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Abstract: With the growth of the amount of genomic data generated from high-throughput sequencing, next-
generation sequencing (NGS) has become the mainstream format for genome sequence data. NGS presents new
challenges for many applications for genome sequence analysis. In sequence comparison applications, traditional
multiple-sequence alignment approaches do not provide a solution for analyzing NGS data because of the short-read
assembly and computational resource problems. Thus, alignment-free methods are more suitable for NGS data com-
parisons. Most of the alignment-free methods are based on the k-mer algorithm. However, the characteristics of NGS
data make such k-mer-based methods suboptimal because the k parameter is a crucial factor in distance measurement
and for the construction of phylogenetic trees. We propose an effective parameter-free comparison of NGS short reads,
with the aim of eliminating the dependency on the k parameters. We compared the proposed method with existing
methods, and the results show that the proposed method can measure accurate distances for the dataset without requir-
ing any parameter.
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1. Introduction

Sequencing is a process that transforms data from genome
samples into a digitized data sequence. Nowadays, there are a
tremendous number of sequencing methods and techniques that
are used in the process. Traditional sequencing processes provide
long sequences for a DNA sample. However, this sequencing
process is only available for a small portion of DNA sequence
per sample, such as mitochondrial DNA (mtDNA) or prokary-
ote DNA. It cannot be used to sequence the whole genome be-
cause of the massive length of the DNA sequence. Recently, next-
generation sequencing (NGS) [1] has been introduced to achieve
high-throughput sequencing as a significant advance over tradi-
tional processes. By using a different sequencing technique, NGS
provides large numbers of sequence fragments called reads, per
genome sample, instead of one long sequence of genome data.

The data sequence obtained from the sequencing process is
used in sequence comparison and phylogeny reconstruction pro-
cesses to generate a phylogenetic tree, which is essential for a
vast number of studies in the biology field. Typically, sequence
comparison algorithms use one long genome sequence, such as
16S rRNA in mtDNA, to calculate the distance between each se-
quence and to construct a distance matrix [2], [3], [4]. The clus-
tering and classification algorithms are then applied to the dis-
tance matrix to construct a phylogenetic tree that shows evolu-
tionary relationships between sequences. To construct an accu-
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rate tree, an efficient sequence comparison method is required.
The emergence of NGS short reads data with the new form of

genome sequences creates new challenges for traditional methods
of sequence comparison [5], [6]. The alignment-based methods
such as multiple-sequence alignment (MSA) have trouble dealing
with a large proportion of NGS short reads data. Moreover, when
NGS was introduced, the differences between NGS short reads
data and long sequence data needed to be considered. Assembly,
which is a procedure that is used to reconstruct the NGS short
reads into the long sequence, is needed when working with NGS
data. In the assembly procedure, NGS short reads are mapped
onto a template sequence, which involves significant computa-
tional cost. However, to assemble the genome without template
sequences is very challenging because the reads are mostly short
and contain large numbers of repeated genome sequences.

Recently, alignment-free methods for sequence comparison
have attracted attention from researchers because of its high
processing efficiency compared with alignment-based methods.
These methods have an advantage over MSA in the assembly
process because they do not require an assembly process; hence,
they are scalable to large numbers of NGS short reads. Most
alignment-free methods rely on k-mer frequencies to measure the
distance [4]. Several alignment-free methods have been proposed
to focus specifically on NGS short reads data. CVTree [7], [8],
dS

2 [9] and skmer [10] have shown good results for distance mea-
surements and phylogeny reconstruction with both NGS short
reads data and long genome sequences. However, these meth-
ods depend significantly on a parameter k, and different values of
k could lead to different phylogenetic tree results. Hence, it is dif-
ficult for researchers to determine which k value would construct
a tree that is closest to the natural evolutionary relation between
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their input species. Moreover, alignment-free methods remain
less accurate than MSA.

The goal of this research is to develop a novel sequence com-
parison approach that requires no k parameter adjustment while
maintaining the accuracy of the result. We utilize the informa-
tion on short reads alignment for comparison of NGS data. In-
stead of assembling the NGS short reads then aligning the result
with the other sequences to measure their distance, we propose a
new method, namely dRA, that is based on the alignment of NGS
short reads themselves. The main idea is that if the sequence
ends up aligned with others after assembly, their NGS short reads
before assembly should also be aligned. By searching for the
corresponding NGS short reads between each set and then calcu-
lating the distance from their alignment, this method allows the
distance to be calculated with no dependency on the k parameter
and to maintain the same accuracy as the alignment-based ap-
proach. Our method also has no requirement for assembly, like
the alignment-free approach.

We have compared our method with alignment-free methods
and found that our novel read alignment approach can provide
a more accurate distance measurement on three simulated NGS
datasets to construct the phylogenetic tree than other alignment-
free methods. The phylogenetic trees constructed using the new
method are similar to the benchmark tree obtained by other re-
searchers while requiring no parameter adjustment. We also con-
ducted experiments on multiple simulated NGS sets from the
same dataset to evaluate the effect on different reads’ randomness
and coverage. Our approach delivers similar measured distances
among each set.

In summary, this paper makes the following contributions:
• We propose a novel sequence comparison approach, namely

dRA, which requires no k parameter while maintaining the
accuracy of the result. Because dRA is a k-free approach, it
can be applied even on NGS sets without benchmark trees,
whereas it is difficult to adjust the k parameter for other
alignment-free approaches in such NGS sets.

