Melds 256 [171,426] 0,1

Dora Indicators 34 [427,461] 0,1,2,3,4

Prevailing Wind 1 [462,462] 0,1,2,3,4

Own Wind 1 [463,463] 0,1,2,3,4

Richi Players Last Round 4 [464,467] 0,1

Richi Players 4 [468,471] 0,1

Prediction with Yaku 9 [472,480] [0,10]

Pon or Chi Tiles 1 [472,472] 0,1,2,...,33

Chi&Pon (With Yaku) 9 [473,481] [0,10]

we increase the value which represents ’1m’ by one. Besides our
hands, we need to know the discards of each player. So we use
136 numbers (34 for each player) to save the discards and we ig-
nore the order of the discards in this method. If a player discards
a tile, the value of the corresponding position increases by one.
The next 34 numbers store the information about dora indicators.
The melded tiles are significant as well and we use 256 numbers
to store this information. We used online mahjong site Tenhou
to test our agent and it used a 16-bit integer to represented ev-
ery meld type and corresponding tiles. So we used 64 numbers
for every player (16 for each player) and believed that the agent
could learn from it. Information about prevailing wind and own
wind are also important so we use four numbers for prevailing
wind, four numbers for own wind to save these two information.
The value represents current wind and own wind is one and the
values of other winds are zero. We then used four numbers for
players who called richi last round and four numbers for players
who have called richi. If a player called richi last round, the value
of its corresponding position is one. We added the last round richi
players’ information like [3] because richi players win more in
the first round after declaring richi and we need to be careful.

So we finally accomplish a 472-length array as an input of the
neural networks. We will use the array to predict which tile we
should discard and what yaku we can form if we suppose that
we would win the subgame. When we train a chi network or a
pon network, we would add the information about the lastest dis-
carded tile and when we train a network with yaku information,
we would add the prediction of yaku. More details will be shown
later in this section. Table 1 also shows all features we used.

Also, we supposed another structure, which is more complex,

Table 2 Network Structure of Discard Network

Layer (type) Output Shape Param #

fc 0 (Dense) (None, 300) 144600

fc 1 (Dense) (None, 1000) 301000

fc 2 (Dense) (None, 30000) 30030000

fc 3 (Dense) (None, 300) 9000300

fc 34 (Dense) (None, 34) 10234

to save the current information. In the occasion of the 472-length
array, we just stored all discards but ignored the order of them.
But it is important to know the order in some certain cases. For
example, if a player declared richi and the next player discarded
a tile ’1m’. We can know that tile ’1m’ is a safe tile if the richi
player does not declare a win. On the other hand, if a player dis-
carded ’1m’ and the next player declared richi, ’1m’ is not safe
but even very dangerous in this case. In order to save the sequence
of discards, we suppose to use an array of length 178 and then use
one-hot encoding. The first 14 numbers (start from index 0) will
be tiles in our hands. Before we store them into the array, we have
to sort them by their indexes in all tiles. Then we use totally 100
numbers in tatol (25 for each player) to save the sequence of dis-
cards. The numbers of discards are all -1 at first, and they will be
changed into tiles the player discards one by one. For example,
we use numbers from index 14 to 38 to save our own discards.
It is initialized as [-1,-1,...,-1] and when we discard a tile ’x’, it
becomes [x,-1,-1...,-1] after that. We use a similar way to save the
meld tiles. Each player can call meld at most 4 times and most 4
tiles each time. So we use 16 numbers for each player and totally
64 numbers for all four players. Wind and dora information will
be added after one-hot encoding and then we will train our agent
by convolutional neural networks.

In this paper, we tried our first method and showed that the
accuracy increased after we added yaku to the features.

