
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

Efficiency Improvement in Group Signature Scheme with
Probabilistic Revocation

Nasima Begum1,a),b) Toru Nakanishi2,c)

Received: November 23, 2018, Accepted: June 11, 2019

Abstract: In group signature schemes, one of the important issues is the member revocation, and lots of revocable
schemes have been proposed. Recently, Group Signature scheme with Probabilistic Revocation (GSPR) is proposed.
In GSPR, by employing a novel notion of probabilistic revocation, the computation cost of the revocation check is
drastically reduced, although the correctness of the check is with a certain probability. However, in the GSPR scheme,
there is another problem: m alias tokens are embedded into the certificate of a member. Then, in signing, each token
is used, and O(m) exponentiations are needed to prove that the used token is embedded in the certificate. When m
is large, this signing cost including O(m) exponentiations becomes a big problem for powerless mobile devices. In
this paper, we propose an extended GSPR scheme where the signing cost is reduced, but the revocation mechanism is
exactly the same as the original GSPR scheme. Our main idea is to utilize an efficient pairing-based accumulator with
multiplications to embed lots of alias tokens in a certificate. Thus, in the proposed scheme, the signing cost is reduced
to only O(m) multiplications instead of O(m) exponentiations.

Keywords: anonymity, group signatures, revocation, accumulator

1. Introduction

1.1 Backgrounds
A group signature (GS) scheme [8] allows a group member to

anonymously sign a message on behalf of the group. In a GS
scheme, two types of trusted parties participate: A group man-
ager (GM) has the authority to add a user to the own group, and
an opener can identify the signer from a signature. The applica-
tions of GS include attribute-based anonymous credentials [7] and
privacy-preserving cooperative intelligent transport systems [18].
One of the most important issues in GS is a revocation that the
signing capability of a user is revoked. The revocation may hap-
pen, when the user leaves the group voluntarily or the account is
banned due to the illegal usage, etc.

1.2 Previous Works
Lots of revocable GS (RGS) schemes have been proposed,

which can be divided into two types. In the first type (e.g.,
Refs. [4], [13], [14], [17]), the signer needs the current revoca-
tion list (RL) of revocation tokens for signing. A revoked signer
cannot compute a valid signature based on the RL. The re-
cent RGS schemes in this type achieve the good asymptotic ef-
ficiency. The state-of-the-art scheme [14] achieves the constant
signing/verification time, the constant size of signature and mem-
bership certificate, and O(log N) public key size, where N is the

1 Department of Computer Science and Engineering, University of Asia
Pacific, Bangladesh.

2 Department of Information Engineering, Hiroshima University, Higashi-
Hiroshima, Hiroshima 739–8527, Japan

a) mail4nasima@gmail.com
b) nasima.cse@uap-bd.edu
c) t-nakanishi@hiroshima-u.ac.jp

maximum number of group members. However, the RL size is
O(R), where R is the number of revoked members. Since the
signer needs to fetch the RL for every revocation epoch, the large
size will cause a delay in a mobile environment with lots of mem-
bers.

The second type of RGS is the VLR (Verifier-Local
Revocation)-GS [5], [16]. In VLR-GS, the revocation check
based on the RL takes place at only the verifier, and thus the
signer does not need to fetch the RL, which is suitable for
mobile situations. In this type, each revocation token in the RL
is generated from a member’s secret key. The group signature
includes a revocation-related part based on the secret key (Note
that the computation of this part does not need the RL). The
verifier can check whether a signer has been revoked or not, by a
computation between the revocation-related part in the signature
and each revocation token. However, the computational cost of
the revocation check in each verification is O(R) heavy pairings.
Thus, as R increases, the large verification time is required.

In Ref. [12], as an improvement of VLR-GS, a GS scheme with
probabilistic revocation (GSPR) has been proposed. GSPR sig-
nificantly reduces the computation cost of the revocation check in
the verification, using alias codes, instead of pairing relations. In
GSPR, an alias code which is a vector of +1s and −1s is revealed
in each group signature. The alias code is mapped from an alias
token which is embedded in the certificate issued from the GM.
When revoking a member, the alias codes from the alias tokens
of the member are added to a united code RC. In the revocation
check, the verifier checks that the alias code of the group signa-
ture is not added in RC using a single cross-correlation between
the alias code and RC. Thus, the computation of the revocation
check does not need any expensive cryptographic operation, and

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

thus is very low. On the other hand, as the trade-off, the suc-
cess of the revocation check is probabilistic, i.e., the correctness
of its result is not ensured with certainty, but only with a certain
probability.

In the GSPR scheme of Ref. [12], there is another weakness: m

alias tokens are embedded into the certificate of a member, and
each token is used in each unlinkable group signature. In signing,
O(m) exponentiations are needed. When all m alias tokens are
used, a new certificate has to be re-issued from the GM. Thus,
since m should be as large as possible, the signing cost includ-
ing O(m) exponentiation is a big problem for powerless mobile
devices.

1.3 Our Contributions
In this paper *1, we propose an extended GSPR scheme where

the signing cost is reduced, but the revocation mechanism is ex-
actly the same as the original GSPR scheme [12]. Our main idea
is to utilize an efficient pairing-based accumulator [6] to embed
alias tokens in a certificate. The accumulator and the corre-
sponding witness are computed by only multiplications instead
of exponentiations, and the verification of the accumulation is a
single pairing relation. Thus, in the proposed scheme, signing
needs only O(m) multiplications instead of O(m) exponentiations.
Hence, we can reduce the signing cost. Since the same revocation
mechanism using random alias tokens is adopted, the cost of the
revocation check is still low.

However, in the proposed scheme, the verification cost has a
slight constant overhead compared to the original. As another
trade-off, the public key size is O(N · m). But, since the public
key is communicated to each entity only one time, we consider
that this is not so serious problem.

1.4 Related Works
As the related works, efficient revocable signature schemes

have been proposed in Refs. [9], [20]. The characteristic of these
schemes is to introduce the linkability to group signatures.

In Ref. [9], time intervals are introduced, and during each time
interval, the group signatures are linkable, i.e., any verifier can
determine whether the signer of a signature is the same as that
of another signature. On the other hand, signatures in different
intervals are unlinkable. Based on this characteristic, the scheme
is applied to a road-to-vehicle communication system in Ref. [9].
The advantage of the scheme is the efficient revocation check. In
the revocation, a linkable part in the signature is added to the revo-
cation list (RL), and the verifier checks whether the part is in the
list or not. This check can be efficiently executed by a hash table
with no cryptographic operations. The advantage over our GSPR
scheme is the signing cost. The linkable scheme achieves O(1)
signing cost, while our GSPR scheme need O(m) multiplications.
Thus, the scheme of Ref. [9] is suitable for the applications where
the linkability in an interval with some moderate length of time
is useful. On the other hand, from the viewpoint of privacy, to re-
duce the number of linkable signatures, a short interval is desired.
However, in the scheme of Ref. [9], the time indicating the inter-

*1 The preliminary version of this paper was presented at ISITA2018 [3].

val has to be synchronized, i.e., the signer has to know the current
time authenticated by a server, and the verifier has to fetch the RL
of the corresponding time. Furthermore, the whole of the RL de-
pendent to the time has to be re-computed in the beginning of
each interval, and the computation cost is O(R) exponentiations.
Thus, in case of the short interval and lots of revocations, the cost
may be the problem. In our GSPR scheme, the signer does not
need to know the time, and the computation of RL is very light.