• We utilize the Gaussian mixture model to improve the accu-
racy of the distance measurement of our approach.

• We conducted experiments on three real datasets to measure
the accuracy of our proposed approach in comparison with
other alignment-free approaches. Along with the accuracy,
we also measured the consistency of pair-wise distance com-
putation to evaluate better the effectiveness of our proposed
method. The experimental results indicate that dRA pro-
vides higher accuracy while maintaining consistency com-
pared with other baseline methods.

• We also conducted experiments to evaluate the efficiency
of the proposed approach. From empirical evidence, dRA

mostly outperformed other alignment-free approaches. In
some cases, although dRA takes longer processing time, it
offers better accuracy and consistency than baseline ap-
proaches.

2. Problem Definition

In this research, we focus on the comparison of NGS data se-
quences for phylogeny reconstruction. With the input as the NGS

sets of the species, the phylogenetic tree of those input NGS sets
can be reconstructed. This tree shows the evolutionary relation-
ships between the input species according to their genome se-
quence distances. To construct an accurate phylogenetic tree, a
reasonable distance measurement between the NGS sets is re-
quired.

Define A = {a1, a2, . . . , an} as the NGS set with n short reads.
Each short read ai ∈ w∗ is a genome sequence of four nucleotide
characters w = {A,C, T,G}. With several NGS sets as the input,
the distance matrix M contains every pair-wise distance between
each NGS set. Using the distance matrix M, we can reconstruct
the phylogenetic tree result of the input NGS sets.

Many methods have been proposed to measure an accurate
distance. Alignment-free approaches are considered as efficient
methods for the task. Most of the alignment-free methods are
based on the k-mer profile of the sequence. The k-mer profile of
the genome sequence s can be defined as all possible substrings in
s with length k. The parameter k is crucial for the distance mea-
surement on these k-mer-based methods because it significantly
affects the distance measurement result. Therefore, in this pa-
per, we address the problem of k dependency in the k-mer-based
methods but still maintain the accuracy of the distance measure-
ment.

3. Related Work

Sequence comparison is a well-studied problem for genome se-
quence analysis. Many researchers have proposed sequence com-
parison methods over the past decade. The traditional method is
alignment-based MSA. There are several tools that are available
for efficient MSA such as the Clustal series [11], [12], [13], T-

coffee [14] and MUSCLE [15].
However, with the growth in the number of sequencing tech-

niques, MSA is limited because of its low efficiency for the com-
parison of large genomes. The alignment-free approaches such as
FFP [16], kmacs [17], spaced-word [18], and kSNP v2 [19] have
been introduced to address the problem of MSA. Three k-mer-
based alignment-free methods are used as the baselines in this pa-
per; namely, CVTree, dS

2 , and skmer. Both CVTree and dS
2 focus

on normalized k-mer frequencies. While skmer is based on k-mer
occurrence, CVTree calculates the distance between two genome
sequences or NGS short reads sets by using their normalized k-
mer frequency vector, called the composite vector (CV). dS

2 is a
statistical approach to modify raw distance measures to produce
measures that better suit the NGS data.

3.1 CVTree: CV Alignment-free Method
For a fixed length k, count separately the number of substrings

of length k, k − 1, k − 2 on each input sequence. The initial CV
is the number of k-mer frequency, which is N = 4k total dimen-
sions for DNA sequences and N = 20k for protein sequences in
lexicographic order. Calculate the subtraction score for the k-mer
ai:

ai(α1α2 · · ·αk) ≡ f (α1α2 · · ·αk) − f 0(α1α2 · · ·αk)
f 0(α1α2 · · ·αk)

,

where f (α1α2 · · ·αk) is the frequency of k-mer α1α2 · · ·αk and
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f 0(α1α2 · · ·αk) is the predicted frequency of the k-mer calculated
using a (k − 2)-th Markov assumption.

Let CVA = a1a2 · · · aN and CVB = b1b2 · · · bN be the CVs for
the species A and B, respectively. Finally, calculate the distance
matrix for the modified CV:

D (A, B) = (1 −C(CVA,CVB))/2,

where

C (CVA,CVB) =

∑N
i=1 ai × bi√∑N

i=1 a2
i ×

∑N
i=1 b2

i

.

3.2 dS
2

k-mer Statistical Alignment-free Method
dS

2 statistics is a modified version of D2, D∗2, and DS
2 statis-

tics [14], [15]. They consider the random processes of NGS data
in terms of D2, D∗2, and DS

2 to model the correct k-mer distribu-
tion of NGS data. NGS short reads are small fragments from the
original long sequence, which means that the method of sampling
those reads will affect the k-mer frequency distribution. Another
characteristic of NGS data relevant to dS

2 statistics is that an NGS
short read can originate from the forward or reverse strand of the
original genome, requiring consideration of not only the k-mer
distributions of short-read data themselves but also their comple-
mentary sequences.

Suppose that M reads of length β are sampled from a genome
of length n. Let Xw and Yw be the numbers of occurrences of k-
mer w in the M pairs of reads from the first genome and the sec-
ond genome, respectively. We define X̃2

w = Xw−M(b−k+1)(pw+

pw̄) with Ỹ2
w being defined analogously. Let w = w1w2 · · ·wk and

pw = pw1 pw2 · · · pwk , with w̄ being the complement of word w.
Consider two genome sequences taking L letters (0, 1, . . . , L − 1)
at each position. For the null model, we assume that the two
genomes are independent, and both are generated by models with
pl being the probability of taking state l, l = 0, 1, . . . , L − 1. dS

2

can be calculated by:

dS
2 =

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1 −
DS

2√∑
w∈Ak X̃2

w/Z̃2
w

√∑
w∈Ak Ỹ2

w/Z̃2
w

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where

DS
2 =

X̃wỸw

Z̃w

and

Z̃w =
√

X̃2
w + Ỹ2

w.