4.2 Neural Networks
We use deep neural networks to train our agent. The layers of

the discard network are different from that of chi, pon or yaku
prediction networks. Compared to chi, pon and yaku prediction
networks, the discard network is much larger. We trained all net-
works except yaku prediction network twice. The first time we
did not add yaku predcition information into input and the sec-
ond time we added it. The difference between networks with yaku
and network without yaku is only the input. The following sub-
sections will introduce them in details.
4.2.1 Discard Network

In this paper, we also regard the discard problem as a 34-class
classification problem like [3]. We just have at most 14 differ-
ent tiles in our hands, but our agent can choose a tile to discard
which is exactly in its hand with very high probability after train-
ing. It also showed that our agent had learned much knowledge
from the training. The networks of training data with yaku and

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 208 -



Table 3 Network Structure of Pon Network

Layer (type) Output Shape Param #

fc 0 (Dense) (None, 8) 3864

fc 1 (Dense) (None, 8) 72

fc 2 (Dense) (None, 8) 72

fc 3 (Dense) (None, 8) 72

fc 4 (Dense) (None, 8) 72

fc 5 (Dense) (None, 8) 72

fc 6 (Dense) (None, 8) 72

fc 7 (Dense) (None, 8) 72

fc 8 (Dense) (None, 8) 72

fc 9 (Dense) (None, 8) 72

fc 10 (Dense) (None, 8) 72

fc 11 (Dense) (None, 8) 72

fc 12 (Dense) (None, 8) 72

fc 13 (Dense) (None, 8) 72

fc 14 (Dense) (None, 8) 72

fc sigmoid (Dense) (None, 1) 9

without yaku have the same layers except the input layer. The
network works better with a large batch size and we finally chose
to use a batch size of 16,384. Table 2 shows more details about
this network. We added regularizers in the layer which had most
nodes to reduce overfitting.
4.2.2 Naki Network

There are three types of naki in Japanese Mahjong. We ignore
kan because of too little data. Compared with discard network,
we used relatively small neural networks to train chi an pon be-
cause we considered it easier than discard problem and we have
much less data of pon and chi than discard. The discard after we
call a pon or chi is decided by discard network. Before using dis-
card work, we need to remove the tiles we used to call chi or pon
from our hands. The following networks are trained for deciding
whether we should chi or pon in certain situation.
4.2.2.1 Pon Network

We regarded pon as a binary classification. A player can call
pon only if he has two or more than the same tiles with the dis-
carded tile. In about 70% of our training data, a player called a
pon when he could. We used pon network only when we could
call a pon, and just used this network to decide whether we should
make this call or not. In the training data, we have to know the

Table 4 Network Structure of Chi Network

Layer (type) Output Shape Param #

fc 0 (Dense) (None, 512) 65664

fc 1 (Dense) (None, 128) 4128

fc 2 (Dense) (None, 32) 1056

fc 3 (Dense) (None, 32) 1056

fc 4 (Dense) (None, 32) 1056

fc 5 (Dense) (None, 32) 1056

fc 6 (Dense) (None, 32) 1056

fc 7 (Dense) (None, 32) 1056

fc 8 (Dense) (None, 32) 1056

fc 9 (Dense) (None, 32) 1056

fc 10 (Dense) (None, 32) 1056

fc 11 (Dense) (None, 32) 1056

fc softmax 4 (Dense) (None, 4) 132

Table 5 Network Structure of Yaku Prediction Network

Layer (type) Output Shape Param #

fc 0 (Dense) (None, 512) 242176

fc 1 (Dense) (None, 512) 262656

fc 2 (Dense) (None, 256) 131328

fc 3 (Dense) (None, 256) 65792

fc 4 (Dense) (None, 256) 65792

fc 5 (Dense) (None, 64) 16448

fc 6 (Dense) (None, 1) 65

latest discarded tile, so we add the tile to the end of the 472-length
array. The length of the input increase from 472 to 473. The value
of the tile is an integer between 0 and 33, corresponding 34 differ-
ent types of tiles. When the nerual network was big, pon network
got overfitting easily. So we finally use layers with just 8 nodes
per layer. Table 3 shows the whole pon neural network.
4.2.2.2 Chi Network