In the scheme of Ref. [20], a TTP called Revocation Author-
ity (RA) is introduced for efficient revocation check, as follows.
To the group signature, an encrypted linkable part is attached.
For the revocation check, the verifier sends the part to an online
RA, and the RA decrypts the part, and checks the revocation by
matching it to the part in RL in the same way as Ref. [9]. The ad-
vantage of this scheme is that the verifier does not need to fetch
the RL and the computation of the revocation check, in addition
to no cost for the signer as in the GSPR schemes. However, the
demerit is that the RA can link any pair of all signatures of all
users. In Ref. [20], the distributed RAs are considered. But, this
needs the distributed decryption by the distributed multiple RAs,
which causes the delay of the revocation check.

1.5 Outline
The rest of this paper is organized as follows: The used crypto-

graphic tools are explained in Section 2. The syntax and security
model of GSPR are defined in Section 3. Then, in Section 4, our
efficient GSPR scheme is proposed, and the security is proved.
The efficiency of our proposed scheme is compared with the pre-
vious GSPR scheme [12] in Section 5. Finally, we conclude this
paper in Section 6.

2. Preliminaries

In this section, we show the cryptographic tools and the proof
system used as building blocks of the proposed GSPR scheme.

2.1 Bilinear Maps
Our scheme utilizes the following bilinear groups:

(1) G1, G2, and T are cyclic groups of prime order p,
(2) g1 and g2 are randomly chosen generators of G1 and G2, re-

spectively,
(3) e is an efficiently computable bilinear map: e : G1×G2 → T ,

i.e., (a) for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) =
e(u, v)ab, (b) e(g1, g2) � 1T , where 1T is the identity element
of group T .

The bilinear map e can be efficiently implemented with the pair-
ings. There are two types of bilinear pairings, symmetric (G1 =

G2) and asymmetric (G1 � G2). In the following descriptions, for
simplicity, we adopt the symmetric one, and let e : G × G → T .
Remark 1. The asymmetric pairing can be more efficiently im-

plemented than the symmetric pairing. Thus, for the efficiency

in the implementation, the adoption of an asymmetric pairing

is better. But, the descriptions of the construction and the as-

sumptions may become more complex. Our main contribution is

to reduce O(m) exponentiations in signing of the GSPR scheme

to O(m) multiplications, and this can be achieved by adopting

an accumulator and a structure-preserving signature. Thus, for

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

the simplicity of the description, we adopt the symmetric pairing

hereafter.

2.2 Complexity Assumptions
The security of our scheme is based on the q-SFP (Simultane-

ous Flexible Pairing) assumption [1], [2] for the utilized structure-
preserving signatures. We also adopt the n-DHE (DH Exponent)
assumption [6] for the utilized accumulator.
Definition 1 (q-SFP assumption). For all PPT algorithmA, the

probability

Pr[A(gz, hz, gr, hr, a, ã, b, b̃, {(z j, r j, s j, t j, u j, v j, w j)}qj=1)

= (z∗, r∗, s∗, t∗, u∗, v∗, w∗) ∈ G7

∧ e(a, ã) = e(gz, z
∗)e(gr, r

∗)e(s∗, t∗)

∧ e(b, b̃) = e(hz, z
∗)e(hr, u

∗)e(v∗, w∗)

∧ z∗ � 1G ∧ z∗ � z j for all 1 ≤ j ≤ q]

is negligible, where (gz, hz, gr, hr, a, ã, b, b̃) ∈ G8 and all tuples

{(z j, r j, s j, t j, u j, v j, w j)}qj=1 satisfy

e(a, ã) = e(gz, z j)e(gr, r j)e(s j, t j)

∧ e(b, b̃) = e(hz, z j)e(hr, u j)e(v j, w j),

and 1G is the identity element of group G.

Definition 2 (n-DHE assumption). For all PPT algorithm A,

the probability

Pr[A(g, ga, . . . , gan
, gan+2

, . . . , ga2n
) = gan+1

]

is negligible, where g ∈R G and a ∈R Zp.

2.3 Structure-preserving Signatures (AHO Signatures)
We utilize the structure-preserving signatures. In the structure-

preserving signatures, the verification keys, messages, and signa-
tures are elements of bilinear groups, and the verification pred-
icate is a conjunction of pairing products. As in the group sig-
natures of Ref. [14], we adopt the AHO signature scheme in
Refs. [1], [2].
• AHOKeyGen: Select g,Gr,Hr ∈R G, and μz, νz, μ, ν, αa,

αb ∈R Zp. Compute Gz = Gμz
r , Hz = Hνzr , G = Gμr , H = Hνr ,

A = e(Gr, g
αa), B = e(Hr, g

αb). Output the public key as
pk = (g, Gr,Hr,Gz,Hz,G,H, A, B), and the secret key as
sk = (αa, αb, μz, νz, μ, ν).

• AHOSign: Given message M ∈ G to be signed together
with sk, choose β, ε, η, ι, κ ∈R Zp, and compute θ1 = gβ, and

θ2 = g
ε−μzβM−μ, θ3 = Gηr , θ4 = g

(αa−ε)/η,

θ5 = g
ι−νzβM−ν, θ6 = Hκr , θ7 = g

(αb−ι)/κ.

Output the signature σ = (θ1, . . . , θ7).
• AHOVerify: Given the message M and the signature σ =

(θ1, . . . , θ7), accept these if the following equations hold:

A = e(Gz, θ1) · e(Gr, θ2) · e(θ3, θ4) · e(G,M),

B = e(Hz, θ1) · e(Hr, θ5) · e(θ6, θ7) · e(H,M).

Under the q-SFP assumption, this signature is existentially un-
forgeable against the chosen-message attack [1], [2]. Using the

re-randomization algorithm in Refs. [1], [2], this signature can
be publicly randomized to obtain another signature (θ′1, . . . , θ

′
7)

on the same message. As a result, in the zero-knowledge proof,
(θ′i)i=3,4,6,7 can be safely revealed, while (θ′i)i=1,2,5 have to be com-
mitted, as mentioned in Ref. [14].