3.3 Skmer: Assembly-free and Alignment-free Sample
Identification Using Genome Skims

This method is also based on k-mer, like many alignment-free
methods. In general, skmer is an improvement of Mash [20], in
which the Jaccard index (J), a similarity measure between any
two sets (in this case, k-mer occurrence) defined as the size of
their intersection divided by the size of their union, is estimated
efficiently by using a hashing procedure. The similarity is then
used to estimate the genomic distance between two genomes. The

problem of Mash is that its similarity is impacted by many fac-
tors such as coverage, sequencing error, and data length. Skmer
aimed to solve all the effects of these factors with respect to the
final similarity. There are two steps in skmer: the first step is
using k-mer frequency profiles to estimate the sequencing error
and the coverage. Let Mi be the number of k-mer observed i

times in the genome-skim. Let h = argmaxi≥2Mi. By defining
ξ = Mh+1

Mh
(h + 1), k-mer coverage (λ) and the sequencing error

rate (ε) can be calculated by the equations:

λ =
M1

Mh

ξh

h!
e−ξ + ξ(1 − e−ξ),

ε = 1 − (ξ/λ)1/k.

In the next step, they use the hashing technique of Mash to
compute the Jaccard index J and then compute the final genomic
distance using the equation:

D = 1 −
(

2(ζ1L1 + ζ2L2)J
η1η2(L1 + L2)(1 + J)

)1/k

,

where for i ∈ {1, 2}, ηi = 1−e−λi(1−εi)k
and ζi = ηi+λi(1−(1 − εi)k),

and Li is the estimated genome length.

4. Proposed Method

According to Ref. [21], lack of alignment makes it more diffi-
cult to extract all of the possible information about evolutionary
distances between species from k-mer-based methods because
they only use differences in the presence/absence of k-mers. For
example, if k-mer contains multiple substitutions, it is counted
as one k-mer difference, which is the same as a k-mer that con-
tains only one substitution. Thus, a lower k is more sensitive to
the evolutionary distances than a larger k. However, the lower k

causes the homoplasy problem, which is popularly considered as
“noise” in the phylogenetic tree reconstruction [21], [22]. There-
fore, the parameter k affects distance measurement and needs to
be appropriately set.

Moreover, larger k in the k-mer-based methods can deal with
the homoplasy problem but is not sensitive to the evolutionary
distances because it causes more loss of evolutionary informa-
tion. Hence, k-mer-based methods require large datasets with
vast amounts of data to provide accurate distances and balance
the effect of long k-mer [21].

To solve these problems in the k-mer-based methods, we pro-
pose a novel approach to eliminate the dependency of the k pa-
rameter so that the method works well with not only large datasets
but also small datasets. To maintain the accuracy of the method
as much as possible, we take advantage of the alignment as-
pect of MSA because the alignment method evaluates the evo-
lutionary distances based on the mutation that causes the substi-
tution directly. When working with the NGS short reads data,
many methods need to use an assembly process, but this is time-
consuming and has the problem of lack of suitable reference se-
quences. Hence, our method focuses on the alignment approach
without assembly on NGS data. Then, the problem becomes how
to approximate the distance between NGS short reads sets with-
out assembly. To tackle this problem, we propose a method to
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Fig. 1 The traditional method to align two NGS short reads data.

combine the distance of each alignment pair into an accurate pair-
wise distance using the Gaussian mixture model. We call our
method the short read alignment approach or dRA.

To define the method, we consider the relationship between
the alignment of assembled sequences and the NGS short reads
without assembly. With two NGS sets A = {a1, a2, . . . , an} and
B = {b1, b2, . . . , bm}, let S A and S B be the sequences assembled
from NGS sets A and B, respectively. S A and S B are aligned
into AlignA and AlignB by inserting some gaps. The distance be-
tween these two sequences can be calculated from those aligned
sequences, as shown in Fig. 1.

To replicate the alignment of the AlignA and AlignB on the NGS
short reads without assembly, we assume that, for some NGS
short read, a ∈ A, a could be considered to inexactly match (the
matching process which allows some mismatch and gaps) with
the substring of AlignB because the gaps are allowed in the align-
ment. Given that AlignA and AlignB are aligned with each other,
a is also an inexact match with the substring of AlignB. In other
words, some NGS short reads a ∈ A are an inexact match with
some NGS short reads b ∈ B. With this information, we could
establish the relationship of the alignment with NGS short reads
directly without assembly.

For a pair of strings x and y, let d(x, y) denote the normalized
unit cost edit distance, i.e., d(x, y) is calculated by the edit dis-
tance with all costs of operation being equal to 1 between x and y
divided by max(|x|, |y|). Consider two aligned sequences AlignA =

alignA1 . . . alignAn and AlignB = alignB1 . . . alignBn with the dis-
tance between them equal to d(AlignA, AlignB). Assume that
the probability that the substitution, insertion, and deletion oc-
cur is independent and uniform in AlignA and AlignB. Therefore,
with any corresponding substrings sa = alignAi . . . alignA j and
sb = alignBi . . . alignB j where 1 ≤ i, j ≤ n, the normalized unit
cost edit distance d(sa, sb) ≈ d(AlignA, AlignB).

