
Improving Action Branching for Deep
Reinforcement Learning with A Multi-dimensional

Hybrid Action Space

Laige Peng1,a) Yoshimasa Tsuruoka1

Abstract: Recent deep reinforcement learning methods address the complexity of state space and achieve
great success in various video games. Deep Q-Network (DQN)-like algorithms show efficiency in environments
with discrete action spaces while policy-based algorithms have good performance in environments with con-
tinuous action spaces. However, it is difficult to apply those algorithms in a complicated multi-dimensional
hybrid action space in which both discrete and continuous action spaces exist. We propose to combine the
action branching architecture proposed by Tavakoli et al. [1] with the proximal policy optimization (PPO)
algorithm to address this problem. Our method keeps the continuous action space and achieves better perfor-
mance than the dueling double DQN model which discretizes the continuous action space, and shows better
compatibility with human demonstration data.

1. Introduction

In recent years, deep reinforcement learning (DRL) has

led to striking success in several research fields such as game

AI, robot control and navigation problems. The first suc-

cess of DRL in the game of Go and the Atari games pro-

vide great confidence and a promising methodology for re-

searchers to tackle complicated game problems. DRL has

developed quickly and derived many extensions and variants

for challenging games. Hasselt et al. [2] developed the Dou-

ble Deep Q-Network (DDQN) to solve the overestimation

problem in the traditional DQN algorithm and improved

the generalization capability. Wang et al. [3] proposed Du-

eling DQN which outperforms the state-of-the-art on the

Atari domain. Besides value-based algorithms, policy-based

algorithms have also been widely used such as A3C [4], de-

terministic policy gradients (DPG) [5] and its deep version

DDPG [6], and proximal policy optimization (PPO) algo-

rithms [7].

As the development of DRL advances, many challenging

games with much more complicated state spaces such as

VizDoom have been overcome; however, there still remain

challenges to solve games with both complex state spaces

and action spaces such as StarCraft and Minecraft, which

requires better sequence decisions. Previous value-based re-

search mainly focuses on the state spaces and assumes that

the action space is discrete and has only one dimension. For

continuous action spaces, there are mainly two solutions:

discretize the action space and utilize value-based algorithms

1 Department of Information and Communication Engineering,
The School of Information Science and Technology, The Uni-
versity of Tokyo

a) penglaige@logos.t.u-tokyo.ac.jp

or directly generate continuous output by applying policy-

based algorithms such as DDPG. As for multi-dimensional

action spaces such as the angles for different joints of a

robot arm, Tavakoli et al. [1] proposed an action branch-

ing architecture to use a separate action branch for each

action dimension while sharing the same state representa-

tion. They discretized the continuous value and utilized the

dueling double DQN (DDDQN) as the reinforcement learn-

ing algorithm. Xiong et al. [8] proposed a parametrized

DQN (P-DQN) method which can learn with a discrete-

continuous hybrid action space by combining the DQN al-

gorithm and the DDPG algorithm. Vinyals et al. [9] de-

signed a parametrized action space for the game StarCraft

II in which each action contains a function identifier and

a sequence of arguments. They made a baseline with A3C

as the learning algorithm and represented the policy in an

auto-regressive manner by using the chain rule.

We take Minecraft as our platform for its challenging en-

vironment, high-dimension representation, complex action

space and hierarchical item systems. We use the MineRL

API and take a navigation task and a treechop task as our

training domains. MineRL provides a real game environ-

ment in which the map is very large and contains all the

possible entities in it. As a result, it is very hard for the

agent to explore the environment with normal one dimen-

sion action space. What is more, besides discrete actions

such as “forward” and “back”, the agent should also take

some continuous actions such as the direction and the sight-

line angle. We consider it as a multi-dimensional discrete-

continuous hybrid action space.

Considering the complexity of the action space, we assume

that each action dimension is independent to each other and

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 80 -

utilize the action branching architecture to generate sepa-

rate actions for each dimension. For a continuous action

space, discretization may violate the mechanism of the ac-

tion space, and will generate too many discrete points. Thus,

in this paper, we improve the action branching architec-

ture to deal with a multi-dimensional hybrid action space

by applying PPO. We make use of non-pixel observations

to augment the state representation as shown in Figure 1,

categorial distributions and Gaussian distributions are used

to sample discrete actions and continuous actions respec-

tively. We also propose to use supervised learning during a

pre-training phase by using human demonstration data to

quickly start the training and accelerate training process.