2.4 Pairing-based Accumulator with Multiplications
The cryptographic accumulator transforms a large set of val-

ues into a single value, where the membership can be verified. In
Ref. [6], an efficient pairing-based accumulator is proposed. The
accumulator is computed using multiplications, instead of expo-
nentiations used in other accumulator schemes. It can be ver-
ified using a single pairing relation with the constant complex-
ity. In this accumulator, integer elements from the universal set
{1, . . . , n} are accumulated. We define the syntax as follows.
• AccSetup: This is the algorithm to output the public param-

eters pkacc and it is executed only once.
• AccGen: Given pkacc and a set V ⊂ {1, . . . , n}, this algorithm

computes the accumulator accV of V .
• AccWitGen: Given pkacc, V ⊂ {1, . . . , n} and i ∈ V , this

algorithm computes the witness W for i ∈ V .
• AccVerify: Given pkacc, accV , i ∈ V and W, this algorithm

verifies i ∈ V .
The correctness and the security of the accumulator are as fol-
lows:
Correctness: The accumulator is correct if, when AccSetup cor-
rectly computes pkacc and AccGen and AccWitGen correctly
output accV of V and W for i ∈ V , then AccVerify accepts them.
Security: Let us consider the following game between a chal-
lenger and the adversary:
GameAcc :
(1) The challenger runs AccSetup to generate the public param-

eters pkacc. It gives pkacc to the adversary.
(2) The adversary outputs V ⊂ {1, . . . , n}, i ∈ {1, . . . , n}, and W.

The challenger runs AccGen to generate the correct accu-
mulator accV of V . Then the adversary wins if
• AccVerify accepts pkacc, accV , i, and W, but
• i � V .

Then, the accumulator is secure if any PPT adversary can win
GameAcc only with negligible probability.

The construction of the pairing-based accumulator with multi-
plications in Ref. [6] is as follows.
• AccSetup: Select g ∈R G. Select a random value γ ∈R Zp,

and compute and output pkacc = (g, g1 = g
γ1
, . . . , gn =

gγ
n
, gn+2 = g

γn+2
, . . . , g2n = g

γ2n
, z = e(g, g)γ

n+1
) as the

public parameters.
• AccGen: Given pkacc and V ⊂ {1, . . . , n}, compute and out-

put accV =
∏

j∈V gn+1− j.
• AccWitGen: Given pkacc, V ⊂ {1, . . . , n} and i ∈ V , com-

pute and output the witness as W =
∏ j�i

j∈V gn+1− j+i.
• AccVerify: Given pkacc, accV , i ∈ V and W, accept if

e(gi, accV)/e(g,W) = z.
The security of the accumulator in this construction is satisfied

under the n-DHE assumption [6].

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

2.5 Signature Proof of Knowledge (SPK)
As in the original GSPR [12], we use the Signature Proof of

Knowledge (SPK) as the non-interactive zero-knowledge-proof
technique. The SPK is transformed from a zero-knowledge proof
of knowledge (PK), Σ-protocol on discrete logs via Fiat-Shamir
transformation.

In this paper, the following SPKs on G and T are utilized:
SPK of representation: An SPK proving the knowledge of a

representation of C ∈ G to the bases g1, g2, . . . , gt ∈ G on
message M is denoted as:

S PK{(x1, . . . , xt) : C = g1
x1 · · · gt

xt }(M).

This can also be constructed on group T .
SPK of representations with equal parts: An SPK proving

the knowledge of representations of C,C′ ∈ G to the bases
g1, g2, . . . , gt ∈ G on message M, where the representations
include equal values as parts, is denoted as:

S PK{(x1, . . . , xu) : C = g
x j1
i1
· · · gx jv

iv
∧C′ = g

x j′1
i′1
· · · g

x j′
v′

i′
v′
}(M),

where indices i1, . . . , iv, i′1, . . . , i
′
v′ ∈ {1, . . . , t} refer to the

bases g1, . . . , gt and indices j1, . . . , jv, j′1, . . . , j′v′ ∈ {1, . . . , u}
refer to the secrets x1, . . . , xu. This SPK can be extended for
different groups G and T with the same order p, such as:

S PK{(x1, . . . , xu) : C = g
x j1
i1
· · · gx jv

iv
∧C′ = h

xj′1
i′1
· · · h

xj′
v′

i′
v′
}(M),

where C, g1, . . . , gt ∈ G and C′, h1, . . . , ht ∈ T .
In the random oracle model, the SPK can be simulated with-

out the knowledge using a simulator in the zero-knowledge-ness
of the underlying PK. Moreover, the SPK has an extractor of
the proved secret knowledge given two accepting protocol views
whose commitments are the same and whose challenges are dif-
ferent.

3. Syntax and Security Model

The algorithms of the Group Signature Probabilistic Revoca-
tion (GSPR) are as follows [12].
• KeyGen: This algorithm outputs a group public key gpk and

GM’s secret key gms.
• Join: Given gpk, gms, and member’s ID i ∈ [1,N] for the

maximum number of members N, this algorithm outputs the
member’s secret key gski, revocation token grti, and the i-th
registration entry regi. Here, we use the notation gsk as the
list gsk = (gsk1, gsk2, . . . , gskN), and this is similar for grt
and reg.

• Sign: Given gpk, gski, and message M, this algorithm gen-
erates the group signature σ on M by member i.

• Verify: Given gpk, message M and the signature σ, this
algorithm outputs valid if the signature is valid and not re-
voked. Otherwise, it outputs invalid. This algorithm consists
of two sub-algorithms: SignCheck checks that the signature
is correctly computed by a member. RevCheck checks that
the signer is not revoked.

• Revoke: Given a revocation token grti, this algorithm up-
dates the revocation code RC, which is the revocation list in
GSPR, s.t. member i is revoked.

• Open: Given reg, signature σ, and message M, this algo-
rithm outputs the signer’s ID i.

Then, the security requirements are as follows.
Definition 3 (Signature Correctness). For all (gpk, gms) ob-

tained by KeyGen, all (gski, grti, regi) obtained by Join for any

i ∈ [1,N], and all M ∈ {0, 1}∗,

SignCheck(gpk,Sign(gpk, gski,M),M) = valid.

Definition 4 (Identity Correctness). For all (gpk, gms) obtained

by KeyGen, all (gski, grti, regi) obtained by Join for any i ∈
[1,N], and all M ∈ {0, 1}∗,

Open(reg,Sign(gpk, gski,M),M) = i.

Definition 5 (Revocation Correctness). For all (gpk, gms) ob-

tained by KeyGen, all (gski, grti, regi) obtained by Join for any

i ∈ [1,N], all M ∈ {0, 1}∗, and all RC for which Revoke(grti) has

never been invoked (i.e., member i is not revoked),

RevCheck(RC, Sign(gpk, gski,M)) = valid.

Definition 6 (Anonymity). For any PPT algorithm A, the ad-

vantage ofA on winning the following game is negligibly small.

• Setup: The challenger runs KeyGen and Join (gpk, gms, i)
for ∀i ∈ [1, n]. He obtains gpk, gsk and reg. He runs A
with gpk.

• Queries-Phase I:A queries the challenger about the follow-

ing:

– Signing: A requests a signature on an arbitrary message

M for an arbitrary member i. The challenger responds with

the corresponding signature.