We regarded chi problem as a four-class classification problem.
A player can call chi only from a discard of his left player, who
is prior in order. Before we used the network to predict whether
we should chi or not, we firstly judge if the discard came from

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 209 -



Fig. 1 Loss of Discard Network

our left player. And when we decided to declare chi, we had to
declare the type of chi. So we defined zero as not calling chi,
one, two and three as three types of chi. And we also have to
know the latest discarded tile, so the length of the input is also
473, the same with pon network. If the agent chose a type of chi
but actually we could not do this type of chi, we also canceled
chi. Table 4 shows more details about it.
4.2.3 Yaku Prediction Network

There are totally 55 yaku in Japanese Mahjong and 15 of them
are yakuman. Yakuman are very hard to form and we have too
little data so we don’t consider it. We trained our agent to predict
what yaku it could form except yakuman from the current hands
and other information. For each yaku prediction, we regarded it
as a binary classification problem and trained 40 models for each
yaku. In this paper, each network has the same network structure
as shown in Table 5.
4.2.4 Network with Yaku

When we tried to train a discard, pon or chi network with yaku
information, we firstly used the 472-length input and the yaku
prediction network to predict which yaku we could form in this
subgame. We regarded the output value of the yaku prediction
network as the probability of we could form this yaku and when
we added it to the input array, we timed its value by 10 to em-
phasize it. From the training result, we finally chose nine types
of yaku and added them at the end of the input array. All these
nine types of yaku could be predicted at a relatively high accu-
racy. The total length of the input array became 481 in discard
network with yaku prediction information and 482 in chi and pon
networks with yaku prediction information. We did not change
network layers in order to compare the training result between
networks with yaku and without yaku.

5. Result
5.1 Discard Network

We used 1,400,000 record data for our training and 10% of
it is the validation dataset. The discard network without yaku
information finally reached an accuracy of 64.88% and the one

Fig. 2 Accuracy of Discard Network

Fig. 3 Loss of Pon Network

with yaku reached an accuracy of 66.81%. As said above, we re-
garded the discard problem as a 34-class classification problem.
The agent can choose a tile which is exactly in its hand at an ac-
curacy above 99.96% after training. From Fig. 1 and Fig. 2, we
can easily find out that accuracy became higher after we added
yaku prediction information.

5.2 Pon Network
We used about 160,000 data to train the pon network. The

pon network without yaku information reached an accuracy of
76.25% and the one with yaku information reached an accuracy
of 77.26%.The graph Fig. 3 and Fig. 4 show the loss and accuracy
changes during the training. Table 6 and Table 7 show the result
of pon network. From the figure, we can see that pon network
became much more stable after we added yaku information.

5.3 Chi Network
There are 140,000 data for training a chi network. The

chi network without yaku information reached an accuracy of

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 210 -



Fig. 4 Accuracy of Pon Network

Fig. 5 Loss of Chi Network

Fig. 6 Accuracy of Chi Network

Table 6 Pon Network Result without Yaku

Predicted

Actual
True False

True 11223 3700

False 528 1542

Table 7 Pon Network Result with Yaku

Predicted

Actual
True False

True 10189 2890

False 1562 2352

Table 8 Chi Network Result without Yaku

Predicted

Actual
True False

True 3979 1817

False 2346 6752

Table 9 Chi Network Result with Yaku

Predicted

Actual
True False

True 4332 2148

False 1901 6513

72.05% and the one with yaku information reached an accuracy
of 72.82%. The graph Fig. 5 and Fig. 6 show the loss and accu-
racy changes during the training. Table 8 and Table 9 show the
result of chi network.

5.4 Yaku Prediction Network
We trained models for all yaku except yakuman. Some of the

yaku like chiniisou is also hard to form and we had little training
data. According to the training result, we chose 9 yaku and added
them into the input when we trained networks with yaku. The re-
sult of these 9 yaku is shown in Table 10. We used the same yaku
prediction networks when we added yaku to discard network, chi
network and pon network. The accuracy increased after we added
yaku information. The accuracy might be influenced that we used
all same network structures for all yaku prediction networks and
it supposed to be improved in the future.