Figure 1. Proposed method

We compared our proposed method with DDDQN in two

environments. In the navigation task with dense rewards,

PPO learns faster than DDDQN and achieves better perfor-

mance. In the treechop task with extremely sparse rewards,

PPO shows better compatibility with human demonstration

data and achieves higher scores than DDDQN. The experi-

ments show efficiency of our proposed method.

2. Background

2.1 Reinforcement learning basics

Reinforcement learning [10] focuses on the interaction be-

tween the agent and the environment and is usually mod-

eled as a Markov Decision Process (MDP) with definitions

{S,A,R, P (s′ | s, a), γ}. The agent observes current state

st ∈ S from the environment ϵ, chooses an action at ∈ A

following the policy π(a | s) = P [At = a | St = s] and

receives a reward rt ∈ R from the environment. The en-

vironment makes a transition to another state st+1 ∈ S

with the transition probability p(st+1 | st, at), and then the

agent repeats choosing a new action.

Reinforcement learning tries to maximize the expectation

of the cumulative rewards Vπ(s) = Eπ[
∑∞

k=0 γ
kRt+k+1|

St = s], for all s ∈ S with a discount factor γ from

time t given state s. V -value can be written as Vπ(s) =

E[Rt+1 + γV (St+1) | St = s] according to the Bellman

equation.

Value-based reinforcement learning algorithms such as

Q-learning maximize the action value function qπ(s, a) =

Eπ[
∑∞

k=0 γ
kRt+k+1| St = s,At = a] to approximate

the optimal policy π. Empirically, the Bellman equation

q(st, at) = rt + γ max
a′

q(st+1, a′) is widely used in value-

based algorithms.

Policy-based reinforcement learning algorithms

such as REINFORCE maximize the objective func-

tion J(θ) = Eτ∼πθ(τ)[r(τ)] =
∫
πθ(τ)r(τ)dτ by di-

rectly optimize the policy π(s|a) with policy gradient

∇θJ(θ) = Eτ∼πθ(τ)[∇θ log πθ(τ)r(τ)], where τ is a

trajectory.

2.2 Deep Q-Network (DQN) families

Deep Q-Network [11] uses neural networks to build an ap-

proximate function of the action value function Qπ(s, a) to

solve high-dimensional observation problems such as pixel

frame inputs, and is trained by the following loss function:

Li(θi) =

E(s,a,r,st+1)∼U(D)[(rt + γ max
a′

Q(st+1, a′; θ−i)−

Q(st, at; θi))
2],

in which θ is the action network parameter and θ−i is the tar-

get network parameter at iteration i. Here action network

is used to choose actions. And the target value of Q(s, a) is

ŷt = rt + γ max
a′

Q(st+1, a′; θ−i).

The target network parameter θ−i updates with θi only

every C steps in order to eliminate the correlation between

the network Q(θ) and the target network Q(θ−).

Experience replay is another key idea to break the corre-

lation between sequence trajectories. A replay buffer stores

the (s, a, r, s′) tuples as the agent interacts with the envi-

ronment and randomly samples data from the replay buffer

to train the model in fixed time intervals, reducing the in-

fluence of the correlation.

Some important and widely used extensions of DQN are

introduced as follows:

Double DQN (DDQN) Hasselt et al. [2] developed

DDQN in order to solve the overestimation problem in

some games and the algorithm is shown to be able to

be generalized to work with large-scale function approx-

imation. The target value of DDQN is written as:

ŷt
DDQN =

rt + γQ(st+1, arg max
a

Q(st+1, a; θi); θ
−
i).

Unlike DQN that directly chooses action which max-

imizes Q(st+1, a; θ−i), DDQN uses the action network

Qθi
to select an action that maximizes Q(st+1, a; θi)

and uses this action to calculate the target value

ŷt
DDQN .

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 81 -

Dueling DQN Wang et al. [3] proposed Dueling DQN

which can generalize learning across actions with-

out changing current reinforcement learning algo-

rithms. Dueling DQN also provides better evalua-

tion of policy and outperforms the state-of-the-art on

the Atari domain. In value-based reinforcement learn-

ing algorithms, action advantage A(s, a) is defined as

Qπ(s, a) = Vπ(s) +Aπ(s, a). DQN uses neural network

to directly approximate the Q-value; however, dueling

DQN separates it into two parts, one for estimating the

V -value, the other for estimating the action advantage

while the two parts sharing the convolutional neural

networks. However, an unidentifiable problem of calcu-

lating Q-value by adding V -value and A-value is when

given Q we can not recover V and A uniquely. To solve

this issue of identifiability, the solution is to force the

advantage function estimator to be zero at the chosen

action. Then the dueling DQN is implemented with:

Qπ(s, a) = Vπ(s) + (Aπ(s, a)−max
a′

A(s, a′)).
An alternative way is to replace the max operator by

an average operator as:

Qπ(s, a) = Vπ(s)+(Aπ(s, a)− 1
|A|

∑
a′A(s, a′)),

which may provide better performance.

