
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

Understanding the Origins of Weak Cryptographic
Algorithms Used for Signing Android Apps

Kanae Yoshida1 Hironori Imai1,a) Nana Serizawa2 TatsuyaMori2 Akira Kanaoka1,b)

Received: November 28, 2018, Accepted: June 11, 2019

Abstract: Android applications are digitally signed using developers’ signing keys. Since each key is associated with
a developer, it can be used to establish trust between applications published by the author, i.e., apps signed with the
same key are allowed to update themselves if package names are identical, or access each other’s resources. However,
if a signature is generated using a weak algorithm such as MD5, then apps signed with the corresponding key are
exposed to several risks, such as hijacking apps with fake updates or granting permissions to a malicious app. In this
work, we analyze several Android apps to identify the threats caused by using weak algorithms. Our study uncovered
the following findings: Of the more than one million apps collected from Google Play, 223 and 52,866 were digitally
signed using the weak algorithms of 512-bit RSA key and MD5, respectively. We identified the causal mechanisms for
generating certificates that employ weak algorithms, and found that these mechanisms can be attributed to app-building
frameworks and online app-building services. On the basis of these findings, we provide guidelines for stakeholders of
the Android app distribution ecosystem.

Keywords: Android, security, digital signature, cryptographic algorithms

1. Introduction

According to the report from StatCounter, mobile Internet us-
age surpassed desktop usage in 2016 [1]. Security threats have
become critical for mobile platforms, because mobile devices col-
lect and keep privacy-sensitive data, which attackers may find
valuable. Thus, individual mobile users must be sufficiently
knowledgeable and aware of the security risks when installing
a new app. As a countermeasure against malware, it is a common
practice for mobile users to not install an app published by an
untrusted party.

While security risks caused by malicious codes have been well
studied and put into practical use, mobile apps have other invis-

ible threats that exist outside of the code, such as developer cer-
tificates. An Android application is digitally signed with a devel-
oper’s signing key, which can be verified through the correspond-
ing developer certificate. The certificate is used to establish trust
between applications published by the developer. Apps signed
with the same signing key are allowed to update if their package
names are identical, or access each other’s resources. Therefore,
if a signature is generated using a weak cryptographic algorithm
such as MD5, apps signed with the corresponding signing key are
exposed to several risks, such as hijacking apps with fake updates
or granting permission to a malicious app.

In this study, we answer the following research question:
RQ: What are the origins of the use of weak cryptographic algo-

rithms for signing Android apps?

1 Toho University, Funabashi, Chiba 274–8510, Japan
2 Waseda University, Shinjuku, Tokyo 169–8555, Japan
a) 6518002i@st.toho-u.ac.jp
b) akira.kanaoka@is.sci.toho-u.ac.jp

We employed a large-scale, systematic-measurement study us-
ing one million Android apps collected from Google Play and five
million Android apps collected from third-party marketplaces.
For Google Play apps, we also employed temporal analysis to
assess the changes in certificates over time. We extracted the dig-
ital certificates from the collected apps and examined the crypto-
graphic algorithms used to sign them. We also analyzed several
statistics, such as key lengths configured for cryptographic algo-
rithms, validity periods of certificates, and a number of installa-
tions of apps signed using the weak cryptographic algorithms.

Our chief contributions can be summarized as follows:
• We clarified the threats caused by the use of weak crypto-

graphic algorithms for signing Android apps (Section 4).
• Using a massive number of apps in the wild, we revealed

that there are a non-negligible number of apps with security
risks, because they were signed using a 512-bit RSA key or
their signatures were generated with MD5; these algorithms
are known to be vulnerable to attacks (Section 5).

• We identified the causal mechanisms that lead developers to
use either the 512-bit RSA key or MD5 (Section 6).

• From the findings derived from the analysis, we provide pro-
posals for the stakeholders, i.e., Android OS developers, An-
droid market managers, and Android application developers
(Section 7.2).

The rest of the paper is organized as follows. Section 3 presents
the overview of the digital certificates used in the Android plat-
form. In Section 4, we clarify the possible security threats that
are caused by the use of weak cryptographic algorithms for sign-
ing Android apps. In Section 5, we present our findings through
large-scale measurement and analysis. We identify the apps
signed with weak cryptographic algorithms and their character-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

istics. In Section 6, we identify the causal mechanisms that lead
developers to use weak cryptographic algorithms. In Section 7,
we discuss the guidelines for thwarting the threats. Section 8 con-
cludes our work.

2. Related Works

In this study, an investigation was conducted on the current An-
droid APK, and the threat posed by the application was properly
identified. Such large-scale surveys include Zmap, proposed by
Durumeric et al. [2]. Zmap makes it possible to quickly crawl
the Internet, which affects various studies. However, it does not
correspond to the signature of Android’s APK targeted by this
research.

Martin et al. [3] surveyed literature thoroughly for a broader
understanding of the Android market in addition to security. This
study revealed that there has been no investigation of Android’s
APK signature.

Research on SSL/TLS was conducted as a large-scale survey
related to encryption. Zmap also targeted SSL/TLS. However,
Durumeric et al.’s study focused on SSL/TLS certificates [4],
which included the relationship between the certificate author-
ity and its trust relationship. Application of the results was ex-
pected, but most of the certificates used for Android’s APK were
self-signed certificates, as mentioned above. Therefore, the trust
concerning the issuance of certificates was not discussed from the
perspective of PKI in this study.

Many studies related to cryptographic threats related to An-
droid applications were conducted. However, none of them tar-
geted the APK signature.

Analysis of cryptographic APIs used by applications [5], [6],
pseudorandom number generators [7], and imperfect SSL/TLS
implementation [8], [9], [10], [11], [12], [13], [14] focused on
cryptographic use inside applications.