Because some NGS short read a ∈ A can be an inexact match or
alignment with some NGS read b ∈ B when A and B are the NGS
sets, we could consider the alignment part between a and b as the
corresponding substring of AlignA and AlignB. For example, in
Fig. 2, the NGS short read a2 ∈ A is the alignment pair of b2 ∈ B

with the alignment part shown as the region between the red lines.
However, only one alignment pair is not enough to approximate
an accurate distance d(AlignA, AlignB). With the collection of the
alignment pairs between NGS short reads of A and B, the con-
catenation of the alignment parts that represent the longer cor-
responding substrings of AlignA and AlignB would provide more
accurate distance approximation of the d(AlignA, AlignB).

Fig. 2 The relationship of the alignment between two NGS short reads with-
out assembly.

Fig. 3 Alignment pairs searching.

4.1 Alignment Pair Searching
At this step, we search for the alignment pair from each NGS

sets for every NGS short reads that are required in the next step.
The set of alignment pairs between A and B is denoted by P(A, B)
as follows:

P(A, B) =
n⋃

i=1

argmin
(ai ,b)∈{ai}×B

d(ai, b).

The alignment pairs in P(A, B) are the pairs of NGS short reads
a ∈ A and b ∈ B with minimum edit distance. Figure 3 shows an
example of the alignment pair searching. According to the figure,
there are several NGS sets A, B to Z. Each set consists of the
NGS short reads A = {a1, a2, . . . , al}, B = {b1, b2, . . . , bm} until
Z = {z1, z2, . . . , zn} when l, m, and n are the size of sets A, B, and
Z, respectively. We search for the alignment pair of each NGS
short reads of all other sets. For example, with a1 ∈ A, we first
search the alignment pair of a1 in B and find b1. Then, we con-
tinue searching in the other sets until the last set Z. In Z, we find
the alignment pair is zn as shown in the figure. Given that the size
of each set is not the same, some short reads might be aligned to
more than one read. If |A| > |B| then some short read in A could
be aligned with the same short read in B. For example, short read
a2 and ai are paired with b2.

4.2 Pair-wise Distance Measurement
After retrieving a collection of alignment pairs from the align-

ment pair searching step, we use the distance of alignment pairs
to calculate the final pair-wise distance between NGS sets. For
the distance measurement, we consider each alignment pair as a
part of the overall alignment between two NGS sets. Hence, we
could estimate the distance between any NGS sets by combining
the alignment pairs corresponding to those sets with the following
equation:

dRA = (D (A, B) + D(B, A))/2, (1)

D(A, B) =
∑

(a,b)∈P(A,B)

(
−3

4
ln

(
1 − 4

3
d(a, b)

))
∗ ws(a,b). (2)
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We define D(A, B) as our pair-wise distance between two NGS
sets A and B (Eq. (1)). So D(A, B) can be calculated by the
summation of the Jukes–Cantor distances of any corresponding
alignment pair in P(A, B) with the weight of ws(a,b). The Jukes–
Cantor model estimates the evolutionary distance between DNA
sequences by considering the mutation rate of the nucleotide. The
model assumes that all four nucleotides A, C, T, and G have the
same probability of appearing in the sequence and the same mu-
tation rate. Given that the alignment set P(A, B) is not equal to
P(B, A), D(A, B) is asymmetric. So, we define our distance mea-
surement dRA as an average of D(A, B) and D(B, A).

The weight ws(a,b) is from the assumption that each individual
alignment pair distance should not contribute to the final pair-
wise distance equally. The significance of the alignment pairs in-
creases exponentially to the similarity of the alignment pair [23].
Hence, the relationship between the weight ws(a,b) and the simi-
larity s(a, b) = 1 − d(a, b) is defined as follows:

ws(a,b) =
exp (s (a, b))∑

(a,b)∈P(A,B) exp (s (a, b))
. (3)

However, there are some cases in which the alignment pairs re-
trieved in the searching step are not the corresponding alignment
pairs from the alignment of the assembly sequences. These non-
corresponding alignment pairs should contribute to the pair-wise
distance significantly less than the corresponding pairs.

We assume that the distribution of frequency of the all align-
ment pairs (a, b) ∈ P(A, B) according to their similarity is a
bimodal distribution. The bimodal distribution consists of two
modes (peaks). In this case, the distribution of the first mode
with less similarity is referred to as noncorresponding alignment
pairs, and the second mode with more similarity as corresponding

alignment pairs. The alignment pairs with high similarity have
more probability of being the corresponding pairs.

For the alignment pair (a, b) ∈ P(A, B), let Prob(a, b) de-
note the probability that the pair (a, b) is the corresponding pair.
prob(a, b) can be calculated by learning the bimodal distribution
using the Gaussian mixture model with an expectation maximiza-
tion algorithm [24], [25]. To reduce the significance of noncorre-
sponding alignment pairs, weight ws(a,b) was redefined according
to the Prob(a, b) by the following equation:

ws(a,b) =
exp (s (a, b)) ∗ Prob(a, b)∑

(a,b)∈P(a,b) exp (s (a, b)) ∗ Prob(a, b)
. (4)

5. Experiment and Evaluation

5.1 Experiment Setup
5.1.1 Datasets

To evaluate our proposed method dRA, we use three datasets,
29 mammalian mtDNA sequences [26], [27], 29 Escherichia/

Shigella [28], and 18 Drosophila genomes [10]. The 29 mam-

malian mtDNA dataset consists of the mitrocondrial DNA se-
quence within 29 mammal species. The 29 Escherichia/Shigella

dataset consists of the entire genome sequences of 29 species
of bacteria in the family of Escherichia and Shigella. The last
dataset is the 18 species of fly (insect) or Drosophila. The statis-
tics of all three datasets are shown in Table 1.