Prioritized replay buffer Prioritized replay buffer [12]

is developed to solve a sample efficiency problem. Gen-

erally, we want the agent to pay more attention to some

transitions than others because it can learn more from

those transitions; however, the original replay buffer

randomly samples from the whole buffer. Priority re-

play buffer tends to more frequently sample transitions

with high expected learning progress, which is measured

by their temporal-difference (TD) error δ. The proba-

bility of sampling a transition i is defined as:

P (i) =
pαi∑
k pαk

,

in which pi > 0 is the priority of transition i, the param-

eter α indicates how much prioritization will be used.

There are mainly two ways to calculate the priority for

each transition. One direct way is a proportional priori-

tization where pi = |δi|+ϵ, ϵ is a small positive value to

prevent that a transition not being resampled once when

the TD loss is zero. The other way is an indirect rank-

based prioritization by calculating pi = 1
rank(i) , where

rank(i) for transition i is decided when it is stored into

the replay buffer with TD loss |δi|.

2.3 Proximal Policy Optimization Algorithms

(PPO)

As mentioned in section 2.1, policy gradient is represented

as ∇θJ(θ) = Eτ∼πθ(τ)[∇θ log πθ(τ)r(τ)], a sample of a tra-

jectory is usually used to calculate the expectation; however,

directly applying the r(τ) into this equation causes unsta-

ble performance because of the huge variance. One common

method is to subtract a baseline rb from r(τ) to make it

more robust. One most commonly used gradient estimator

is represented as:

ĝ = Et[∇θ log πθ(at|st)Ât],
where ĝ is a gradient estimator and Ât is an estimator of the

advantage function at timestep t. Here the policy gradient

estimator ĝ is obtained from the objective loss function:

LPG(θ) = Et[log πθ(at|st)Ât].
One problem with this objective function is that empirically

it often results in large policy updates and affect the robust-

ness. Trust region methods such as TRPO [13] maximizes

another objective loss function with a constraint in order to

address the large policy updates problem by the following

form:

max
θ

Et[
log πθ(at|st)

log πθold
(at|st)Ât − βKL[πθold(|̇st), πθ(|̇st)]].

PPO [7] proposed a clipped surrogate objective loss func-

tion to penalize changes to the policy as the following form:

LCLIP (θ) =

Et[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)],
where the probability ratio rt(θ) is defined as πθ(at|st)

πθold(at|st)

and ϵ is a hyperparameter.

In order to reduce variance, PPO also makes use of a

state-value estimator V (s), and the objective loss function

is a combination of the policy loss and the value function er-

ror term. The objective function can further be augmented

by combining an entropy bonus to ensure sufficient explo-

ration. By adding all these terms together, PPO proposes

the following objective function:

LCLIP+V F+S
t (θ) =

Êt[L
CLIP
t (θ)− c1L

V F
t (θ) + c2S[πθ](st)],

where c1, c2 are coefficients, S represents the entropy bonus,

and LV F
t is a squared-error loss (Vθ(st) − V targ

t)2.

2.4 Branching Dueling Q-Network (BDQ)

In order to solve a multi-dimensional action space prob-

lem, Tavakoli et al. [1] proposed an action branching ar-

chitecture (Figure 2) to address this issue. As indicated

as the name of this methodology, action branching archi-

tecture separates several network branches for each action

dimension, while each dimension shares the common con-

volutional neural networks to obtain the same state repre-

sentation vector. State representation vector is then fed into

different action branches and calculate action advantages for

each dimension. A common value function estimator is also

used to approximate state value, and then is used to cal-

culate Q-value for each dimension. Dueling Double DQN

(DDDQN) and prioritized replay buffer are used in this ar-

chitecture.