Fahl et al. conducted the first survey of signatures on the
Android APK [15]. The validity period of certificates, key
length, and cryptographic algorithms for many Android APKs
was shown. It identified problems on signature usage in Android
applications. The results indicated that the discussion of threats
and risks was limited. More in-depth exploration of its threats
and risks are still required as well as countermeasures.

3. Overview of the Developer Certificates Used
on the Android Platform

In this section, we review the developer certificate used on the
Android platform.

3.1 Role of the Developer Certificates
Digital certificates are used to establish trust between appli-

cations published by a signer, that is, the developer of the apps.
The digital certificates are introduced to reliably accomplish the
following three functionalities.
Updating Apps When installing a new version of the application,
the digital signer must be the same as the signer of the signature
used in the current application. In other words, the digital certifi-
cate ensures that an attacker cannot let an end user who owns a
device install a malicious version of a targeted app, even though

the malicious version has the same package name as the targeted
app.
App Modularity Android allows application packages (APKs)
signed by the same certificate to run in the same process. If the
applications request it, the system can then treat them as a single
application. When AndroidManifest.xml files in each application
have the same sharedUserID value and the applications are signed
using the same signing key, then these applications belong to the
same process. Applications can share data access and processing.
Code/Data Sharing Android provides signature-based permis-
sion enforcement. An application can expose functionality to an-
other application that is signed with a specified certificate. By
signing multiple APKs using the same signing key and signature-
based permissions checks, applications can securely share code
and data. There are four protection levels (normal, dangerous,
signature, and signatureOrSystem) for permission. These limit
the scope of use of given permission. Permissions with protection
level signature and signatureOrSystem allow other applications
signed using the same signing key to use this permission.

Certificates used for signing APK files do not have to be issued
from a widely trusted certification authority (CA). Developers
use the self-signed certificate issued by the developer or orga-
nization without problems. Therefore, an Android user cannot
trust the signer of an app using only a given certificate. In the
Google Play market, trust between developers and end users is
established through the registration of developers, that is, all de-
velopers are required to register themselves using their personal
information, including contact address. Thus, the primary role of
the developer certificate is to guarantee the integrity of data and
the authors of apps, but not to identify who the authors are.

3.2 Signing Apps
Android applications are digitally signed. Two types of signa-

tures exist: those applied to the APK using the signing key and
those applied to the certificates which correspond to the signing
keys of APKs. All applications are signed and the certificates
are attached in the APK file. The application developer owns the
signing key for this certificate.

3.3 Requirements and Recommendations for Certificates
Google has made several requirements and recommendations

for developers to publish an application on Google Play. First,
two public-key cryptography algorithms are allowed for signing:
RSA and DSA. Second, a validity period is required for the pub-
lic key ending after October 22, 2033, also, is recommended for
more than 25 years [16].

4. Threat Analysis

In this section, we first discuss several threats caused by using
weak algorithms for signatures.

4.1 Impersonating a Targeted Developer
If a malicious user can impersonate a targeted developer, the

malicious user could perform the following attacks:
Injecting Malicious Updates An attacker can allow an end user
to install a malicious version, which overwrites the current one. It

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

is also possible to update an application that repackages the cur-
rent application as a new version, where the repackaged version
includes malicious code.
Identical Modularization An attacker can run a malicious ap-
plication in the same module as the target application. Malicious
applications have access to various process details of the target
application.
Abusing Permissions An attacker can prepare another applica-
tion and use the permissions of the attack-target application.

4.2 Creation of Arbitrary Signatures
An attacker can create arbitrary signatures in several ways.

Key Leakage If An attacker obtains a signing key by leakage,
any signature can be created.
Recovering the Signing Key If the signing key can be recovered
from the verification key, a malicious user can create an arbitrary
signature. Valenta et al. indicated that a 512-bit RSA key could
be recovered within four hours at a cost of $75 [17]. The National
Institute of Standards and Technology (NIST) does not currently
recommend the 1,024-bit RSA key [18]. Since Google Play rec-
ommends a certificate validity period of 25 years or more, there
is sufficient time for an attacker to recover even a 1,024-bit RSA
key.
Collision Attack One potential mode of attack on hash functions
is collision attacks, which searches for two messages that have
the same hash value. A conflict with the MD5 algorithm has al-
ready been discovered [19]. As a more advanced attack method,
the chosen-prefix collision attack was proposed [20], and a forged
certificate using the collision was generated [21]. In 2017, a col-
lision with SHA-1 was discovered [22].

In the case where a collision attack is used against a signa-
ture, two conflicting messages will be identified before granting
a signature. Following this, one of the messages is allowed to
sign. Therefore, collision attacks cannot be used for the purpose
to which the signature was already given.
Second Pre-Image Attack The other mode of attack on hash
functions is the second pre-image attack. The attack finds an-
other message M′, that will have the same hash value as H(M),
of a certain message, M. This is more difficult to enact than a
collision attack. At present, successful cases of this attack have
not been found for hash functions, including MD5 and SHA-1. If
the attack succeeds on a hash value that has already been signed,
the APK signature is critically affected.

If a target of an attack is a certificate, the target hash value for
causing a collision attack or a second pre-image attack is limited
to a single value. On the other hand, when the target becomes the
APK, multiple hash values can be selected. Since the developer
releases multiple applications, we can collect multiple hash val-
ues. Likewise, if the developer has been updating multiple times
and it has been observed, we can also obtain different hash values
for each version of that application. In the case of an attack tar-
geting the APK, the possibility of attack success becomes much
higher, since there are multiple hash values for the attack targets.

5. Analysis of Digital Certificates

PlayDrone is a system for collecting applications on Google

Table 1 Public key cryptography algorithm and key length used for the sig-
nature in the PlayDrone dataset.

Algorithm and Key Length Number Proportion
RSA4096 3,077 0.26%
RSA2048 580,134 49.24%
RSA1024 567,055 48.13%
RSA512 223 0.02%
DSA1024 26,697 2.27%
Others 5,002 0.08%

Table 2 Hash function used for APK signatures.

