T RN—X V275 11624
(1998. 7. 8)

Alias ICERT 257 — ¥ EHOF B RIMTBH0OFT V= /7 MEAF —F ~— R BSH S
THEE '

AK H

REEMBFEIRRER R 2GR LR

F7 D= MRAF —F _—RIZHBVV T ObjectStore DEAFT V= 7 hD L SMMOT —F DM, BE, RIBOE
FEEREE LT MBI H 53T V=2 FRAVORZERS, ABTHE 5 LEFT V=2 b R £ SR
BE, DELBHENETR—CrIF -2 P TV r— 3 ORIDKIFBRE RO URRR X7 AR AIRICT 3
D, FofR=ROAL T~ a VIEBRLTOBRREAATA D L REE LW, AR TIRT —FR— 2D T
L—varvBovx—Y Yy 0BEM AT SHRIZF — s Bz Lo THI&xEE ENEF - ER LOBBEDREL = DMK
BERRTH,

Design Methodology to Detect Inconsistent Data Update in Object-Oriented Databases
Caused by Aliases

Izuru Kume

Nara Institute of Science and Technology
Graduate School of Information Science

In a object-oriented database, we often find a group of objects that contain, query and do update operation on other
objects. We call such objects managers. Well-designed managers decrease both structural and behavioral dependecy
between application codes and data objects in the database. Therefore it is desirable to reuse the code of the managers
as much as possible in database integration. In this paper we show an example of database integration where we reuse
managers in the original databases and sharing of data objects causes a problem on data management. We also propose
a solution of the problem.

1 Introduction

In this paper we study the effect of object sharing when we integrate information systems on object-oriented
databases. Because an object-oriented database has program codes in the database layer, object sharing
becomes a critical problem when we intend to reuse the codes. In a practical object-oriented database pro-
gramming a group of database objects, often collection objects, play a special role in a database. The contain
other data objects, mediate them with other parts of the system, for example, they select a group of objects
from them, update their state and provide a cursor to access them. In this paper we call the objects with such
a role managers'. We can see in [7, 13] several example of managers.
The usage of manager is desirable from the viewpoint of encapsulation of data objects. If all operations on
the data objects are done through the managers, other parts of the system decrease the dependency of the
_ specification of the data objects. Schema change in the process of a database integration affects and often force
rewrite of the codes of managers. However, is there another important factor for the codes of the managers?
In this paper, we show object sharing can be a cause of serious problem also. Figure 1 illustrates an example
of conflicting data management in a database integration. Two managers manager A and manager B come
from different databases and are designed independently. Both managers were a part of and come from different
databases. They were designed independently and play competitive roles with respect to data management.

1In section 3.1 we introduce a concept manager in another context.

—181-

Before theintegration shared data was managed
solely by manager A but after the integration it is
passed to manager B through application layer. Now
the two managers share a data object named shared
data and update it without any cooperation, thus
leading to redundant inconsistent updates. This kind
of problem is hard to find because in general seman-
tical conflict doesn’t cause any noticeable errors and
thus is serious. We show in section 2 much more con-
crete example to examine this problem more precisely.

opyflicoﬁon

Figure 1: Conflicting Data Management by Object
Sharing

In this paper we propose a solution to cope with
the problem above. The key point of our solution is
extension of the schema description to describe the
assumption of reused code with respect to sharing of
data objects. In several cases, we can check system
conflict statically by the information and even in the
worst case, the integrated system tells us what goes
wrong. '

Next we define our terminologies often used in this
paper. System means a combination of database and
applications on the database. A component means a
class in a system. Classes that belong to the database
layer of the system is called database components and
those that belong to the application layer are called
application components . A database integration in-
cludes schema integration, migration of objects and
reuse of codes of database components. An applica-
tion integration is to construct a new application by
reusing application components. So in a system inle-

gration we do both a database integration and an ap-
plication integration. In this paper we regard database
integration as a part of system integration. Aliesisa
terminology used in the area of object-oriented pro-
gramming language. When we can reach an object
through more than one paths, we say that the object
has aliases. In other words, we can say that an alias
is “another path to reach the object”.