BDQ proposed several TD error candidates. One simplest

way is to calculate branch-separated TD target as:

yd = r + γQ−
d (s′, arg max

a′d∈Ad

Qd(s′, a′d)),

where d represents the dth branch. Alternatively, a single

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 82 -

global TD target can be used for all branches by using the

maximum TD target over all branches with the following

form:

y = r + γ max
d

Q−
d (s′, arg max

a′d∈Ad

Qd(s′, a′d)).

The maximum operation can be replaced by a mean opera-

tion:

y = r + γ 1
N

∑
d

Q−
d (s′, arg max

a′d∈Ad

Qd(s′, a′d)),

and this TD target shows better performance.

Figure 2. Branching Dueling Q-Network

The final loss function is calculated by the mean squared

TD error across all the action branches:

L = E(s,a,r,s′)∼D[1
N

∑
d

(yd −Qd(s, ad))2].

Gradient rescaling is applied because all branches back-

propagate gradients through the shared convolutional neural

networks.

2.5 Deep reinforcement learning with demonstra-

tions

For games with sparse rewards, it is very difficult for a

random agent to get some rewards from the environment,

thus it is very hard to learn an efficient policy. Hester et al.

[14] proposed Deep Q-learning from Demonstrations (DQfD)

to apply existing demonstrations to accelerate the learning

process and provide good starting policy instead of a ran-

dom policy. In such case, DQfD can be used to deal with

environments with extremely sparse rewards when provided

demonstration data.

DQfD separates the learning process into a pre-training

phase and an interacting phase, and uses a variant of re-

play buffer with fixed demonstration data. During the pre-

training phase, the agent samples min-batches from the

demonstration data and updates the network with a com-

bination loss: a 1-step double Q-learning loss, an n-step

double Q-learning loss, a supervised large margin classifica-

tion loss, and an L2 regularization loss. The large margin

classification loss is defined as:

JE(Q) = max
a∈A

[Q(s, a) + l(aE , a)] −Q(s, aE),

where aE is the demonstration action and l(aE , a) is a mar-

gin function that equals to 0 when a = aE and a positive

value otherwise.

The combination loss is represented as:

J(Q) = JDQ(Q) + λ1Jn(Q) + λ2JE(Q) + λ3JL2(Q),

where λs are used to control the weights of the losses.

Once the pre-training phase ends, the agent begins to in-

teract with the environment as normal DQN methods do.

Two things different from normal methods are replay buffer

and proportional prioritized sampling. The replay buffer in

DQfD fixes the demonstration data and never replace those

data. DQfD also uses positive constants ϵa and ϵd as priority

bonus for agent data and demonstration data respectively

to control the relative sampling between demonstration and

agent data.

3. Proposed Approach

To deal with multi-dimensional hybrid action spaces, we

propose to combine action branching architecture and the

policy gradient algorithm PPO. Figure 1 shows our proposed

architecture. In this section we will introduce several meth-

ods used in our proposed approach.

Adding non-pixel observation We not only take the

pixel-based frames as observation, but also the non-

pixel observations provided by the experiment environ-

ment such as compass angles and inventory items. To

deal with those non-pixel observations, we feed the ob-

servation vector into extra fully connected layers and get

the feature vector, which is then added to the output

of the convolutional layers. We take the combination of

non-pixel feature vector and frame feature vector as the

final state representation and then feed it into the value

function estimator and action branches.

TD loss In the multi-dimensional hybrid action space, we

use categorical distributions for discrete action spaces

and Gaussian distributions for continuous action spaces

respectively. For each dimension, branch loss is cal-

culated by LCLIP+V F+S
d (θ) mentioned in section 2.3,

where d means the dth branch.

Loss function One most direct and simplest way to de-

fine the loss function is the averaged TD loss across all

action branches as:

L = Eτ∼π(θ)[
1
N

∑
d

LCLIP+V F+S
d (θ)],

where N is the number of total branches.

Human demonstration For DQN-like value-based al-

gorithms, we can apply DQfD to utilize human demon-

stration data to improve sample efficiency, provide the

agent with a good starting policy, and accelerate the

learning process. However, in policy-based algorithms

such as PPO, the actor estimator directly approximates

the policy π(a|s), it is convenient to directly apply su-

pervised learning to update the actor estimator. We

use negative log likelihood loss for discrete actions and

MSE loss for continuous actions respectively, and the

final loss function is defined as the averaged loss. We

also separate the learning process into a pre-training

phase and an interacting phase. During the pre-training

phase, only the actor estimator is updated with super-

vised learning. During the interacting phase, the agent

interacts with the environment for several episodes with

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 83 -

PPO, then updates the actor estimator for a fixed num-

ber of times with supervised learning by using demon-

stration data, and continues this loop.