Algorithm Number Proportion
SHA-256 680 0.06%
SHA-1 1,123,779 95.45%
MD5 52,866 4.49%

Play proposed by Viennot et al. [23]. The APKs were downloaded
and used for analysis. The number of APKs used for the analysis
is 1,177,599. In this section, we conduct an analysis of the signa-
ture status. A similar analysis was previously performed by Fahl
et al. [15], which focused on other aspects.

5.1 Public Key Cryptography Algorithm and Key Length
Table 1 presents the public key cryptographic algorithm used

for the signature of the APK file and the key length. “RSA1024”
indicates that RSA is used as the public key cryptographic algo-
rithm and the key length is 1,024 bits. Since multiple signatures
are assigned to some APKs, the total number of keys exceeds the
total number of APKs.

In RSA, 2,048-bit keys are the most frequently used, account-
ing for 49.24% of the total. Consequently, the 1,024-bit RSA key
accounts for 48.13% of the total. A total of 223 APKs used the
512-bit RSA key.

5.2 Hash Function Used for APK Signing in the PlayDrone
Dataset

Table 2 gives the examination results for the hash function
used for the APK signature. SHA-1 is the most commonly used,
with 95.45% of the total. MD5 is the second most commonly
used at 4.49%.

5.3 Number of Downloads
The risk increases if an application signed using the weak cryp-

tographic algorithm such as MD5 or 512-bit RSA key is well
known. In this section, 52,866 applications that used MD5 for
APK signing are focused. The number of downloads as an indi-
cator that reflects its popularity is analyzed.

In the PlayDrone dataset, peripheral information of an applica-
tion on Google Play, such as the number of downloads and genres,
is provided as metadata in the JSON file format, separate from
the APK data. Therefore, the metadata of the PlayDrone dataset
is analyzed. The number of downloads is not an accurate number.
For example, “1,500+” indicates that the number of downloads is
1,500 or more, and “10,000+” indicates that the number of down-
loads is 10,000 or more.

In this research, metadata collected from October 30–31, 2014
was used, and the number of downloads was investigated. The
metadata dataset is divided into plural data blocks, and each block
is serialized. The dataset on October 31, 2014, contained 256

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 1 Number of downloads of aplications that used MD5 for APK signa-
tures in the PlayDrone dataset.

Table 3 Number of downloads of applications that used MD5 for APK sig-
natures.

Downloads Applications Prop.
0+ 296 0.61%
1+ 1,868 3.84%
5+ 1,354 2.79%

10+ 7,764 15.98%
50+ 4,440 9.14%

100+ 11,153 22.96%
500+ 4,393 9.04%

1,000+ 7,603 15.65%
5,000+ 2,304 4.74%

1,0000+ 4,141 8.52%
5,0000+ 1,122 2.31%

100,000+ 1,338 2.75%
500,000+ 311 0.64%

1,000,000+ 353 0.73%
5,000,000+ 60 0.12%

10,000,000+ 65 0.13%
50,000,000+ 11 0.02%

100,000,000+ 10 0.02%

dataset blocks from “00” to “ff.” However, the “24” and “30”
datasets were corrupted, so the shortfall was addressed from the
October 30, 2014 dataset.

There are 499 applications with more than 1 million down-
loads, and 21 applications exceeding 50 million downloads
(Fig. 1). According to Statista, there were approximately 1.86
billion Android users worldwide as of 2015 *1. Vulnerable algo-
rithms are used for applications used by 1% or more of all users.
The greater the spread of applications using MD5 for APK sign-
ing, the greater the threat of data leakage, etc. Detailed results are
given in Table 3.

5.4 Temporal Analysis
The PlayDrone dataset was collected in 2014. A total of 52,866

APKs that used MD5 for APK signing in PlayDrone were reac-
quired under the same package name. A similar investigation
was then made from 22,517 APKs obtained by reacquisition. The
reacquisition of APK occurred from November 12–27, 2016. The
results are given in Table 4.

The number of reacquired APKs was 22,517, which decreased
from 52,833 original APKs. The cause of the decrease is that
many download errors occur. When a download occurs, the server
only issues a notification of the download. The reason for the
download error is unknown. However, there are several reasons

*1 https://www.statista.com/statistics/330695/number-of-smartphone-
users-worldwide/

Table 4 Hash function of the reaquired APKs that was signed using MD5
in 2014.

Algorithm Number Proportion
SHA-256 37 0.14%
SHA-1 2,801 10.34%
MD5 24,244 89.52%

Table 5 Signing key of the reaquired APKs that used the 512-bit RSA key
in 2014.

Algorithm and Key Length Number Portion
RSA512 78 100.00%

Table 6 Summary of each dataset: Number of APKs, signatures, and cer-
tificates.

Dataset APK Signature Certificate
PlayDrone 1,177,599 1,178,118 1,178,116
Alandroid 10,655 10,657 10,654
APPVN 34,415 34,433 34,485
Aptoide 138,122 138,172 138,291
Baidu 138,004 138,089 138,122
Blackmart 100,156 100,213 100,367
CafeBazaar 54,034 54,069 54,109
entumovil 235 235 235
GetJar 37,715 37,682 37,689
Mobogenie 31,546 31,570 31,590
MoboMarket 20,095 20,102 20,140
Uptodown 59,428 59,434 59,557
Yandex 22,964 22,969 22,975
zhushou360 204,416 204,567 204,673
Androzoo 3,834,514 3,830,320 3,839,527
Total 5,863,898 5,860,630 5,870,530

for errors. First, the application that was released when Play-
Drone was acquired may not currently exist on the market. Sec-
ond, the application may not correspond to the terminal used for
downloading, which is the Nexus 7 (2012). Third, the applica-
tion may not be distributed in the area where the account used for
downloads belongs. An error may have occurred other than those
mentioned above, causing the download to fail. Thus, it was not
possible to reacquire all APKs that used MD5 for APK signature
on the PlayDrone.