– Corruption: A requests the secret key of an arbitrary mem-

ber i. The challenger responds with the key gski.

– Opening: A requests the identity of the signer by providing

a message M and its valid signature σ created by signer

i ∈ [1, n]. The challenger responds with the signer’s iden-

tity i.

• Challenge: A outputs a message M∗ and two members i0
and i1, where the corruption of i0 and i1 have not been re-

quested. The challenger chooses φ←{0, 1}, and responds

with the signature σ∗ on M∗ of member iφ.

• Queries-Phase II (Restricted Queries): After the challenge,

A can make additional queries of signing, corruption and

opening, except the corruption queries of i0 and i1, and the

opening query of the signature σ∗ on M∗.

• Output: A outputs a bit φ′ indicating its guess of φ. A wins

the anonymity game if φ′ = φ. The advantage ofA is defined

as |Pr(φ′ = φ) − 1/2|.
Remark 2. In the previous paper [12], the authors consider the

extended situation, where time intervals are introduced, and in

the same interval, a user uses the same alias token to generate

the group signature. However, in the situation, the signatures in

the same interval are linkable w.r.t. the sameness of the signer. In

such a situation, the definition of anonymity should consider the

linkability. But, in the previous paper, only the basic anonymity

where the linkability is not considered is defined. In this paper,

as the main contributions, we target the efficiency improvement of

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

signing while the security remains. Thus, for simplicity, we adopt

this definition of basic anonymity without the linkability, and do

not consider the extended situation where the same alias token is

used in the same interval.

Definition 7 (Traceability). For each PPT algorithm A, the

probability thatA wins the following game is negligibly small.

• Setup: The challenger runs KeyGen and Join (gpk, gms, i),
∀i ∈ [1, n]. He obtains gpk, gsk and reg. He provides the

adversaryA with gpk, and sets U as empty set.

• Queries: A queries the challenger about the following:

– Signing: A requests a signature on an arbitrary message

M for an arbitrary member i. The challenger returns the

corresponding signature σ toA.

– Corruption: A requests the secret key of an arbitary mem-

ber i. The challenger appends i to U, and responds with the

key gski.

• Output: A outputs a message M∗, a set RL∗ of revoked mem-

ber ID’s and a signature σ∗.

The forgeryA wins the game if

(1) σ∗ is accepted by the verification algorithm as a valid

signature on M∗ for the revoked members RL∗, i.e,

SignCheck(gpk, σ∗,M∗) = valid, and

RevCheck(RC, σ∗) = valid,

where RC is generated by invoking Revoke(grti) for all

i ∈ RL∗.

(2) σ∗ is traced by Open to a member outside of the coali-

tion U\RL∗ (i.e., the traced member is not corrupted, or

the traced member is revoked) or Open algorithm fails,

and

(3) σ∗ is nontrivial, i.e., A did not obtain σ∗ by making a

signing query on M∗.

4. Proposed Efficient GSPR Scheme

4.1 Construction Idea
Since our aim is to improve the signing costs in the GSPR

scheme [12], we first review the previous GSPR scheme. In the
scheme, for efficient revocation check, alias codes are introduced.
Each alias code is a vector of +1s and −1s. The alias code is
mapped from an alias token of a random integer. Alias tokens are
embedded into the certificate of gski. In Sign, an unused alias
token is revealed as a tag for revocation. In Revoke, alias codes
are mapped from the alias tokens of the revoked member, and the
codes are added to RC. RevCheck checks that the alias code of
the alias token revealed in the signature is not added to RC using a
single cross-correlation of the alias code and RC. Thus, the com-
putation of RevCheck is very low. As the trade-off, the success
of RevCheck is probabilistic, i.e., the correctness of its result is
not ensured with certainty, but only with a certain probability.

However, for the verification that a used alias token is embed-
ded in the certificate, a witness is computed in Sign. The witness
computation includes O(m) exponentiations, where m is the num-
ber of embedded alias tokens. When all of m alias tokens are
used, a new gski has to be re-issued. Thus, since m should be as
large as possible, the witness computation cost can be a burden
for mobile devices with small computation power.

Our main idea for efficiency improvement is to adopt the ef-

ficient accumulator with multiplications for embedding alias to-
kens into the certificate. In this accumulator, the witness com-
putation needs only O(m) multiplications instead of exponentia-
tions. Hence, the computation cost in Sign is reduced. On the
other hand, the public key size increases, since the size depends
on m and N.

The accumulator of the alias tokens is generated as a group
element of G. The accumulator has to be signed as the certifi-
cate of the accumulator, and the verification has to be proved by a
zero-knowledge proof. Thus, in our proposed scheme, we utilize
the AHO signature to sign the accumulator of alias tokens as the
certificate. In the group signature, the verifications of the AHO
signature and the accumulator including the used alias token are
proved by SPKs for anonymity.
Remark 3. In our construction, as in the group signature

schemes in Ref. [14], the AHO signature scheme is adopted

as the structure-preserving signature (SPS) scheme. After the

AHO signature scheme, efficient SPS schemes based on simple

assumptions (non-q-type assumptions) have been proposed in

Refs. [11], [15]. By adapting these schemes to our approach, we

may obtain the GSPR scheme with more efficiency and/or simpler

assumptions. Our contribution of this work is to reduce O(m) ex-

ponentiations in the signing cost to O(m) multiplications, which

is achieved by adopting the accumulator [6] and an SPS scheme

including the AHO signature scheme.

4.2 Proposed Construction
The following are the details of our proposed construction. In

this proposed scheme, random integers from 1 to n are used as
alias tokens (In the original scheme [12], outputs of a hash func-
tion from a member’s secret are used). Each of N group members
is assigned to m random integers. The integers of a member can-
not be overlapped with other integers. Thus, N · m integers are
needed in total, and let n = N · m.
• KeyGen: Select bilinear groups G, T with a prime or-

der p and a bilinear map e. Using AHOKeyGen, gener-
ate the public key pkAHO and secret key skAHO. Using Acc-
Setup, generate the public parameters for accumulator pkacc

for the universal set {1, . . . , n}. For commitments, choose
ĝ ∈R G. Then, output gpk = (G,T , p, e, pkAHO, pkacc, ĝ) and
gms = skAHO.

• Join(gpk, gms, i): Let Vi be the set of alias tokens (random
integers) for member i, where |Vi| = m (Note that Vi∩Vj = ∅
for Vj of any other member j).
(1) Compute the accumulator accVi for set Vi as:

accVi =
∏

j∈Vi

gn+1− j.

(2) Compute an AHO signature for the accVi using skAHO.
The signature is denoted as σ̃accVi

= (θ̃1, . . . , θ̃7). As
the outputs of this algorithm, the secret key is gski =

(Vi, accVi , σ̃accVi
), the revocation token is grti = Vi, and

the registration entry is regi = Vi.
• Sign(gpk, gski,M):

(1) Select one of an unused alias token vi,k ∈ Vi. Then com-
pute the witness of vi,k ∈ Vi as:

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

W =
j�vi,k∏

j∈Vi

gn+1− j+vi,k .