In section 2 we show a more concrete motivating ex-
ample of system integration that seems to work well
at first glance but introduces a semantical conflicts
caused by aliases. In section 3 we propose a novel de-
sign methodology to solve such a problem. In section 4
we explain the feature of the modeling concepts using
the example in section 2. Insection 5 we mention about
implementation to embody our methodology. In sec-
tion 6 we show related works, and we talk about our
conclusion and future work in section 7.

2 Motivating Example

In this section we show two information systems each
of which does employee management of a company.
We show one system in figure 2. The object dia-
gram? of the figure shows how employees are man-
aged in the system. Objects in the database layer
named designer and planner represent employees
and called employee objects. Objects named design
and planning play the role of manager of the employee
objects and are called division objects. They are the
only mediator between the employee objects and other
objects. An object named division controller be-
longs to the application layer and contains division
objects in its member field division. From design
and planning we can reach collections of employee
objects by their member fields member. We denote
interactions between objects with big arrows in ob-
ject diagrams. The above object diagram show how
annual pay raise are done. Division controller pe-
riodically asks design and planning to does the task.
The division objects then do the actual task including
update of the value of salary field of each employee

2Basically we adopt the same notation of Design Pattern{5]
for object diagram and class diagram but not interaction dia-
gram.

— 182~

objects.

cpphco’non

cjyer
database
layer

/Jnnuol
y raise

-—\
update "salary"

Figure 2: Per-Division Employee Management

The schema of the system are illustrated in figure 3.
DivControl is the class of division controller.
Employee and division are abstract classes of
employee objects and division objects respectively.
Employee has a member field salary and a mem-
ber function uwpdateSalary to update it. Planner
and designer are concrete subclasses of employee.
Division class has a member field member and two
methods annualPayRaise and selectEmployee. The
value of member of a manager is a collection object that
contains a group of employee objects under the con-
trol of the manager. With respect to the merthods the
former does annual pay raise and updates the value of
salary of the employee objects. As we can see in the
design technique of design patter, PlanningDiv and
designDiv are concrete subclasses of division that
are designed to manage instances of the abstract class
employee and not of its subclasses 3.

The latter returns an employee object that satisfies
a given condition. Notice that the application layer
need not to know precise information such as the in-
terface of employee objects in order to do the actual
management.-

Next we show an employee management system for
another company with different employment system
and its schema in figure 4. In this company employ-
ees. contracts to work for a project and represented

3 Actually they manage instances of concrete subcla.sses of
employee

while(e I= null){

e.updateSalary();
€ = member.next();

while(e I= null){
if (cond(e)) return e;
e = member.next();

}

Figure 3: Schema, of Employee Management System

as specialist objects. In this system project ob-
jects and prjManager play similar roles of division
objects and division controller in the first system
respectively. Instance of project class and those of
specialist class are called project objects and em-
ployee objects respectively. A project object plays the
role of manager of a group of employee objects con-
tained in a collection object in its staff member field.
When estimateCost method is invoked, it updates
the value of their salary member field by invoking
their updatePayment method. If necessary a new em-
ployee object is passed to a project as an argument of
addStaff method call.

Figure 4: Per-Project Employee Management

Now we consider the case of a merger of the two

—183—

companies with the following conservative conditions:

e The new company inherits the states of old com-
panies. The posts and the participating projects
of employees are preserved at the start of the new
company.

o The ways of employee management of old compa-
nies are inherited and coexist in the new company.

e If necessary an employee belonging to a division
may be assigned to a project without changing
his position. In this case the employee is under
the management of his participating project.

Figure 5: Integration without any Problem?

The merger causes integration of the above two em-
ployee management systems. Then it becomes one
the most interest of the system designer how much he
can reuse old system components without rewriting as
many as possible. In this case, because of the conser-
vative first and second condition above, it seems that
reuse of components in the application layer and those
of the managers is easy and desirable. The schema
of figure 5 shows an integration example. We have
two noticeable changes in the system components af-
ter the integration. First, specialist becomes the
only subclass of employee and inherits its salary
member field. Planner and designer are deleted
from the schema. All employee objects migrate to
specialist so that both division objects and project
objects. can deal with them. The second change is

the addition of supervisor to satisfy the third con-
dition. An instance of supervisor can get any di-
vision objects and project object through division
controller and project manager. When a project
need a new employee object as its staff, it select proper
division object and get a suitable employee object by
its selectEmployee method. The employee object is
passed to the project object by addStaff method.