The total number of signatures obtained from the reacquired
APK was 27,082. A total of 24,244 (89.52%) APKs still use MD5
for APK signing. From this result, it is clear that the majority of
APKs using MD5 for APK signing in the PlayDrone continue to
use MD5.

A similar investigation was conducted for the APK group that
used the 512-bit RSA key. The APK was reacquired with the
same package name, and a survey was conducted from 78 APKs
obtained by reacquisition. The reacquisition of the APKs oc-
curred on December 6, 2016. The results are given in Table 5.
It was determined that all 78 APKs used and continue to use the
512-bit RSA key.

5.5 Apps Collected from Third-party Marketplaces
We conducted a survey using 15 datasets; a total of 5,863,898

APKs. Table 6 gives the number of APKs in each dataset.
Datasets are roughly divided into two markets: Google Play and
third-party. The Androzoo dataset is a mixed dataset that includes
the Google Play APKs and third-party APKs [24].

The following are the results of the analysis.
5.5.1 Certificate Signer

A total of 5,862,531 (99.85%) applications were signed using

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 7 Total number of self-signed certificates from data that combines all
datasets.

Signer type Number Proportion
Self-Signed 5,862,531 99.85%
Others 7,999 0.15%

Table 8 Validity period from the sum of all datasets.

Period (n Days) Number Proportion
n < 9,125 136,386 2.32%
9,125 ≤ n < 10,000 2,284,764 38.92%
10,000 ≤ n 3,449,382 58.76%

Table 9 Public key cryptography algorithm and key length used for signa-
ture from the sum of all datasets.

Algorithm and Key Length Number Proportion
RSA4096 13,130 0.22%
RSA2048 2,923,461 49.80%
RSA1024 2,802,787 47.74%
DSA1024 125,928 2.15%
Others 5,225 0.09%

self-signed certificates (Table 7). While Google Play allows self-
signed certificates, this investigation shows that almost all devel-
opers are using self-signed certificates.

Certificates that are not self-signed can be divided into two ma-
jor types. The first is “signed by the root CA of the developer
organization”. A typical case shows the organization has a root
CA and a CA for android application code signing. The CA cer-
tificate for android application code signing is signed by its root
CA. In these cases, root CAs are not a public CA that is trusted
by the OSs or browsers.

The second is “code signing service”. Most certificates of this
type use the service of Symantec.
5.5.2 Period until Expiration

A validity period over 25 years for certificates used for APK
signing is recommended in Google’s documentation [16]. Also,
it is stated that applications signed with a certificate key whose
expiration date has not been reached before October 22, 2033,
cannot be uploaded to the Google Play market.

Table 8 shows the result of the certificate validity period.
The validity period was classfied according to the values rec-
ommended by Google. Previously, there were two recommen-
dations for the validity period of certificates. First one is more
than 10,000 days and the second one is more than 25 years (9,125
days). Current recommendation is only the second one [25].

At 2.32% of the total, 136,386 APKs had a validity period of
fewer than 9,125 days. Most certificates less than 9,125 days were
set with expiration dates after October 22, 2033.

The most common was certificates with a validity period of
over 10,000 days, accounting for 58.76% of the total.
5.5.3 Public Key Cryptography Algorithm and Key Length

Table 9 shows the public key cryptographic algorithm used for
the signature of the APK file and the key length.

The 2,048-bit RSA key was the most frequently used key
length, accounting for 2,923,461 applications (49.80% of the
total). The 1,024-bit RSA accounts for 2,802,787 applications
(47.74% of the total). A total of 837 APKs use the 512-bit RSA
key.

In DSA, the key of 1,024 bits is used most frequently, account-
ing for 2.15% of the whole. Incidentally, looking at DSA alone,

Table 10 Hash function used for APK signatures.

Algorithm Number Proportion
SHA-256 5,619 0.10%
SHA-1 5,511,514 93.95%
MD5 349,478 5.96%

Table 11 Comparison between other datasets.

Fahl et al. [15] PlayDrone Other Datasets
Self-signed Certs 99.98% 99.92% 99.85%
MD5 0.29% 4.49% 5.96%
RSA2048 51.6% 49.24% 49.80%
RSA1024 48.15% 48.13% 47.74%
RSA512 0.07% 0.02% 0.01%

99.64% used keys of 1,024 bits.
5.5.4 Hash Function Used for Signature of APK

SHA-1 was the most frequently used hash function used for
APK signatures, accounting for 5,511,514 applications (93.95%
of the total). MD5 is used in 349,478 applications (5.96% of the
total). Table 10 shows the result of the hash function used for the
APK signature.
5.5.5 Comparison between Google Play and Others

Datasets used for the investigation can be divided into two
types. The PlayDrone dataset is based on the Google Play
market. Alandroid, APPVN, Aptoide, Baidu, Blackmart, Cafe-
Bazzar, entumovil, GetJar, Mobogenie, MoboMarket, Uptodown,
Yandex, and zhushou360 are based on other third-party markets.
In this section, we compare the properties of Google Play and
other markets.

Some factors almost identical for both Google Play and other
markets. The certificate signer, certificate signing algorithm, and
hash function used for the signature of the APK are almost iden-
tical across all markets. The proportion of each category shows
similar values. For example, MD5 used for APK signature is
4.49% in Google Play and 5.96% in other markets. SHA-1 is
95,45% in Google Play and 93.95% in other markets. Thus,
99.92% of certificates in Google Play and 99.85% of certificates
in other markets are self-signed.

For the signing key, DSA is used more frequently for Google
Play (2.28%) than for other markets (2.15%). For RSA, 2,048-bit
key is used more frequently for other markets (49.80%) than for
Google Play (49.24%).