(2) Re-randomize the AHO signature σ̃accVi
to obtain σ̃′accVi

= (θ̃′1, . . . , θ̃
′
7), using the method in Ref. [2], which

needs 8 exponentiations on G-element.
(3) Select random values raccVi

∈R Zp and rW ∈R Zp.
Compute the commitment CaccVi

to accVi by CaccVi
=

accVi ĝ
raccVi , and the commitment CW to W by CW =

WĝrW .
(4) Select random values rθ̃′i ∈R Zp for i ∈ {1, 2, 5}.

Compute the commitments {Cθ̃′i }i∈{1,2,5} to {θ̃i′ }i∈{1,2,5} by

Cθ′i = θ̃
′
i ĝ

r
θ̃′i . Set comAHO = ({θ̃i′ }i=3,4,6,7, {Cθ̃′i }i=1,2,5).

(5) Generate the following SPK π on message M:

S PK{(rθ̃′1 , rθ̃′2 , rθ̃′5 , raccVi
, rW) :

A−1 · e(Gz,Cθ̃′1) · e(Gr,Cθ̃′2) · e(θ̃′3, θ̃
′
4) · e(G,CaccVi

)

= e(Gz, ĝ)
r
θ̃′1 · e(Gr, ĝ)

r
θ̃′2 · e(G, ĝ)raccVi , (1)

B−1 · e(Hz,Cθ̃′1) · e(Hr,Cθ̃′5) · e(θ̃′6, θ̃
′
7) · e(H,CaccVi

)

= e(Hz, ĝ)
r
θ̃′1 · e(Hr, ĝ)

r
θ̃′5 · e(H, ĝ)raccVi , (2)

e(gvi,k ,CaccVi
) · e(g,CW)−1 · z−1

= e(gvi,k , ĝ)
raccVi · e(g, ĝ)−rW }(M) (3)

Equations (1), (2) show the verification of the AHO sig-
nature σ̃′accVi

on accVi . Equation (3) shows the accumu-
lator verification of vi,k ∈ Vi.
This SPK π is computed with the Fiat-Shamir heuris-
tic [10] by the following steps:
(a) Select randoms δθ̃′1 , δθ̃′2 , δθ̃′5 , δaccVi

, δW ∈R Zp and
compute:

R1 = e(Gz, ĝ)
δ
θ̃′1 · e(Gr, ĝ)

δ
θ̃′2 · e(G, ĝ)δaccVi ,

R2 = e(Hz, ĝ)
δ
θ̃′1 · e(Hr, ĝ)

δ
θ̃′5 · e(H, ĝ)δaccVi ,

R3 = e(gvi,k , ĝ)
δaccVi · e(g, ĝ)−δW ·

(b) Using a collision resistant hash function H treated
as random oracles, compute the challenge c as:
c = H(gpk,M, vi,k,CaccVi

,CW , comAHO,R1,R2,R3).
(c) Compute the responses as:
sθ̃′1 = δθ̃′1 + c · rθ̃′1 ,
sθ̃′2 = δθ̃′2 + c · rθ̃′2 ,
sθ̃′5 = δθ̃′5 + c · rθ̃′5 ,
saccVi

= δaccVi
+ c · raccVi

,
sW = δW + c · rW .
Set π = (c, sθ̃′1 , sθ̃′2 , sθ̃′5 , saccVi

, sW).
Note that the computation cost of this SPK depends on
the number of the exponentiations by the knowledges
rθ̃′1 , rθ̃′2 , rθ̃′5 , raccVi

, rW in the proved equations (1)–(3).
(6) The output of this algorithm is the signature:
σ = (vi,k,CaccVi

,CW , comAHO, π).
• Verify(gpk,RC, σ,M): Using the following sub-algorithms,

if both of the sub-algorithms output valid, this algorithm out-
puts valid, otherwise outputs invalid.

– SignCheck(gpk, σ,M): Verify the SPK π in σ. If it is

valid, this sub-algorithm outputs valid. Otherwise, it out-
puts invalid. This is checked using the following steps:
(1) Retrieve:

R̃1 = e(Gz, ĝ)
s
θ̃′1 · e(Gr, ĝ)

s
θ̃′2 · e(G, ĝ)saccVi

· {A−1 · e(Gz,Cθ̃′1) · e(Gr,Cθ̃′2)

· e(θ̃′3, θ̃
′
4) · e(G,CaccVi

)}−c,

R̃2 = e(Hz, ĝ)
s
θ̃′1 · e(Hr, ĝ)

s
θ̃′5 · e(H, ĝ)saccVi

· {B−1 · e(Hz,Cθ̃′1) · e(Hr,Cθ̃′5)

· e(θ̃′6, θ̃
′
7) · e(H,CaccVi

)}−c,

R̃3 = e(gvi,k , ĝ)
saccVi · e(g, ĝ)−sW

· {e(gvi,k ,CaccVi
) · e(g,CW)−1 · z−1}−c

(2) Check the correctness of the challenge c as:
c = H(gpk,M, vi,k,CaccVi

,CW , comAHO, R̃1, R̃2, R̃3).
If the above equation holds, this sub-algorithm outputs
valid; otherwise, it outputs invalid.

– RevCheck(RC, σ): For checking whether the alias token
vi,k in σ has been revoked or not, do the following steps,
which are the same as the original GSPR [12].
(1) Map vi,k to the corresponding alias code si,k, i.e., com-

pute si,k = Fc(vi,k), where Fc is the map [12] from alias
tokens to alias codes, and si,k is a column vector of
length l of samples of +1s and −1s.

(2) Compute the value of the decision variable, z =
1
l si,k

T RC, where si,k
T is the transpose of si,k.

(3) Output invalid if z ≥ τ, where τ is a pre-determined
threshold, otherwise, output valid.

• Revoke(grti,RC): To revoke member i, update the revoca-
tion code RC using the following steps, which are the same
as the original GSPR. In the original GSPR scheme, as the
alias codes, piecewise-orthogonal codes are used. The alias
codes are generated by concatenating multiple segments of
orthogonal codes, and each alias code is represented by a
vector of length l of +1s and −1s. RC is the summation of
all alias codes of revoked users. In advance, the RC is ini-
tialized as the vector of length l of all 0s.
(1) Map each vi,k ∈ grti to the corresponding alias code si,k,

i.e., compute si,k = Fc(vi,k) for k = 1, 2, . . . ,m.
(2) Compute the code, s̄i, by adding all the unique alias

codes corresponding to the revoked alias tokens such
that s̄i =

∑m
k=1 si,k.

(3) Update the revocation code as RC = RC + s̄i.
• Open(reg, σ,M): The actual signer is identified using the

following steps, which are the same as the original GSPR.
(1) Search the registration list reg to find signer i that has

generated signature σ with the alias token vi,k.
(2) If a match is successfully found, output i. Otherwise,

output 0 to indicate a failure.