5.5 Battle on Tenhou
The way we save the current situation costs less memory than

that in [3] and we can train more data. At the beginning of
our research, we used just 800,000 training data and just reached
61.02%. After we added more data into the training set, the ac-
curacy improved a lot. Although we have almost the same pre-
diction accuracy with that in research [3], our agent have not got
good result on tenhou. We added yaku and supposed to solve

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 211 -



Table 10 Yaku Prediction Result

Yaku Accuracy Precision Recall F1-score

Richi 0.7250 0.5812 0.8964 0.7052

Tanyao 0.7921 0.5447 0.9010 0.6790

Prevailing Wind (East) 0.9756 0.7611 0.6023 0.6724

Prevailing Wind (North) 0.9788 0.7524 0.5883 0.6603

Haku 0.9614 0.7039 0.8634 0.7756

Hatsu 0.9606 0.6993 0.8432 0.7645

Chuu 0.9599 0.8100 0.6412 0.7158

Honiisou 0.9589 0.5735 0.6762 0.6206

Dora 0.7798 0.6907 0.8329 0.7552

the problem that the agent would form a hand without yaku but
it seemed that our agent also could not work well on avoiding
it. The reason why our agent performed bad on Tenhou is now
unknown.

6. Discussion and Future Works
In this paper, we propose to use an array of numbers to repre-

sent the current situation and use deep neural networks to train
our agent. In order to reduce the probability that the agent forms
a good hand or calls chi or pon without yaku, we try to add yaku
information into the input array. We regard all operations in this
game as a binary classification problem or multiclass classifica-
tion problem. The result shows that the agent can learn knowl-
edge from the way we save information and it performs better in
imitation accuracy after adding yaku prediction information.

From the result of battles on Tenhou, we find that our agent
still has the problem that it forms a good hand with no yaku. It
can sometimes win a subgame but usually discards very danger-
ous tiles and loses many scores. There are still large improvement
space for our agent in the future works.

We do not use the sequence of the discards in this paper and
we would like to try the second method showed in Section 4.
Besides, we have not considered the information about the cur-
rent rank and the difference between scores. The current rank
and scores are important because if a player wants to get a higher
rating on Tenhou, he has to avoid remaining at the last rank as
much as possible. We also suppose to use different neural net-
work structures for different yaku and add more yaku informa-
tion when training in our future works and this might bring large
improvement.

References
[1] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van

Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,
V., Lanctot, M. et al.: Mastering the game of Go with deep neural net-
works and tree search, nature, Vol. 529, No. 7587, p. 484 (2016).

[2] Tenhou: https://tenhou.net/. [Online; accessed 08-October-
2019].

[3] Gao, S., Okuya, F., Kawahara, Y. and Tsuruoka, Y.: Supervised Learn-
ing of Imperfect Information Data in the Game of Mahjong via Deep
Convolutional Neural Networks, Information Processing Society of
Japan (2018).

[4] Wikipedia: Japanese Mahjong — Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?title=Japanese\
%20Mahjong&oldid=917279150 (2019). [Online; accessed 08-
October-2019].

[5] Mizukami, N., Nakahari, R., Ura, A., Miwa, M., Tsuruoka, Y.,
Chikayama, T. et al.: Adapting One-Player Mahjong Players to Four-
Player Mahjong by Recognizing Folding Situations, The 18th Game
Programming Workshop 2013, pp. 1–7 (2013).

[6] Mizukami, N., Tsuruoka, Y. et al.: Building Computer Mahjong Players
Based on Expected Final Ranks, The 20th Game Programming Work-
shop 2015, Vol. 2015, pp. 179–186 (2015).

[7] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski,
G. et al.: Human-level control through deep reinforcement learning,
Nature, Vol. 518, No. 7540, p. 529 (2015).

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 212 -