Table 1 Size and the total sequence lengths of the three datasets.

Size (MB) Total sequence lengths

29 mammalian mtDNA 0.5 482,127

29 Escherichia/Shigella 144 141,962,164

18 Drosophila 3,110 3,109,816,396

5.1.2 Experiment Procedure
Given that all three datasets were initially long sequences, we

used a tool called ART [29] to simulate NGS short reads from
the long genome sequences. We used two error models; namely,
454 and Illumina, to simulate the NGS high-throughput sequenc-
ing results from two different NGS platforms. These methods
produced the actual samples as NGS short reads data. The 454

model produces various lengths of NGS short reads and has a
high chance of sequencing errors on homopolymer sequences,
which include multiple consecutive duplicate characters. Mean-
while, the Illumina model provides fixed-lengths of NGS short
reads and has no problem with the homopolymer sequences.

We conducted experiments with various values of coverage on
each dataset. Coverage is the average times of occurrence of nu-
cleotides at each position in the original sequences that appear
in the NGS sets. For example, the coverage value 5x means that
the NGS short reads overlap five times according to each position
in the original sequences. We could say that the NGS set with
1x coverage is the NGS set with no overlap. The length of NGS
short reads was set to 150 bps, with a default parameter for the
error distribution for each model.

The size and the total number of original datasets and the sim-
ulated NGS sets are summarized in Table 2. Because, in practice,
researchers usually get low coverage data in the sequencing pro-
cess, we also conducted experiments on low coverage NGS data
in this paper. We simulated four 454 and four Illumina NGS sets
with 5x coverage in the 29 mammalian mtDNA dataset and 1x
coverage in the 29 Escherichia/Shigella dataset.

In the 18 Drosophila dataset, we simulated four Illumina NGS
sets with 0.1x coverage of the dataset. Because the 18 Drosophila

dataset is the entire genome sequence dataset, it contains a mas-
sive amount of repeated sequences and homopolymer sequences.
As noted above, using the 454 model it is possible to have se-
quencing errors on homopolymer sequences; thus, we did not
simulate the 454 NGS sets with this dataset.

With the simulated NGS short reads data, we applied our pro-
posed method dRA to calculate a distance matrix. The phyloge-
netic tree was then constructed according to the calculated dis-
tance matrix.
5.1.3 Baselines Methods

We compared our proposed method with three existing k-
mer-based alignment-free methods, CVTree [7], [8], dS

2 [9], and
skmer [10]. We used k values in the range from 8 to 31 as sug-
gested by CVTree, dS

2 , and skmer proponents.
5.1.4 Evaluation Metric

We used the Clustel Omega tool [13], followed by the dnadist

tool in the PHYLIP package [30], on aligned sequences from
MSA to calculate distance matrices. For each distance matrix,
either from MSA or from alignment-free methods, we used the
neighbor tool in the PHYLIP package to construct a phylogenetic
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Table 2 Size and the total number of short reads and total sequence lengths of NGS short reads set of all
three datasets.

NGS set Size (MB) Total number of short reads Total sequences length

29 mammalian mtDNA (5x) 454 1 5 8,540 1,982,139

454 2 5 8,571 1,990,340

454 3 5 8,618 1,989,688

454 4 5 8,631 1,994,046

illumina 1 5 16,010 2,401,500

illumina 2 5 16,010 2,401,500

illumina 3 5 16,010 2,401,500

illumina 4 5 16,010 2,401,500

29 Escherichia/Shigella (1x) 454 1 260 499,945 111,949,666

454 2 260 499,782 112,024,738

454 3 260 499,285 111,918,934

454 4 260 499,634 111,956,774

illumina 1 304 946,150 141,922,500

illumina 2 304 946,169 141,925,350

illumina 3 304 946,151 141,922,650

illumina 4 304 946,177 141,926,550

18 Drosophila (0.1x) illumina 1 681 1,908,519 286,277,850

illumina 2 680 1,907,719 286,157,850

illumina 3 680 1,907,985 286,197,750

illumina 4 680 1,908,134 286,220,100

tree by the neighbor-joining method [31].
We used the popular Robinson–Foulds distance (RF) [32] for

the evaluation. The RF value was calculated by counting the in-
ternal nodes that appear in one tree but not in the others. Let
N = (V, E) be a given phylogenetic tree. For any two nodes u,
v ∈ V , v is a descendant of u if v is reachable from u in N. For
any v ∈ V , define the cluster of v (denoted by C(v)) as the set of
all leaf nodes that are descendants of v. The cluster collection of
N is the multiset C(N) = {C(v)|v ∈ V}. The RF distance between
two phylogenetic trees N1 and N2 is:

dRF(N1,N2) = (|C(N1) −C(N2)| + |C(N2) −C(N1)|)/2.

A small RF value between two trees means the shapes of the
trees are similar. The values for RF range from zero, meaning the
two trees are the same, to 2(n − 3) where n is the number of leaf
nodes.