The factor that differs most is the period until expiration. In
the Google Play market, the proportion of certificates having
over 9,125 days until expiration is 99.55%, and 97.68% in other
markets. In particular, the proportion of certificates having over
36,500 days (100 years) is 0.34% in Google play and 17.63% in
other markets. APKs in Google play tend not to set longer expi-
ration limits.

Part of these results are similar to the results of Fahl’s investi-
gation. Table 11 shows a comparison of the results.

6. Identifying Causal Mechanisms

In this section, we study why developers used weak crypto-
graphic algorithms when signing apps.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

6.1 Default Setting of Development Environment
6.1.1 Signing Method

There are three representative ways of signing an Android ap-
plication:
(1) Sign on the command line using Keytool and Jarsigner.
(2) Sign using the Eclipse ADT plug-in and ADT Export Wiz-

ard;
(3) Sign using the Generate Signed APK on Android Studio.

For commands and development tools, default key size, a sig-
nature algorithm for certificates, and a signature algorithm for
applications may be different, depending on the version. MD5
or 512-bit RSA key which was found in applications in several
datasets may be used, due to the difference. We investigated the
differences by version and the possibility of using MD5 or the
512-bit RSA key.
6.1.2 Signing on the Command Line Using Keytool and Jar-

signer
Keytool and Jarsigner are Java commands that are included in

the JDK. The key length and certificate signature algorithm cre-
ated by Keytool, and the signature algorithm used for JAR signa-
tures by Jarsigner depend on the version of Java SE. Tables 12,
13, and Table 14 present the default key length for each version
of Java SE 6-8 and the signature algorithm for the hash and sig-
natures used for the signing certificate and signature algorithm of
JAR.

From Table 14, we see that in Java SE 6, the signature algo-
rithm for JAR becomes MD5. Also, from this description, the
default generation of the 512-bit RSA key was not confirmed.
6.1.3 Application Development with Eclipse and Android

Studio
Eclipse, an integrated development environment of Java, was

the primary environment for Android application development
until the end of 2015. Currently, AndroidStudio has been the
official development environment since 2016. Eclipse developed
Android applications using a plug-in that added Android Devel-
opment Tools (ADTs) to the environment. ADT development
and support was discontinued after Google’s support develop-
ment environment completed the transition to AndroidStudio in
2016, making it difficult to create the latest Android application
in Eclipse.

Table 12 Default setting on keytool.

Version genkeypair genseckey genkeypair
with RSA option

JavaSE 6 DSA (1,024 bits) DES -
JavaSE 7 DSA (1,024 bits) DES RSA (2,048 bits)
JavaSE 8 DSA (1,024 bits) DES RSA (2,048 bits)

Table 13 Default setting on jarsigner for certificate signing.

Version DSA RSA EC
JavaSE 6 SHA1 with DSA MD5 with RSA -
JavaSE 7 SHA1 with DSA SHA256 with RSA SHA256 with ECDSA
JavaSE 8 SHA1 with DSA SHA256 with RSA SHA256 with ECDSA

Table 14 Default setting on jarsigner for JAR file signing.

Version DSA RSA EC
JavaSE 6 SHA1 with DSA MD5 with RSA -
JavaSE 7 SHA1 with DSA SHA256 with RSA SHA256 with ECDSA
JavaSE 8 SHA1 with DSA SHA256 with RSA SHA256 with ECDSA

To program Android applications in Java, the JDK is manda-
tory; therefore, both Eclipse and AndroidStudio must install it.
For the signature, Eclipse uses the ADT Export Wizard from the
ADT plug-in, and Android Studio uses the Generate Signed APK.
Both use a graphical user interface (GUI) for signing, so signa-
tures can be obtained without requiring commands to be typed
via the command line. However, as Java and ADT commands are
used behind the GUI, the signature information is considered to
differ, depending on the version of the JDK and ADT.

Based on these, the default key length and signature algorithm
for each version of AndroidStudio and Eclipse, and each version
of the JDK and ADT, are surveyed. The environment was built
in each version, and a signature by GUI was created by default.
To confirm the default settings in these environments, a sample
application was developed and signed using the default setting.
Then, the certificate and the signature were extracted from the
APK file of the sample application. The following information
was extracted and compared:
• Public Key Cryptography Algorithm
• Key Length
• Signing Algorithm for APK
• Signing Algorithm for Certificates

6.1.4 Eclipse and AndroidStudio’s Default Key and Signa-
ture Algorithm

The results of the automatic generation of signatures using An-
droidStudio are given in Table 15. Besides, the automatic gener-
ation by Eclipse’s ADT plug-in is presented in Table 16.

When checking the latest version of both environments, the
key was a 2,048-bit RSA key, the signature algorithm of the APK
was SHA-1, and the signature algorithm of the certificate was
SHA256 with RSA. Moreover, the oldest version of AndroidStu-
dio had the same signature information as the latest version.

In the case of Eclipse, which added ADT plug-in version 22.6.3
and was built with JDK 6.0, SHA-1 was used as the signature al-
gorithm for APK. This result was different from Oracle’s Java SE
1.6 JAR with MD5. From this, it is conceivable that the signature
by Eclipse’s ADT plug-in depends on ADT.
6.1.5 Short Summary of Default Configuration

It was determined that only Jarsigner on JDK version 6 uses
MD5 for APK signatures, and no environment used the 512-bit
RSA key as the default configuration. Other environments do not
use weak algorithms.

Therefore, the default configuration of the development envi-
ronments might not responsible as the primary cause of weak al-
gorithms like in MD5 and the 51 bit RSA key.

6.2 Application-building Framework
Common factors between apps using weak algorithms are in-

vestigated for finding other causes.
First, apps using the 512-bit RSA key found in the PlayDrone

are studied. Similar features were found in 211 out of 223 ap-
plications using 512-bit RSA keys. The issuer and subject infor-
mation of the digital certificate used in these applications were as
follows.