At first glance the new system works well but it
has a serious and implicit problem hard to detect.
The object diagram of figure 6 illustrates why it
goes wrong. The object a specialist passed from
planning to projectX by supervisor is shared by
them. Division controller calls annulaPayRaise
of planning periodically and project manager also
calls its addStaff. Both methods update the value
of salary member field of same employee object
a specialist without knowing each other, and thus
cause redundant updates. As a result we can’t reuse
all components because of inconsistent employee man-
agement caused by aliases of a specialist.

(supervisor

A/tﬂdingr
- - prjiMegr

- division
controller.
division

N S
update "salary"

Figure 6: Database Integration with Alias

3 Exclusive Management Model

3.1 Modeling Concepts

Recall why the system integration in section 2 goes
wrong. The integration changes the context of usage
of the managers, especially division objects. Before

—184—

the integration there is an implicit assumption that a
division object was the only manager of the employee
objects that ate contained in the collection object in its
member member field. However the assumption is ig-
nored in the process of the integration and there must
be a guarantee that no other objects can be a man-
ager of the employee objects. In particular, no other
objects can do any update operation on the employee
objects.

Figure 7: Exclusive Management Model

Now we redefine the concept of manager. Given a
group of objects, a manager of the objects is an ob-
Jject that tries to update them. If the objects always
have only one manager at once, we call it the cur-
rent ezclusive manager or simply exclusive manager,
and the update operation by an exclusive manager is
called exclusive management. If a group of objects
have a exclusive manager then each of them is called
a management subject of the exclusive manager. An
exclusive manager changes from one object to another
and we call such a potential exclusive manager an ob-
server. As a result a management subject has only
one manager at once. In our example of the system
integration, we can avoid redundant updates if each
employee object is under exclusive management of an
exclusive manager, i.e. a division object or a project
object.

Figure 7 shows how exclusive management works
on a management subject. Update operation on a
management subject is permitted only by its exclu-
sive manager. Observer objects have-aliases to the

selectEmployee()

foreach(e, member){
if (cond(e)) return e;

}

Figure 8: Violation of Exclusive Management

management subject but can’t do update operations.
The manager may change in a transaction as we saw in
section 2. In our example an employee object that be-
longs to a division and assigned to a project should
change its exclusive manager from the division ob-
ject to the project object. Such a change of exclusive
manger is called management transfer.

exclusive

exclusive (only once)

Figure 9: Exclusive Specification

Next we consider why we can’t keep the exclusive
management of employee objects. Figure 8 shows one
reason. On method invocation of selectEmployee,
planning returns to supervisor an employee ob-
Jject that satisfies given condition, and thus it gives
a chance for an observer to become another manager.
Division objects should be aware of the possibility of

—185—

a management transfer because any project object in-
tend to be the exclusive manager of the employee ob-
ject passed as an argument of addStaff. Im every
exchange of management subject between a exclusive
manager and observers, there must be an agreement
between them whether the exchange causes manage-
ment transfer or not.

3.2 Schema Description

In the following we propose a way of schema descrip-
tion to embody an exclusive management model. Our
schemna can be used to determine whether a a man-
agement subject can be updated in a program code or
not. We first specify a database component whose in-
stances play the role of the management subject, and
several database components whose instances may be
its manager. Next we specify how managers can reach
their management subjects.

‘In figure 9 we can see the implementation of the
collection object in member of planning. A division
object planning can reach its management subject a
specialist through a path of three member fields:
member, contents, val. In our schema these fields
are declared ezclusive to indicate a specialistis a
management subject. Thus we can specify manage-
ment subjects in a program code by the declaration
of ezclusive member fields. Next we specify manage-
ment transfers. For a method that passes other ob-
jects a management subject as its argument or its re-
turn value, we specify how the management subject is
passed.

Figure 10 shows a revised schema definition of
division and its revised code for selectEmployee.
Notice that the exclusive declaration of the return
value of selectEmployee and member member field.
The former declaration indicates that the returned em-
ployee object is not under any exclusive management
and has no exclusive manager. The latter declaration
shows that we must start with member member field of
a exclusive manager in order to get the management
subject. . .