Because MSA is limited by the size of the genome, only the
29 mammalian mtDNA dataset is capable of using the tree from
MSA as the benchmark tree. The benchmark tree for 29 Es-

cherichia/Shigella is the tree studied by the research [28], [33]
and 18 Drosophila genomes tree is from the phylogenetic tree
database Open Tree of life [10], [34], [35]. In our implementation,
we also used the USEARCH tool [36] to search for the alignment
pair of any NGS short reads.

To evaluate the consistency of the distance measurement, we
utilized the coefficient of variation [37]. The coefficient of varia-
tion can be calculated by the ratio of the standard deviation σ to
the mean μ as follows:

CV =
σ

μ
∗ 100.

5.2 The Accuracy of Phylogenetic Tree Reconstruction
We first estimated phylogenetic trees for 29 mammalian

mtDNA sequences and 29 Escherichia/Shigella genome datasets.

For each dataset, we simulated eight NGS short-read sets: four
of 454 error model and another four of Illumina. For all three
alignment-free methods, we set different values of the k parame-
ter to show the effect of this parameter on the phylogenetic tree
result.

The results in Fig. 4 show that dRA provides a beneficial dis-
tance measurement, which leads to accurate phylogeny recon-
struction in both datasets. The RF distance between phylogenetic
trees reconstructed from dRA is the closest to the benchmark tree
in most of the NGS short-read sets compared with other methods.

While the k parameter adjustment is required in CVTree, dS
2 ,

and skmer to provide the best phylogenetic tree results, dRA does
not require such adjustment to provide an accurate result, as
shown in Table 3. According to Fig. 4, the optimal k for skmer

in mammalian mtDNA sequences dataset is around 13, whereas
k = 31 provided the best result on the Escherichia/Shigella

dataset. The phylogenetic tree results by CVTree and dS
2 were

also affected by the k parameter. In practice, not many NGS sets
have benchmark trees, thus adjusting the k parameter to provide
the most accurate tree in further analysis is an ambiguous pro-
cess. dRA is a k-free approach, so it can be applied even on NGS
sets without benchmark trees.

Because Drosophila has a much larger genome size than Es-

cherichia/Shigella, the dataset that includes bacteria data, re-
searchers usually manage to obtain low coverage data of the
genome samples by using the NGS process. Therefore, we con-
ducted experiments on 18 Drosophila datasets with 0.1x coverage
to evaluate the accuracy of our proposed method on low coverage
data. As shown in Fig. 5, dRA provided a better phylogenetic tree
for Drosophila in comparison with most of the other baseline ap-
proaches. Although skmer could also obtain low distances, as
found in our approach, it required the k parameter to be tuned to
achieve such results. We also observed that CVTree and dS

2 could
not be used accurately to reconstruct the phylogenetic tree with
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Fig. 4 The RF distance between benchmark tree and phylogenetic trees reconstructed from the distance
matrix estimated by our approach (dRA), shown as the blue bar, and other k-mer-based alignment-
free methods.

Table 3 Average of RF distance between benchmark tree and phylogenetic
trees of all simulated NGS short-read sets.

mammalian mtDNA Escherichia/Shigella

(5x) (1x)

dRA 3.75 10

S kmer(k = 8) 10.5 45

S kmer(k = 13) 5 15.25

S kmer(k = 21) 6 13

S kmer(k = 31) 18.5 12.75

dS
2 (k = 8) 11 22.75

dS
2 (k = 13) 14.5 20.75

CVTree(k = 8) 13.5 27.5

CVTree(k = 13) 24.75 18.5

Fig. 5 The average RF distance between benchmark tree and phylogenetic
trees reconstructed from the distance matrix estimated using our ap-
proach (dRA), shown as the blue bar.

Fig. 6 The RF distance between phylogenetic tree constructed by dRA

and the benchmark tree w.r.t. short-read length on the Es-
cherichia/Shigella dataset.

this low coverage.
We then evaluated the effect of short-read length on the ac-

curacy of dRA. Figure 6 summarizes the accuracy with respect
to short-read length. According to Fig. 6, dRA does not provide
a result on shorter reads (50 bp and 100 bp) that are as accu-
rate as those of the longer reads. Given that the shorter reads
contain less information on the alignment between them, the dis-
tance calculated from dRA could be less accurate. However, dRA

still outperforms skmer with respect to accuracy on phylogenetic
tree reconstruction.

dRA evaluates the distance between a pair of NGS sets accord-
ing to the alignment pair of NGS short reads. We conducted ex-
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Fig. 7 The RF distance between phylogenetic tree constructed by dRA with
varied query size and the benchmark tree on 18 Drosophila dataset.

periments (as shown in Fig. 7) to examine whether dRA can be
used to measure accurate distances with different query sizes. In-
stead of using all short reads in each set as the query to search for
its alignment pair in the other sets, we randomly chose a specific
number of short reads as queries. For the 18 Drosophila dataset
with 0.1x coverage, with the data size of 700 MB, we randomly
sampled NGS short reads from each set with an overall size of
50, 70, 100, 350, and 700 MB (all short reads) as a query. The
results, summarized in Fig. 7, indicate that dRA can provide tree
results close to the benchmark even with low query sizes.