CN={A Specific Service Name} {numbers} OU={A Spe-

cific Service Name} O=Android Developers L=Anon

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 15 Default setting of android studio.

Android Studio JDK PubKey Algorithm Key Length Signing Algorithm Signing Algorithm
(bits) for APK for Certificates

1.0 (Oldest) 8.0 RSA 2,048 SHA1 SHA256 with RSA
2.1.3 (Latest) 8.0 RSA 2,048 SHA1 SHA256 with RSA

Table 16 Default setting of Eclipse ADT plug-in.

ADT JDK PubKey Algorithm Key Length Signing Algorithm Signing Algorithm
(bits) for APK for Certificates

22.6.3.v2014 6.0 RSA 1,024 SHA1 SHA1 with RSA
23.0.7.2120684 (Latest) 8.0 RSA 2,048 SHA1 SHA256 with RSA

Table 17 Development tools considered to be used for application develop-
ment.

Common Chars Tool Name Number Prop.
Chars A Tool A 9,515 18.00%
Chars B Tool B 1,428 2.70%
Chars C Tool C 346 0.65%
Chars D Tool D 178 0.34%

Table 18 Development services considered to be used for application de-
velopment.

Common Chars Service Name Number Prop.
Chars E Service E 278 0.53%
Chars F Service F 232 0.44%
Chars G Service G 224 0.42%

ST=Anon C=US
Although numbers are different for each application, all other

information is identical. It also includes a specific service name.
From responsible disclosure aspects, we anonymized the key-
word as A Specific Service Name. The keyword is known as a tool
that automatically stores fixed tasks of users with Android appli-
cations and settings. Therefore, these applications are expected
to be automation tools based on the service. The tasks created
with the service can be released as an independent application to
the market.

We found the service and confirmed that the service was still
working in 2016. We also had tried to make an application using
the service. In that case, there was no selection of a signature
key and algorithm, and the created APK had a 512-bit RSA key.
Also, the issuer and subject information of the digital certificate
was of the same format as above. From this result, 211 of the
applications that used the 512-bit RSA key in PlayDrone were
Tasker-based applications.

6.3 Online Application-building Service
The 52,866 applications that used MD5 for APK signing were

also investigated. We focused on the package name for each
application. Some of the packages that closely resemble the
character strings included in the package were classified. There
was created by tools and services that assist application devel-
opers (Tables 17, 18). From responsible disclosure aspects, we
anonymized the keyword. It can be seen that developers create
many applications using MD5 for APK signatures with insuffi-
cient cryptographic knowledge using development tools and ser-
vices.

7. Discussion

In this section, we first discuss the limitations of our work. We

then present the guidelines for the stakeholders, which are derived
through our findings. Finally, we share the ethical considerations
in disclosing the security risks we found through this work.

7.1 Limitations
7.1.1 MultipleAPK

Apps using weak algorithms were found from PlayDrone
dataset. The apps on PlayDrone were originally distributed on
Google Play market.

To reduce the size of APK, Google Play allows develop-
ers to upload multiple APKs for a single application. Each
APKs has information about target device specification on
AndroidManifest.xml. It is called MultipleAPK. When a device
accessed to an app on Google Play and the app is configured as
MultipleAPK, one APK matched to the target device specifica-
tion is selected and shown to download by Google Play.

If we want to analyze apps on Google Play in a rigorous man-
ner, we have to consider the existence of bias of MultipleAPK.
Gathering all APKs of MultipleAPK on Google Play market
should be required. To the best of our knowledge, there is no
dataset considering Multiple APK.
7.1.2 Free Applications

All of the datasets used in this investigation contain only free
applications. Paid applications may have different characteristics.
7.1.3 Other enhancements on Google Play

Google Play gives several other enhancements. An application
developer can use OBB (Opaque Binary Blob) as an extended
area of the APK. Although an attacker can use this OBB to en-
able some attacks, the datasets used here does not include such
data files. In addition, MultipleAPK, which enables developers
to prepare multiple APKs according to the type of terminal, has
not yet to be considered. Some crawlers might not be compatible
with MultipleAPK.
7.1.4 Other Platforms

Code signing is now a technology that has been adopted by
other platforms as well as Android. Here, we discuss the use of
weak algorithms on other platforms.

In Windows, applications are usually signed. Developers need
to have a certificate issued by a trusted certificate authority. MD5
is already unavailable for Windows code signing, and even SHA-
1 is a transition target.

In Apple iOS, applications on the App Store which is the of-
ficial marketplace for iOS applications are signed. Developers
must receive a developer certificate from Apple’s CA in order to
register an application onto the App Store.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Compared to these two common platforms, it can be seen that
Android accepts weak algorithms.

7.2 Guidelines for the Stakeholders
7.2.1 For OS Developers

Certificates with a validity period of 25 years or more using
keys of 512 or 1,024 bits should be swapped instantly. Unfortu-
nately, even though application components are the totally same,
the application signed with the different certificate is considered
to be a different application in the current Google Play market. In
reality, even if the same developer uses two of the old key certifi-
cates and the new key certificate, on the market, the two are not
considered the same developer. In other words, it is a model that
does not consider certificate migration.

Otherwise, application developers need to announce, “In this

update, the terminal recognizes it as a separate application from

the old application, please delete the old application” to end
users. This mechanism places the burden on end-users.

This may also become a significant risk, because the old appli-
cation remains due to lack of understanding by the end-user.
7.2.2 For Market Managers

If certificate migration is not possible on the Android OS, some
actions can be treated by market managers. In the current Google
Play market, the trust of certificate issuer is not considered. Trust
mechanism is given by the market itself. In that case, it is neces-
sary to link old and new certificates and provide a mechanism to
guarantee their identity for previously published applications.

For newly developed applications, the market should change
its policy, check the key and signature algorithms, and issue a
warning at uploading.