Multi-process simulation In order to reduce the vari-

ance of the policy gradient, a common method for

policy-based algorithms is to use multiple environments

to sample multiple trajectories and take the average.

However, our experiment MineRL environments do not

support multi-processing. As a result, we use only one

game process to simulate multiple processes to reduce

variance. Generally, PPO creates N processes, steps

T timesteps for each update, and samples mini-batches

from those NT timesteps. In our experiments, we cre-

ate 1 process, step NT timesteps and treat them as N

trajectories with length T and do the same sampling as

the original PPO.

4. Experiment

4.1 Environments

Navigation task In this task, the goal is to find a di-

amond block in a random generated Minecraft world.

Accessible observations are frames, the number of item

“dirt” in the inventory, and a “compassAngle” observa-

tion which points near the goal location, 64 meters from

the start location. Actions include “forward”, “back”,

“left”, “right”, “attack”, “place”, “jump”, “sneak”,

“sprint”, “direction”, “sightline angle”, where “direc-

tion” and “sightline angle” are continuous values. The

agent is given a +100 reward upon touching the di-

amond block; however, we use a dense reward vari-

ant in which the agent is given a reward every tick

for how much closer (or a negative reward for farther)

the agent gets to the target. Episode terminates when

agent reaching the goal block or using up maximum

6000 steps.

Figure 3. Navigation task environment. The goal is to find a

diamond block in a random environment, the diamond may be

slightly below surface level.

Figure 4. Treechop task environment. The goal is to obtain 64

log units from a forest biome.

Treechop task As logs are necessary and significant to

craft a wide range of items, it is a very important skill

to get logs from the environment. In this task, the

agent needs to collect 64 logs in a forest biome given

an iron axe for cutting trees. Accessible observations

are frames only, while actions are “attack”, “back”,

“forward”, “jump”, “left”, “right”, “sneak”, “sprint”,

“direction” and “sightline”. The agent is given a +1

reward when it obtains a unit of wood. Episode ter-

minates when agent obtains 64 units or uses up 8000

steps.

4.2 Navigation

We trained four different models in the navigation task:

(1) Dueling double DQN without human demonstration

data; (2) DDDQN with human demonstration data while

the pre-training loss is J(Q) = JDQ(Q); (3) DDDQN with

human demonstration data while the pre-training loss is

J(Q) = JDQ(Q) + λ1Jn(Q) + λ3JL2(Q); (4) PPO without

demonstration data. For all DDDQN models, we applied the

prioritized replay buffer and discretized the continuous ac-

tion spaces. All models used the same network architecture

shown in Figure 1; however, for DDDQN, the output lay-

ers of continuous action dimensions are different from PPO

model. In DDDQN demo models, mini-batch size is 32, the

number of pre-training step is 100000. Demonstration data

replay ϵ is 0.01 and interaction data replay ϵ is 0.0001.

Figure 5. Training results in navigation task for 4 mod-

els. DDDQN represents model 1, DDDQN V0 for model 2,

DDDQN V1 for model 3 and PPO for model 4.

Episode rewards analysis for 4 models in navigate

Model Mean

reward

Median

reward

Min re-

ward

Max

reward

DDDQN 34.90 33.36 -18.76 175.18

DDDQN V0 39.46 43.06 -44.33 175.99

DDDQN V1 41.96 46.08 -34.72 177.49

PPO 49.27 53.15 -14.64 172.28

Table 1.

Training results are shown in Figure 5 and Table 1.

PPO learns faster and achieves higher average rewards than

other three models, even obtains better performance than

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 84 -

DDDQN with human demonstration data. From Table 1,

we can see that PPO has the highest mean and median re-

ward over 1000 episodes. The min reward of PPO comes

from the first episode in the training process and episode

reward gets higher gradually.

4.3 Treechop

We trained four models for the treechop task: (1)

DDDQN without human demonstration; (2) DDDQN with

human demonstration and the pre-training loss is J(Q) =

JDQ(Q) + λ1Jn(Q) + λ3JL2(Q); (3) PPO without human

demonstration; (4) PPO with human demonstration. All

these four models used the same network shown in Figure 1,

except that DDDQN algorithms had different output layers

with PPO algorithms. In our proposed PPO demo model,

mini-batch size is 32, the number of pre-training step is

50000. During the interacting phase, we trained the agent

with demonstration data for 500 steps every 2 episodes.