Moreover, as shown in Fig. 5, on all three datasets, the phylo-
genetic trees of dRA are the closest to the benchmark, regardless
of the size and coverage of the datasets. Although the skmer can
also provide the same results in some cases, we noted that skmer

is not effective on small datasets such as mammalian mtDNA

and Escherichia/Shigella. Because skmer measures the distance
based on the k-mer occurrences, small datasets do not provide
enough k-mer information for skmer to measure accurate dis-
tance. CVTree and dS

2 also have the same problem. This shows
how dRA is a general and effective approach that can be used on
any dataset and can be a better option than the other methods.

We also compared the true edit distance and estimated distance
given by the following equation:

D′(A, B) =
∑

(a,b)∈P(A,B)

d(a, b) ∗ ws(a,b),

where ws(a,b is the weight in Eq. (4).
In this experiment, we used simulated sequences from the E.

coli O157 entire genome sequence. The simulated sequences
were set with normalized edit distances equal to 0, 0.01, 0.05,
0.1, 0.15, and 0.2 compared with E. coli O157 sequence as “true
edit distance.” For each simulated sequence and also the E. coli

O157 sequence, we generated the corresponding NGS set with
varied coverage 0.25x, 0.5x, 1x, 2x, and 4x. Because the distance
calculated from dRA already includes the evolutionary distance
model in the calculation (the term − 3

4 ln
(
1 − 4

3 d(a, b)
)

in Eq. (2)),
this evolutionary distance model is applied to each alignment pair,
not the entire genome sequence. To evaluate the accuracy of the
method with true edit distance, we considered using just d(a, b)
in Eq. (2) instead of evolutionary distance model term.

The results, shown in Fig. 8, are the estimated distances from
dRA between simulated sequences and E. coli O157 with different
true edit distance and coverage. The x-axis is the true edit dis-
tance between simulated sequences and E. coli O157 sequence.

Fig. 8 Comparison of distance calculated by dRA and true edit distance.

Fig. 9 The comparison of distance calculated by dRA and true edit distance
w.r.t. short read length.

Table 4 Average RF distance between benchmark tree and phylogenetic
trees constructed from NGS short read sets w.r.t. the edit distance
cost.

mammalian Escherichia Drosophila

mtDNA (5x) /S higella (1x) (0.1x)

dRA : Uniform (1, 1, 1) 3.75 10 10

dRA : Hamming (1, 0, 0) 6 11 10

dRA : (2, 1, 1) 10.25 11.5 10.25

dRA : (1, 2, 2) 8 11.25 10

S kmer(k = 13) 5 15.25 11

S kmer(k = 31) 18.5 12.75 10

According to Fig. 8, dRA can be used to estimate accurate dis-
tances between NGS sets of simulated sequence and the E. coli

O157 sequence. However, the coverage affects the estimated dis-
tance calculated by dRA.

Figure 9 shows that the length of the short reads affect the dis-
tance calculation of dRA. In this experiments we also compared
the simulated sequences which are set to have the normalized edit
distance equal to 0, 0.01, 0.05, 0.1, 0.15 and 0.2 compared with
E.coli O157 sequence as “true edit distance.” Figure 9 shows the
distance result of calculating distance between NGS sets of sim-
ulated sequence and E.coli O157 sequence with different short
reads length. With the short reads length of 50 bp, dRA tends to
calculate the distance lower than the true edit distance while the
longer length provide the distance close to true edit distance. Al-
though, the estimated distance are less accurate when reads length
is short, the phylogenetic tree constructed from those result still
provide good tree as shown in Fig. 6.

The proposed method uses the unit cost edit distance to mea-
sure the distance dRA among short read sets. However the costs
may affect the resultant trees. We evaluated the accuracy of re-
sultant trees with several costs. For the three datasets, Table 4
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Fig. 10 The comparison of phylogeny tree of 29 mammalian mtDNA between dRA tree (left) and the
benchmark tree (Right).

Fig. 11 A heatmap showing the value of the coefficient of variation for each pair-wise distance on multi-
ple NGS sets of the Escherichia/Shigella dataset. Red refers to a high coefficient of variation and
white is low.

shows the average RF distance between phylogenetic tree and
trees constructed by the proposed method dRA and the state-of-
the-art Skmer with the best parameter k. We examined the ac-
curacy for the costs of the unit cost (1, 1, 1), hamming distance
(1, 0, 0), (2, 1, 1), and (1, 2, 2) where first (resp. second and third)
component stands for the cost of substitution (resp. addition and
deletion).

As we can see in Table 4, the edit cost affects the accuracy, es-
pecially for the data containing diverse species like mammalian

mtDNA. However, the proposed method still constructs better tree
than the state-of-the-art Skmer with the best k. Therefore we use
the unit cost edit distance for measuring the distance of dRA.

Figure 10 shows an example of a phylogenetic tree result for
29 mammalian mtDNA dataset. The tree that was reconstructed
from the distance matrix calculated by dRA is almost the same as
the benchmark tree. According to the dataset, we can categorize

Table 5 The average coefficient of variation.

mammalian Escherichia Drosophila

mtDNA (5x) /S higella (1x) (0.1x)

dRA 3.62 2.56 2.74

S kmer(k = 8) 6.03 11.88 4.65

S kmer(k = 13) 4.11 5.01 3.54

S kmer(k = 21) 3.38 3.51 2.98

S kmer(k = 31) 2.03 3.26 1.76

dS
2 (k = 8) 24.60 55.74 2.35

dS
2 (k = 13) 4.83 18.89 1.75

CVTree(k = 8) 1.59 3.58 1.3

CVTree(k = 13) 1.21 1.39 0.82

the input species into four groups: Primates, Ferunguletes, Ro-

dents, and Outgroup. dRA was able to separate the 29 species into
these four groups effectively. The only difference to the bench-
mark tree is the branch between cat and dog. In the dRA tree, cat
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Table 6 The runtime of each method for all three datasets (seconds).