In 2017, Google launched a new service that allows developers
to deposit their signing keys. Although it is useful as an approach
to protect the key from leakage, threats pointed out in the paper
cannot be solved. Weak algorithms continue to be accepted, and
key migration remains impossible.
7.2.3 For Application Developers

Since the Android OS does not allow certificate migration even
we have a key deposit service on Google, it is difficult for appli-
cation developers to migrate certificates properly. As mentioned
earlier, there is no other choice but to announce what is recog-
nized as a separate application.

Instead, one possible mitigation method for developers is pos-
sible. In the follow-up investigation of applications using MD5
for signing APKs, several applications migrate from MD5 to
SHA-1 for signatures to the APK. Developers can change the
signature algorithm to the APK without changing certificates and
keys. The Android OS and the Google Play market will continue
to accept it as the same application.

Because the key of the certificate and the signature algorithm
do not change, it is not a fundamental solution, but the level of
protection of the APK is improved.
7.2.4 For App-Building Service Providers

It is difficult for the developer to establish a certificate concern-
ing the purpose of the service. Therefore, it should be modified
to a higher-level signature algorithm by default.

7.2.5 Others
It is relatively easy to develop the AndroidStudio plug-in that

warns you if weak algorithms are set, and makes it easy to change
the algorithm.

7.3 Ethical Considerations
App developers and app-building service providers know the

potential risks caused using weak cryptographic algorithms for
signing apps such as the 512-bit RSA key and MD5. To this
end, we contacted national CERT to inform stakeholders about
the potential risks associated with the use of weak cryptographic
algorithms. The answer from national CERT was, “Please con-
tact the concerned organizations. It would be good idea to contact
Google at the same time.”

8. Conclusion

In this work, we studied the use of signatures in Android appli-
cations using the vast collection of the official Android market-
place — PlayDrone dataset. We revealed that the use of weak
cryptographic algorithms such as the 512-bit RSA key and MD5
was non-negligible; in total, 223 applications used the 512-bit
RSA key and 52,866 applications used MD5 for APK sign-
ing. The finding implies that these apps are exposed to security
threats, such as malicious updates and unintentional information
leakage. As 99.55% of certificates associated with these apps had
an expiration date of 25 years or more, the attackers may have
sufficient time to accomplish the attack. While the PlayDrone
dataset was collected in 2014, our follow-up study revealed that
the use of 512-bit RSA key and MD5 were still there in 2016. We
found that many users have installed the corresponding applica-
tions. We then explored the origins of the use of weak algorithms
and identified the reasons, i.e., specific applications and online
app-building services.

To address the threats caused by the inclusion of weak cryp-
tographic algorithms, we advocate that mobile operating systems
and mobile app distribution platform needs to have a mechanism
that enables app developers to migrate the certificates of apps af-
ter the publication of apps. However, for that purpose, it is nec-
essary to change the entire Android ecosystem, including the OS
and markets.

References

[1] StatCounter: Mobile and tablet internet usage exceeds desktop
for first time worldwide, available from 〈http://gs.statcounter.com/
press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-
time-worldwide〉 (accessed 2018-11-17).

[2] Durumeric, Z., Wustrow, E. and Halderman, J.A.: ZMap: Fast
Internet-wide Scanning and Its Security Applications, 22nd USENIX
Security Symposium (USENIX Security 13), pp.605–620, USENIX
(2013) (online), available from 〈https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/paper/durumeric〉.

[3] Martin, W., Sarro, F., Jia, Y., Zhang, Y. and Harman, M.: A Sur-
vey of App Store Analysis for Software Engineering, IEEE Trans.
Software Engineering, Vol.43, No.9, pp.817–847 (online), DOI:
10.1109/TSE.2016.2630689 (2017).

[4] Durumeric, Z., Kasten, J., Bailey, M. and Halderman, J.A.: Analysis
of the HTTPS Certificate Ecosystem, Proc. 2013 Conference on Inter-
net Measurement Conference, IMC ’13, pp.291–304, ACM (online),
DOI: 10.1145/2504730.2504755 (2013).

[5] Egele, M., Brumley, D., Fratantonio, Y. and Kruegel, C.: An Em-
pirical Study of Cryptographic Misuse in Android Applications,
Proc. 2013 ACM SIGSAC Conference on Computer and Com-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

munications Security, CCS ’13, pp.73–84, ACM (online), DOI:
10.1145/2508859.2516693 (2013).

[6] Shuai, S., Guowei, D., Tao, G., Tianchang, Y. and Chenjie, S.: Mod-
elling Analysis and Auto-detection of Cryptographic Misuse in An-
droid Applications, 2014 IEEE 12th International Conference on De-
pendable, Autonomic and Secure Computing, pp.75–80 (online), DOI:
10.1109/DASC.2014.22 (2014).

[7] Kim, S.H., Han, D. and Lee, D.H.: Predictability of An-
droid OpenSSL’s Pseudo Random Number Generator, Proc. 2013
ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’13, pp.659–668, ACM (online), DOI: 10.1145/2508859.
2516706 (2013).

[8] Fahl, S., Harbach, M., Perl, H., Koetter, M. and Smith, M.: Rethinking
SSL Development in an Appified World, Proc. 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’13,
pp.49–60, ACM (online), DOI: 10.1145/2508859.2516655 (2013).

[9] Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B. and
Smith, M.: Why Eve and Mallory Love Android: An Analysis of An-
droid SSL (in)Security, Proc. 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pp.50–61, ACM (online), DOI:
10.1145/2382196.2382205 (2012).

[10] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D. and
Shmatikov, V.: The Most Dangerous Code in the World: Validating
SSL Certificates in Non-browser Software, Proc. 2012 ACM Confer-
ence on Computer and Communications Security, CCS ’12, pp.38–49,
ACM (online), DOI: 10.1145/2382196.2382204 (2012).