Episode rewards analysis for 4 models in treechop

Model Mean

reward

Median

reward

Min

reward

Max

reward

DDDQN 0.0 0.0 0.0 0.0

DDDQN DEMO 8.52 8.0 0.0 37.0

PPO 0.0 0.0 0.0 0.0

PPO DEMO 36.62 38.0 0.0 63.0

Table 2. In treechop task, episode terminates when agent

obtains 64 log units, thus the highest score in one episode is

63.

Figure 6. Training results in treechop task for 4 models.

Training results of these models are shown in Figure 6 and

Table 2. The results of PPO and DDDQN without demon-

stration data indicate that in the treechop task, which has

an environment with extremely sparse reward and is very

hard to get rewards with random actions from, pre-training

with demonstration data is crucial for the agent to have a

quick start. With demonstration data, PPO achieves much

more higher scores than DDDQN, shows better compatibil-

ity with data and sample efficiency.

5. Conlusion

In this work, we propose to combine the action branching

architecture and PPO to solve a multi-dimensional hybrid

action space problem in the game of Minecraft. We compare

our methods with BDQ in two different tasks. Our method

greatly accelerates the learning process and achieves better

performance in both environments. In the treechop task,

our method shows better compatibility with human demon-

stration data.

We think there are still some ways to improve this method.

In this work, we only apply the simplest way to combine

branch losses into a final loss function, it could be improved

to use other kinds of aggregation. The second point is that

it is able to reduce the action dimension, such as combining

“forward” and “back” into one dimension. Also when we

used human demonstration data in our proposed method,

we found that it was difficult to make a balance between su-

pervised learning and environment interaction. Overfitting

occurred when the frequency of supervised learning was high

during the interacting phase while lower frequency decreased

the performance.

References

[1] Tavakoli, A. et al.: Action Branching Architectures for Deep
Reinforcement Learning, AAAI Conference on Artificial In-
telligence, pp. 4131–4138 (2018).

[2] van Hasselt, H., Guez, A. and Silver, D.: Deep Reinforcement
Learning with Double Q-learning, ArXiv e-prints (2015).

[3] Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot,
M. and de Freitas, N.: Dueling Network Architectures for
Deep Reinforcement Learning, ArXiv e-prints (2015).

[4] Mnih, V. et al.: Asynchronous methods for deep reinforce-
ment learning, ICML 2016, pp. 1928–1937 (2016).

[5] Silver, D. et al.: Deterministic policy gradient algorithms,
ICML 2014 (2014).

[6] Lillicrap, T. P. et al.: Continuous control with deep reinforce-
ment learning, arXiv preprint arXiv:1509.02971 (2015).

[7] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and
Klimov, O.: Proximal policy optimization algorithms, arXiv
preprint arXiv:1707.06347 (2017).

[8] Xiong, J. et al.: Parametrized deep q-networks learning: Re-
inforcement learning with discrete-continuous hybrid action
space, arXiv preprint arXiv:1810.06394 (2018).

[9] Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhn-
evets, A. S., Yeo, M., Makhzani, A., Küttler, H., Agapiou, J.,
Schrittwieser, J. et al.: Starcraft ii: A new challenge for rein-
forcement learning, arXiv preprint arXiv:1708.04782 (2017).

[10] Sutton, R., Barto, A., Barto, R., Barto, C. and Bach, F.:
Reinforcement Learning: An Introduction, A Bradford book,
Bradford Book (1998).

[11] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beat-
tie, C., Sadik, A., Antonoglou, I., King, H., Kumaran,
D., Wierstra, D., Legg, S. and Hassabis, D.: Human-
level control through deep reinforcement learning, Na-
ture, Vol. 518, pp. 529 EP – (online), available from
⟨http://dx.doi.org/10.1038/nature14236⟩ (2015).

[12] Schaul, T., Quan, J., Antonoglou, I. and Silver, D.: Pri-
oritized experience replay, arXiv preprint arXiv:1511.05952
(2015).

[13] Schulman, J., Levine, S., Abbeel, P., Jordan, M. and Moritz,
P.: Trust region policy optimization, International confer-
ence on machine learning, pp. 1889–1897 (2015).

[14] Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul,
T., Piot, B., Horgan, D., Quan, J., Sendonaris, A., Osband, I.
et al.: Deep q-learning from demonstrations, Thirty-Second
AAAI Conference on Artificial Intelligence (2018).

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 85 -