4.3 Security Discussions
Correctness. The signature and identity correctness is simply
shown as in the original [12]. Since the revocation check mech-
anism is the same, the revocation correctness is the same as the
original, where the revocation check for the non-revoked mem-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

bers fails (i.e., RevCheck outputs invalid) with some probability,
depending on the adopted code (For the details, see Ref. [12]).
Anonymity. We can prove the anonymity of our construction, as
follows.
Theorem 1. The proposed scheme satisfies the anonymity in the

random oracle model.

Proof. For the proposed scheme, consider Game 0 and Game 1.
Game 0 is the original anonymity game between an adversaryA
and a challenger, where the hash function in SPKs are computed
by the random oracle. Game 0 is transformed to Game 1 with
the following changes:
• In Challenge phase, the signature σ∗ = (v∗i,k,C

∗
accVi
,C∗W ,

com∗AHO, π
∗) with which the challenger responds is modi-

fied as follows. The commitments C∗accVi
,C∗W , and the re-

randomized {θ̃∗i′ }i=3,4,6,7 and the commitments {C∗
θ̃′i
}i=1,2,5 in

com∗AHO are modified to uniformly random elements from
G. The SPK π∗ is modified to the zero-knowledge simulator,
where the output of the hash function is backpached by us-
ing the random oracle (In case of the failure of backpaching
with some negligible probability, abort).

In Game 1, the random elements C∗accVi
, C∗W , com∗AHO and the

zero-knowledge simulator π∗ in the responded signature σ∗ do
not have any information on members i0 and i1. The remaining
v∗i,k is a random integer and the assignment to the member (i.e.,
the revocation token grti = Vi) is hidden to A, and thus it does
not have any information on iφ. Therefore, the advantage of A
in Game 1, i.e., the difference between the probability that A
wins and 1/2 is only the probability of the failure of backpaching,
which is negligible.

We can view Game 0 and Game 1 as operating in the same
probability space, due to the perfectly hiding of the commit-
ments and the re-randomized AHO signature and the perfect zero-
knowledge-ness of SPK, except the negligible probability due to
the backpaching failure. Thus, in Game 0, the advantage ofA is
also negligible. �
Traceability. We can prove the traceability of our construction, as
follows.
Theorem 2. The proposed scheme satisfies the traceability under

the security of the AHO signatures and the accumulator.

Proof. To win the traceability game, the adversaryAmust output
a message M∗, a set RL∗ of revoked members and a signature σ∗

satisfying
(1) Verify(gpk, σ∗,M∗,RL∗) = valid, and
(2) σ∗ is traced to a member outside of the coalition U\RL∗ or

Open algorithm fails.
Let σ∗ = (v∗i,k,C

∗
accVi
,C∗W , com∗AHO, π

∗), where com∗AHO =

({θ̃∗i′ }i=3,4,6,7, {C∗θ̃′i
}i=1,2,5). As mentioned in Section 2.5, from SPK

π∗, we have an extractor the knowledge rθ̃′1 , rθ̃′2 , rθ̃′5 , raccVi
, rW

satisfying Eqs. (1)–(3), as follows. This extractor is similar to
the security proof of the SPK-based group signature scheme [4],
which is constructed using the methodology of Forking Lemma
in Ref. [19]. The extractor runs the traceability game with the ad-
versary, and at first, the adversary as the prover in the underlying
PK protocol of the SPK computes R1, R2, R3 as the commitments,
and requests the hash query on R1, R2, R3. To the challenge c re-

sponded by the hash query, the prover outputs the responses sθ̃′1 ,
sθ̃′2 , sθ̃′5 , saccVi

, sW . Then, the extractor rewinds the prover to the
point just before the prover is given challenge c. By the Forking
Lemma, with non-negligible probability, for the same R1, R2, R3

in the SPK, the prover is given challenge c′ � c, the prover out-
puts the corresponding s′

θ̃′1
, s′
θ̃′2

, s′
θ̃′5

, s′accVi
, s′W . Since the SPK is

accepting, the following equations hold.

R1 = e(Gz, ĝ)
s
θ̃′1 · e(Gr, ĝ)

s
θ̃′2 · e(G, ĝ)saccVi

· {A−1 · e(Gz,C
∗
θ̃′1

) · e(Gr,C
∗
θ̃′2

)

· e(θ̃′3
∗
, θ̃′4
∗
) · e(G,C∗accVi

)}−c, (4)

R2 = e(Hz, ĝ)
s
θ̃′1 · e(Hr, ĝ)

s
θ̃′5 · e(H, ĝ)saccVi

· {B−1 · e(Hz,C
∗
θ̃′1

) · e(Hr,C
∗
θ̃′5

)

· e(θ̃′6
∗
, θ̃′7
∗
) · e(H,C∗accVi

)}−c, (5)

R3 = e(gvi,k , ĝ)
saccVi · e(g, ĝ)−sW

· {e(gvi,k ,C
∗
accVi

) · e(g,C
∗
W)−1 · z−1}−c (6)

For c′, s′
θ̃′1

, s′
θ̃′2

, s′
θ̃′5

, s′accVi
, s′W , the above equations also hold.

Set Δc = c − c′, and Δsθ̃′1 = sθ̃′1 − s′
θ̃′1

, and similarly for

sθ̃′2 , sθ̃′5 , saccVi
, sW . For Eq. (4), we have

e(Gz, ĝ)
s
θ̃′1 · e(Gr, ĝ)

s
θ̃′2 · e(G, ĝ)saccVi

· {A−1 · e(Gz,C
∗
θ̃′1

) · e(Gr,C
∗
θ̃′2

)

· e(θ̃′3
∗
, θ̃′4
∗
) · e(G,C∗accVi

)}−c

= e(Gz, ĝ)
s′
θ̃′1 · e(Gr, ĝ)

s′
θ̃′2 · e(G, ĝ)

s′accVi

· {A−1 · e(Gz,C
∗
θ̃′1

) · e(Gr,C
∗
θ̃′2

)

· e(θ̃′3
∗
, θ̃′4
∗
) · e(G,C∗accVi

)}−c′ ,

and we obtain

{A−1 · e(Gz,C
∗
θ̃′1

) · e(Gr,C
∗
θ̃′2

) · e(θ̃′3
∗
, θ̃′4
∗
) · e(G,C∗accVi

)}Δc

= e(Gz, ĝ)
Δs
θ̃′1 · e(Gr, ĝ)

Δs
θ̃′2 · e(G, ĝ)ΔsaccVi .

By taking Δc-th roots due to Δc = c − c′ � 0, setting rθ̃′1 =

Δsθ̃′1/Δc, and similarly for sθ̃′2 , sθ̃′5 , saccVi
, sW , we can extract rθ̃′1 ,

rθ̃′2 , raccVi
s.t.