[11] Onwuzurike, L. and De Cristofaro, E.: Danger is My Middle
Name: Experimenting with SSL Vulnerabilities in Android Apps,
Proc. 8th ACM Conference on Security & Privacy in Wireless and
Mobile Networks, WiSec ’15, pp.15:1–15:6, ACM (online), DOI:
10.1145/2766498.2766522 (2015).

[12] Poeplau, S., Fratantonio, Y., Bianchi, A., Kruegel, C. and Vigna, G.:
Execute This! Analyzing Unsafe and Malicious Dynamic Code Load-
ing in Android Applications, NDSS, Vol.14, pp.23–26 (2014).

[13] Reaves, B., Scaife, N., Bates, A., Traynor, P. and Butler, K.R.:
Mo(bile) Money, Mo(bile) Problems: Analysis of Branchless Bank-
ing Applications in the Developing World, 24th USENIX Security
Symposium (USENIX Security 15), pp.17–32, USENIX Association
(2015) (online), available from 〈https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/reaves〉.

[14] Sounthiraraj, D., Sahs, J., Greenwood, G., Lin, Z. and Khan, L.: Smv-
hunter: Large scale, automated detection of SSL/TLS man-in-the-
middle vulnerabilities in android apps, Proc. 21st Annual Network and
Distributed System Security Symposium, NDSS ’14, Citeseer (2014).

[15] Fahl, S., Dechand, S., Perl, H., Fischer, F., Smrcek, J. and Smith, M.:
Hey, NSA: Stay Away from My Market! Future Proofing App Mar-
kets Against Powerful Attackers, Proc. 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’14, pp.1143–
1155, ACM (online), DOI: 10.1145/2660267.2660311 (2014).

[16] Sign your app — Android Developers, available from
〈https://developer.android.com/studio/publish/app-signing?hl=en〉
(accessed 2019-04-02).

[17] Valenta, L., Cohney, S., Liao, A., Fried, J., Bodduluri, S. and
Heninger, N.: Factoring as a service, International Conference on
Financial Cryptography and Data Security, pp.321–338, Springer
(2016).

[18] Barker, E.: NIST Special Publication 800–57 Part 1, Revi-
sion 4 (2016), available from 〈https://csrc.nist.gov/publications/detail/
sp/800-57-part-1/rev-4/final〉.

[19] Wang, X. and Yu, H.: How to Break MD5 and Other Hash Functions,
Advances in Cryptology – EUROCRYPT 2005, pp.19–35, Springer
Berlin Heidelberg (2005).

[20] Stevens, M., Lenstra, A. and de Weger, B.: Chosen-Prefix Collisions
for MD5 and Colliding X.509 Certificates for Different Identities, Ad-
vances in Cryptology - EUROCRYPT 2007, pp.1–22, Springer Berlin
Heidelberg (2007).

[21] Sotirov, A., Stevens, M., Appelbaum, J., Lenstra, A.K., Molnar, D.,
Osvik, D.A. and de Weger, B.: MD5 considered harmful today, cre-
ating a rogue CA certificate, 25th Annual Chaos Communication
Congress, No.EPFL-CONF-164547 (2008).

[22] Stevens, M., Bursztein, E., Karpman, P., Albertini, A. and Markov,
Y.: The First Collision for Full SHA-1, Advances in Cryptology –
CRYPTO 2017, pp.570–596, Springer International Publishing (2017).

[23] Viennot, N., Garcia, E. and Nieh, J.: A Measurement Study of Google
Play, The 2014 ACM International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’14, pp.221–233, ACM
(online), DOI: 10.1145/2591971.2592003 (2014).

[24] Allix, K., Bissyandé, T.F., Klein, J. and Traon, Y.L.: AndroZoo: Col-
lecting Millions of Android Apps for the Research Community, 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR), pp.468–471 (online), DOI: 10.1109/MSR.2016.056 (2016).

[25] Signing Your Applications — Android Developers, available from
〈https://web.archive.org/web/20120613232550/https://developer.
android.com/guide/publishing/app-signing.html〉
(accessed 2019-04-02).

Kanae Yoshida received her B.E. degree
from Toho University in 2017. She joined
FDC Inc. in 2017. She received the Best
Student Paper Award at the Computer Se-
curity Symposium 2016 (CSS2016).

Hironori Imai received his B.E. degree
from Toho University in 2018. He is cur-
rently a master course student at Gradu-
ate School of Science, Toho University.
He received the Paper Award and the Pre-
sentation Award at the Multimedia, Dis-
tributed, Cooperative, and Mobile Sympo-
sium (DICOMO2018).

Nana Serizawa received B.E. and M.E.
degrees in computer science from Waseda
University in 2017 and 2019, respectively.
Her research interest is psychological se-
curity.

Tatsuya Mori is currently a professor at
Waseda University, Tokyo, Japan. He re-
ceived B.E. and M.E. degrees in applied
physics, and Ph.D. degree in information
science from Waseda University, in 1997,
1999 and 2005, respectively. He joined
NTT lab in 1999. Since then, he has been
engaged in the research of measurement

and analysis of networks and cyber security. From Mar. 2007
to Mar 2008, he was a visiting researcher at the University of
Wisconsin-Madison. He received Telecom System Technology
Award from TAF in 2010 and Best Paper Awards from IEICE
and IEEE/ACM COMSNETS in 2009 and 2010, respectively. Dr.
Mori is a member of ACM, IEEE, IEICE, IPSJ, and USENIX.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Akira Kanaoka received his Ph.D. de-
gree in engineering from University of
Tsukuba, Japan in 2004. He worked at
SECOM Co., Ltd. from 2004 to 2007, and
at University of Tsukuba from 2007 to
2013. He is currently an associate profes-
sor of Department of Information Science,
Faculty of Science, Toho University. His

research interests include usable security and privacy.

c© 2019 Information Processing Society of Japan

