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Gradient Learning for the game of Go

Shi-Jim Yen', Yi-Ling Chen', Hsin-I Lin'

Abstract. Computer Go can play the role of the drosophila for the Al services of assisting human learning.
For the game of Go, since human Go players have a different process of reasoning compared to Go programs
today, we need to develop Go learning methods that more closely match how humans think. It is hard to do
this before. Nowadays, deep learning is a powerful tool since 2012. We can use deep learning to simulate the
move style of different kinds of human players. In this paper, we use several deep learning techniques and
reinforcement learning to develop a gradient learning system for Go. The system contains human-like Go
programs with various strengths, which allows players to learn Go skills progressively. The experimental
result shows that the system can help players to improve their ranking.
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1. Introduction

Computer Game is the drosophila of Artificial
Intelligence. A series of AlphaGo programs created
a brand new history for Al [6][7][8] For the Al
services of assisting human learning, we believe
computer board games can also play the role of the
drosophila. Since human Go players have a
different process of reasoning compared to Go
programs today, we need to develop Go learning
methods that more closely match how humans
think. Deep Learning takes inspiration from human
cognitive processes and is similar to human
intuition. As a result, Go programs developed with

Deep Learning generate plays that feel more human.

We use Deep Learning, Reinforcement Learning,
and Monte Carlo tree serch to develop a gradient
learning system for Go. The system contains
human-like Go programs with various strengths,
which allows players to learn the game
progressively. This paper will describe the learning
theories and framework of this system. Then gives
the rewards from the users.

2. Learning Theory and System
Framework

2.1 The Learning Theory

The basic learning theory of the gradient
learning system is Scaffolding Theory. The Theory
is based on the concept of Zone of Proximal
Development (ZPD) in constructivist theory by
Vygotsky. [1][2] For people to develop their mind
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they have to seek knowledge from someone wiser
than you, like a mentor. In this study, we developed
a concept based on Scaffolding Theory proposed by
Wood et al. [3][4][5] It involves a kind of
“scaffolding” process, mentions that the novice or
child needs the direction by auxiliary to solve a
problem, achieve their goal and finish a task which
would help their unassisted efforts. As a
consequence, we expanded the concept of learning
gradient in this research to find out the most
suitable auxiliary enable to guide learning
effectively and maintain learners to focus on the
direction correctly in learning. The principle of
gradient learning is according to Scaffolding
Theory proposed by Wood, Bruner & Ross[3] as the
foundation to make learners have each auxiliary to
improve personal learning skills in the correct
direction.

The concept of learning gradient is that the best
opponents to play against are in fact not the top
experts of the field. Instead, one improves the most
when playing against someone who is just one step
higher on the skills gradient. If you play against an
opponent who is much higher on the skills gradient,
you may not have the ability yet to comprehend the
opponent's actions, so the experience turns out to be
less helpful for learning.

However, it is difficult to use a traditional
algorithm to perform different levels in simulation.
Take Al Go programs for example, despite normal
programs in Go have reached the same power to
defeat professional opponents, they are helpless to
people learning Go. Using deep learning and
reinforcement learning, we can establish a gradient
learning system, allowing learners to choose a
suitable from the Go program, and increase the
efficiency in learning.
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2.2 The System Framework

The framework of our system is based on that
of AlphaGo, which is constructed by deep
convolutional neural network(DCNN)[9] and
Monte Carlo tree search(MCTS)[6]. The strength of
a Go program is based on the quality of DCNN and
the simulation number of MCTS. [6][7][8]

Ikeda and Wu used MCTS to produce various
strategies moves and natural position control.
[11][12] However, Naturalness moves may cause a
problem for MCTS based methods. Our method is
to use different DCNN models trained from
different Go game records. Then use different
MCTS parameters setting. Finally, we could make
many human-like Go programs with various
strengths.

Table 1 shows the ranking system for Go. Our
system has 6 DCNN models for 6 kinds of Go
programs as in Table 2. There are 30 Go programs
with 30 different levels, respectively. Each is made
with different model and different MCTS
parameters setting for the 30 levels, respectively.

Table 1. The ranking system for Go.

Beginner Kyu amateur
Rank 25K | ... 10K 9K ...| IK
#Srial | 0 15 16 ...| 24
Dan amateur Pro
1D ... 9D 1P ... 9P
23 ... 33 34 ... 42

Table 1 The setting for different strength Go programs.
The unit of the number is thousand.

levels #trained | #trained | accuracy | #MCTS
games Boards simulations

>10K 100 21,940 | 43.30% | 0.5-1

7K-9K | 120 27,563 | 45.80% | 1-3

4K-6K | 120 27,170 | 46.30% | 1-3

1K-3K | 120 27,069 | 47.50% | 3-5

1D-3D | 120 26,905 | 48.40% | 6-12

4D-7D | 120 26,494 | 50.22% | 12-100
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3. Rewards from the Users

The different strength Go programs are
operating in U-gen no ma of Nihon Ki-in (P #
Feds % 2 %) with the bot account shows in Figure
1. The name of the bot is GoTrend. There are Dan
GoTrend and Kyu GoTrend, and Beginner
GoTrends bots as in Figure 2, Figure 3, and Figure
4, respectively.
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Figure 1. U-gen no ma of Nihon Ki-in
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Figure 2. The Dan GoTrend bots.
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Figure 3. The Kyu GoTrend bots.
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Figure 4. The Beginner GoTrend bots.
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So far, the system has provided about one
million AI Go moves per month. U-gen no ma of
Nihon Ki-in conducted a questionnaire survey for
the users. The results of the questionnaire show that
the system is quite popular and with positive
comments among users. Figure 5 shows why users
like this system. It can be seen that many people
started to contact Al services out of curiosity, then
prefer to use this system. As can be seen in Figure 6,
users believe that the power of Go in the system is
appropriate and there is no sense of naturalness
moves.
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The reason they played / multiple choice allowed

Figure 5. The reason they played with our system/
multiple choice allowed.
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Figure 6. Good point of our system.

Figure 7 and Figure 8 show the user's power of
Go distribution and the user's Go age. The user’s
age of Go is mostly more than 10 years, and the
power of Go is mainly amateur. Thus, it can be seen
that most of the users are elderly people. Because of
attracting the use of senior citizens, this system has
great potential in the development of the long-term
care systems. In addition, the users in this system
are part of the beginner. A big problem for
beginners in the past is that it is not easy to find an
opponent. Because the system provided a variety of
opponents with different power of Go, the number
of beginners has increased a lot, which is one of the
contributions of this system.
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Figure 7. Go skill of the users.
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Figure 8. Go history of the users.
4. Concluding Remarks
We wuse Deep Learning, Reinforcement

Learning, and Monte Carlo tree search to develop a
gradient learning system for Go. The system
contains human-like Go programs GoTrend with
various strengths, which allows players to learn the
game progressively. Go players can choose the
suitable Go program to compete and learn its skills.
The questionnaire shows that our programs
GoTrend is quite popular and with positive
comments among users.
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