A−1 · e(Gz,C
∗
θ̃′1

) · e(Gr,C
∗
θ̃′2

) · e(θ̃′3
∗
, θ̃′4
∗
) · e(G,C∗accVi

)

= e(Gz, ĝ)
r
θ̃′1 · e(Gr, ĝ)

r
θ̃′2 · e(G, ĝ)raccVi ,

which is Eq. (1). For the other equations (5), (6), in the similar
way, we can extract the knowledge rθ̃′1 , rθ̃′5 , raccVi

, rW satisfying
Eqs. (2), (3).

From Eq. (1), we have the following equation:

A = e(Gz,C
∗
θ̃′1
ĝ
−r
θ̃′1) · e(Gr,C

∗
θ̃′2
ĝ
−r
θ̃′2) · e(θ̃′3

∗
, θ̃′4
∗
)

· e(G,C∗accVi
ĝ
−raccVi)

Thus, we can extract θ′∗1 = C∗
θ̃′1
ĝ
−r
θ̃′1 , θ̃′2

∗
= C∗

θ̃′2
ĝ
−r
θ̃′2 , and acc∗Vi

=

C∗accVi
ĝ
−raccVi s.t.

A = e(Gz, θ̃
′
1
∗
) · e(Gr, θ̃

′
2
∗
) · e(θ̃′3

∗
, θ̃′4
∗
) · e(G, acc∗Vi

).

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Similarly, from Eq. (2), we can extract θ̃′1
∗
, θ̃′5
∗
, and acc∗Vi

s.t.

B = e(Hz, θ̃
′
1
∗
) · e(Hr, θ̃

′
5
∗
) · e(θ̃′6

∗
, θ̃′7
∗
) · e(H, acc∗Vi

).

Furthermore, from Eq. (3), we have

e(gv∗i,k ,C
∗
accVi
ĝ
−raccVi)/e(g,C∗W ĝ

−rW) = z.

Thus, we can extract acc∗Vi
= C∗accVi

ĝ
−raccVi and W∗ = C∗W ĝ

−rW s.t.

e(gv∗i,k , acc∗Vi
)/e(g,W∗) = z.

Therefore, we can extract acc∗Vi
, W∗ satisfying the accumulator

verification with acc∗Vi
, and the re-randomized AHO signature

{θ′∗1, . . . , θ′
∗
7} for acc∗Vi

.
We distinguish the following cases from each other.
• Type 1 forgery. The AHO signature on acc∗Vi

was never is-
sued.

• Type 2 forgery. The AHO signature on acc∗Vi
was issued to a

corrupted user. In this case, the signer has to be revoked from
the following reason: the winning condition (2) of the trace-
ability game means the signer has to be outside of U/RL∗

(U means the corrupted users). However, in this case, this
signer is issued the AHO signature by the corruption query,
and so the signer is a corrupted user. This is why the signer
has to be revoked.

Using Type 1 and Type 2 forgeries, we can obtain forgers
against the AHO signatures and the accumulator respectively, as
follows.
• Type 1 Forgery. With the adversary A, simulate the trace-

ability game, as follows. The public key of AHO signatures
is given to the AHO signature forger. This is set as pkAHO

in KeyGen. Choose and compute the other parameters as
in the real algorithms of KeyGen, and Vi in Join for each
member i. Then, run A on gpk. In the traceability game, A
can request corruption query for member i. Then, compute

accVi =
∏

j∈Vi

gn+1− j

for Vi, and request the AHO signature on accVi to the sign-
ing oracle of the AHO signatures. Then, respond gski =

(Vi, accVi , σ̃accVi
) including the AHO signature on accVi . The

signing oracle in the traceability game can be simulated us-
ing the simulated commitments and the zero-knowledge sim-
ulator of SPK without gski. Finally, A outputs a forged
group signature σ∗. As mentioned above, we can extract a
randomized AHO signature on acc∗Vi

. In this case, since the
AHO signature was never issued for acc∗Vi

, this implies the
forgery against the AHO signature.

• Type 2 Forgery. This is the forgery against the security of
the accumulator. The challenger runs AccSetup to gener-
ate the public parameters pkacc. It is given pkacc. Simulate
the traceability game with the adversaryA, where the given
pkacc is used. Each query is conducted as usual using all
the keys, and A finally outputs the forged group signature
σ∗. In this case, the AHO signature on acc∗Vi

was issued to a
corrupted user. This means that acc∗Vi

is correctly computed
from the alias tokens of the user, which is denoted as V∗i . On

Table 1 Comparison of computationally expensive operations.

Scheme Exp. in G Exp. in T Bilinear Map
Ref. [12] Sign 2m + 6 4 3

SignCheck 2 5 4
RevCheck 0 0 0

Ours Sign 13 (+m Mul.) 8 1
SignCheck 0 11 11
RevCheck 0 0 0

Table 2 Comparison of number of communicated elements.

Scheme Elem. in Zp Elem. in G Int.
Ref. [12] GM-Member 1 1 0

Signer-Verifier 5 4 0
GM-Verifier 0 0 l

Ours GM-Member 0 8 m
Signer-Verifier 6 9 1
GM-Verifier 0 0 l

the other hand, the winning condition (1) states that Verify
on the forged group signature σ∗ outputs valid, which means
that the verification of the accumulator for pkacc, acc∗Vi

, v∗i,k,
and W∗ holds. However, in case of Type 2 forgery, as above-
mentioned, this signer is revoked, which means that si,k cor-
responding to every vi,k in V∗i has to be in RC due to the
process of Revoke. On the other hand, since RevCheck out-
puts valid (because Verify outputs valid), s∗i,k corresponding
to the alias token v∗i,k in the forged group signature σ∗ is not
in RC. Therefore, the alias token v∗i,k is not in set Vi

∗. Finally,
we can conclude that v∗i,k � Vi

∗ but AccVerify accepts pkacc,
acc∗Vi

, v∗i,k and W∗ for the correctly computed acc∗Vi
of Vi

∗,
which means the forgery against the accumulator. �

5. Efficiency Comparison

In this section, we compare the efficiency of our proposed
scheme with the original GSPR [12].

For performance, we focus on Sign, SignCheck and Rev-
Check, since the algorithms need to be performed by the signer
and the verifier, who have limited computational capabilities
compared to GM. Table 1 provides the number of operations
needed in each of the algorithms for both schemes, by consider-
ing only the computationally expensive operations, i.e., exponen-
tiation (Exp.) in G and T and bilinear map e. The original GSPR
paper [12] claims that 2m exponentiations in G in Step 1 of Sign
can be pre-computed. But, since the computation depends on the
individual alias token used in each signing, we consider that the
cost should be included in the signing cost. On the other hand,
the bilinear map on public parameters can be pre-computed, since
they are independent of each signing. Note that, in Sign of our
scheme, m multiplications (Mul.) on G for the witness computa-
tion are needed in addition to the expensive operations. From this
table, although the constant number of operations are increased
in Sign and SignCheck, we can confirm that the signing cost in-
cluding m Exp. is greatly reduced to that including only m Mul.
Additionally, the good efficiency with no expensive operations in
RevCheck is maintained.