dRA S kmer(k = 8) S kmer(k = 31) dS
2 (k = 8) dS

2 (k = 13) CVTree(k = 8) CVTree(k = 13)

mammalian mtDNA(5x:5 MB) 5 7 8 41 4812 3 3
Escherichia/Shigella(1x:300 MB) 78 26 42 87 5439 30 528

Drosophila(0.1x:700 MB) 147 1514 87 100 4153 63 812

Fig. 12 The runtime of each method w.r.t. data size.

and dog are in a group apart from two seal species. However, in
the benchmark tree, the cat is branched out from dog and seals.
In this result, the distance measurement from dRA between the cat
and the group of dog and seals is not high enough to distinguish
them.

5.3 Distance Consistency for Pair-wise Distance
For any dataset, the distance measurement between NGS sets

should be almost the same every time, regardless of different NGS
short reads. The consistency exposes the difference in distances
among multiple NGS sets in the same dataset. Even though the
accuracy of the phylogenetic tree reconstruction is an important
aspect of evaluating the methods, without consistency, the ac-
curacy is not convincing. Therefore, we also conducted exper-
iments to evaluate the consistency of the distance measurement.
We used the coefficient of variation to evaluate the consistency
of the methods. Figure 11 presents a heatmap of the coefficient
of variation for each element in the distance matrices calculated
from multiple NGS sets in the Escherichia/Shigella dataset. In
the figure, dRA is compared with the skmer (k = 31) because it
provided RF distance results similar to those of dRA in the ac-
curacy evaluation shown in Table 3. According to Fig. 11, dRA

provides a lower coefficient of variation in most of the elements
in the distance measurement while skmer (k = 31) reveals a very
high coefficient of variation of distance between some pairs in the
Escherichia/Shigella dataset despite the good RF distance results.

We evaluated the difference of pair-wise distances computed
by the distance matrices in our method dRA, CVTree, dS

2 , and
skmer using different simulated NGS sets of each dataset. Ta-
ble 5 shows the average coefficient of variation values of all pairs
in the distance matrices. dRA provided a relatively low value
of the coefficient of variation compared with the other methods.
Thus, it can estimate the distances with not much difference be-
tween NGS sets. In this respect, although CVTree can calculate
the most consistent result, it provided the worst accuracy. When
considering the accuracy along with the consistency, dRA reveals

the effectiveness of distance measurement with NGS short reads
data. dRA provides the closest phylogenetic tree to the benchmark
while maintaining the consistency with low coefficient of varia-
tion value compared with the other methods.

5.4 Efficiency Evaluation
We compared the runtime of our proposed method with the

others using all three datasets with different sizes. The 29 mam-

malian mtDNA with 5x coverage, 29 Escherichia/Shigella with 1x
coverage, and 18 Drosophila with 0.1x coverage have data sizes
of 5, 300, and 700 MB, respectively.

For dRA, we ran experiments with a query size of 100 MB for
the Drosophila dataset. The runtime results are shown in Table 6.
We observed that dRA could calculate the distance between NGS
sets as fast as the alignment-free approaches, although it is based
on the alignment among short reads. In k-mer-based methods,
the computational time varied by k parameter. The bigger the k

value, the longer the time required for the distance calculations.
dS

2 showed a huge difference between k = 8 and k = 13, as did
CVTree. With the k-free approach, dRA does not require additional
calculations to tune the k parameter, thus it provides an accurate
phylogenetic tree within a reasonable processing time.

In some cases, dRA runs slower than the other methods. How-
ever, in such cases, dRA offers much better phylogenetic tree re-
sults. Therefore, it is a worthy trade-off between efficiency and
effectiveness. For instance, although dRA is three times slower
than skmer with k = 8 on the Escherichia/Shigella dataset, the
resultant phylogenetic tree result obtained by skmer is more dif-
ferent to the benchmark than dRA for 4 times.

Figure 12 shows how the runtime increases with respect to
the data size in comparison with the other methods. Most of the
methods showed linear dRA growth according to the data size.
However, the k parameter significantly affects the runtime of
skmer, dS

2 , and CVTree. For skmer, lower k requires a larger
number of k-mers to be considered in the distance calculation.
On the other hand, larger k results in a larger dimension k-mer
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profile for dS
2 and CVTree. This result also shows the advantage

of the k-parameter-free method.

6. Conclusion

In this paper, we proposed the k-free approach dRA for NGS
data sequence comparison effectively to reconstruct accurate phy-
logenetic trees and measure the distance between reconstructed
trees and benchmark trees. dRA is a novel approach that lies be-
tween alignment-based and alignment-free approaches. The dRA

distance measurement is based on the collection of alignment be-
tween unassembled NGS short reads pairs. While taking advan-
tage of the accuracy aspect of the alignment method, dRA can be
performed without an assembly process and can avoid the com-
putational cost associated with assembling and aligning long se-
quences. The empirical results show that dRA is capable of re-
constructing accurate phylogenetic trees without the k parameter
even with low coverage data. Although some results obtained at
runtime are worse than some other alignment-free methods, there
is a fair trade-offwith respect to the accuracy without the ambigu-
ous k parameter tuning in the practical use of the method.
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