Table 2 shows the comparison of number of elements (Elem.)
in Zp, G, and integers (Int.) communicated in the entities. The
data sizes in our proposed scheme become larger than the original
GSPR. Especially, m alias tokens (integers) between GM and the

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

member in Join have to be communicated, which is not needed
in the original. This is an overhead, but the size of each integer
is relatively small (log(N ·m)) and it is communicated once when
joining the group, where N is the number of members.

Another trade-off for the better signing performance is the size
of public key. In the original GSPR, the size is O(m), but in the
proposed scheme, it is O(N ·m). Note that the public key only has
to be communicated to each entity once.

6. Conclusions

In this paper, we have proposed an efficient group signature
scheme with probabilistic revocation, where the signing cost is
reduced from O(m) exponentiations to O(m) multiplications. The
revocation mechanism is exactly the same as the original GSPR
scheme [12], and thus the cost of revocation check is still very
low. Our future works include the evaluation based on the imple-
mentation and the applications in the mobile environment.

References

[1] Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K. and Ohkubo, M.:
Structure-preserving signatures and commitments to group elements,
CRYPTO 2010, LNCS 6223, pp.209–236 (2010).

[2] Abe, M., Haralambiev, K. and Ohkubo, M.: Signing on elements in bi-
linear groups for modular protocol design, Cryptology ePrint Archive,
Report 2010/133 (2010), available from 〈http://eprint.iacr.org/〉.

[3] Begum, N. and Nakanishi, T.: Efficiency Improvement in Group
Signature Scheme with Probabilistic Revocation, Proc. Interna-
tional Symposium on Information Theory and Its Applications 2018
(ISITA2018), pp.80–84 (2018).

[4] Boneh, D., Boyen, X. and Shacham, H.: Short group signatures,
CRYPTO 2004, LNCS 3152, pp.41–55 (2004).

[5] Boneh, D. and Shacham, H.: Group signatures with verifier-local re-
vocation, Proc. 11th ACM Conference on Computer and Communica-
tions Security (ACM-CCS ’04), pp.168–177 (2004).

[6] Camenisch, J., Kohlweiss, M. and Soriente, C.: An accumulator based
on bilinear maps and efficient revocation for anonymous credentials,
PKC 2009, LNCS 5443, pp.481–500 (2009).

[7] Camenisch, J. and Lysyanskaya, A.: Dynamic accumulators and ap-
plication to efficient revocation of anonymous credentials, CRYPTO
2002, LNCS 2442, pp.61–76 (2002).

[8] Chaum, D. and van Heijst, E.; Group signatures, EUROCRYPT 91,
LNCS 547, pp.241–246 (1991).

[9] Emura, K. and Hayashi, T.: Road-to-vehicle communications with
time-dependent anonymity: A lightweight construction and its ex-
perimental results, IEEE Trans. Vehicular Technology, Vol.67, No.2,
pp.1582–1597 (2018).

[10] Fiat, A. and Shamir, A.: How to prove yourself: Practical solu-
tions identification and signature problems, CRYPTO ’86, LNCS 263,
pp.186–194 (1987).

[11] Kiltz, E., Pan, J. and Wee, H.: Structure-Preserving Signatures from
Standard Assumptions, Revisited, CRYPT 2015, Part II, LNCS 9216,
pp.275–295 (2015).

[12] Kumar, V., Li, H., Park, J.J.M., Bian, K. and Yang, Y.: Group sig-
natures with probabilistic revocation: A computationally-scalable ap-
proach for providing privacy-preserving authentication, 22nd ACM
Conference on Computer and Communications Security (CCS 2015),
pp.1334–1345 (2015).

[13] Libert, B., Peters, T. and Yung, M.: Scalable group signatures with
revocation, EUROCRYPT 2012, LNCS 7323, pp.609–627 (2012).

[14] Libert, B., Peters, T. and Yung, M.: Group signatures with almost-for-
free revocation, CRYPTO 2012, LNCS 7417, pp.571–589 (2012).

[15] Libert, B., Peters, T. and Yung, M.: Short Group Signatures via
Structure-Preserving Signatures: Standard Model Security from Sim-
ple Assumptions, CRYPTO 2015, Part II, LNCS 9216, pp.296–316
(2015).

[16] Nakanishi T. and Funabiki, N.: Verifier-local revocation group signa-
ture schemes with backward unlinkability from bilinear maps, ASIA-
CRYPT 2005, LNCS 3788, pp.533–548 (2005).

[17] Nakanishi, T., Fujii, H., Hira, Y. and Funabiki, N.: Revocable group
signature schemes with constant costs for signing and verifying, PKC
2009, LNCS 5443, pp.463–480 (2009).

[18] Neven, G., Baldini, G., Camenisch, J. and Neisse, R.: Privacy-

preserving attribute-based credentials in cooperative intelligent trans-
port systems, 2017 IEEE Vehicular Networking Conference (VNC
2017), pp.131–138 (2017).

[19] Pointcheval, D. and Stern, J.: Security arguments for digital signatures
and blind signatures, J. Cryptology, Vol.13, No.3, pp.361–396 (2000).

[20] Slamanig, D., Spreitzer, R. and Unterluggauer, T.: Linking-based re-
vocation for group signatures: A pragmatic approach for efficient re-
vocation checks, Proc. Mycrypt 2016, pp.364–388 (2016).

Nasima Begum received her Ph.D. de-
gree in Cryptography and Information Se-
curity from Okayama University, Japan in
2014. She received her B.Sc. and M.Sc.
degrees in Computer Science and En-
gineering from Jahangirnagar University,
Dhaka, Bangladesh, in 2006 and 2010 re-
spectively. She joined as a Lecturer at

the Department of Computer Science and Engineering, Manarat
International University, Dhaka, Bangladesh in January 2007.
She joined as Assistant Professor at the Department of Com-
puter Science and Engineering, University of Asia Pacific, Dhaka,
Bangladesh in November 2016. She has worked as a Foreign Re-
search Fellow in Okayama University, Japan, from October 2014
to March 2016. Her research interests include cryptography and
information security, signal and image processing, and artificial
intelligence. She is a member of IEEE, ACM and IEICE.

Toru Nakanishi received his M.S. and
Ph.D. degrees in information and com-
puter sciences from Osaka University,
Japan, in 1995 and 2000 respectively.
He joined the Department of Informa-
tion Technology at Okayama University,
Japan, as a research associate in 1998, and
moved to the Department of Communica-

tion Network Engineering in 2000, where he became an assistant
professor and an associate professor in 2003 and 2006 respec-
tively. In 2014, he moved to the Department of Information En-
gineering at Hiroshima University as a professor. His research
interests include cryptography and information security. He is a
member of IEICE.

c© 2019 Information Processing Society of Japan