A new member field prjMember is added to re-
vised division. It has no exclusive declaration and
stores management subjects under the exclusive man-
agement of another object. An employee object re-

foreach(e, member){
if (cond(e)){

ret = member.move(e,prjMember);

return ret; ~

}

Figure 10: Revised Division Class

turned by selectEmployse is removed from the col-
lection object in member and added to the collection
of prjMember. Because prjMember is not a exclusive
member field, update operation on the employee ob-
jects is not permitted.

4 Semantics of Exclusive Man-
agement

Figure 11 shows the restriction of the treatment of a
management subject. The above figure shows that an
exclusive manager holds its management subject and
passes it to an observer without management transfer.
From the viewpoint of the observer the passed man-
agement subject is under exclusive management of the
manager and can’t do any update operation. The fig-
ure below shows a management transfer. The manage-
ment subject has temporarily no exclusive manager.
In this case the receiver becomes the new exclusive
manager of the management subject. Alternatively
the receiver may give the right of the exclusive man-
ager to someone else. From the viewpoint of the old
exclusive manager, the passed management subject is
under the exclusive management of someone else (even
if there is none) and have lost the right to do any up-
date operation. .
How can we determine how an object in a program
code is under exclusive management of mine or others
? Exclusive declarations of member fields, method ar-

—186—

non-exclusive

Figure 11: Rules for Exclusive Management

guments and return value give the information. The
switch to give up the right of exclusive management
is assignment of the management subject to a non-
exclusive member field. An observer can gain the
right of exclusive management of a management sub-
Jject that is passed to as an exclusive argument or re-
turn value of a method call. For an new object that
has been just created is not known to anyone but the
creator, so the creator can become its exclusive man-
ager.

We can check statically illegal update operations
on a management subject by observers. We can do
another kind of static check for the correctness of
method calls that cause management transfers. Con-
sider selectEmployeein section 2 that returns a man-
agement subject without giving up its exclusive man-
agement. If the method declares its return value as
exclusive, then we can easily see that it introduces a
conflict.

Exclusive management is given up dynamically, so
it makes exact static checking difficult. Currently we
must use dynamic checking methodology such as ex-
ception handling.

5 Implementation
As for implementation we have a plan to make a pro-

totype tool for system design and integration based on
a Java-based object-oriented database such as Persis-

tent Storage Engine presented by Object Design, Inc.
A system designer first describes a schema of a sys-
tem to specify exclusive management in the database.
The schema description is used to add fragments of
codes or modify the source code so as to check if the
intended exclusive management works well. Roughly
to say, our tool generates classes and modifies codes
of existing classes.

For each subject component our tool generates a
class of its Proxy[5] that guarantee the correct activity
of the instances of the subject component. Each proxy
has the same interfaces, i.e. names and types of meth-
ods, as that of the corresponding management subject.
It has additional methods to notice their three kinds
of activities that it is passed to as a method argument,
it is returned as return value and it is assigned to some
member field.

6 Related Work

6.1 Database Integration

In database integration, issues related to types, such
as schema integration and view integration are well
studied [1, 12]. In our example we achieve database
integration with schema evolution where similar issues
are well studied [2, 3]. Issues such as alias, manager
and conflict data management are not often discussed
in the context of database integration. With respect to
behavioral consistency, little researcher pay much at-
tention to the effect of integration in application layer
to that in database layer. In contrast research of the
effect in the opposite direction [10] or consistency of
dependency of method definition [14].

We can think that our research proposes a way to
check the semantic consistency between system com-
ponents with respect to alias. Islend in [9] is a radical
solution that permits no aliases to be created. From
this research we get an important hint, access mode,
however, in object-oriented database programming, to
prevent aliases is not practical at all. In the context
of inheritance, we need to check semantic dependency
between system components with respect to sharing
of member field and member function[11]. In [8] be-
havioral consistency between system components are

—187—

guarantees by obeying contracts specified by system
designers.

7 Conclusion and Future Work

In this paper we proposed a viewpoint that database
integration is a part of system integration and showed
an example where application integration influences
the semantical correctness of the result of database
integration. To detect such conflicts we introduced
a data model concept ezclusive management and en-
riched system schema to describe it.

Qur future work is to develop a powerful compile
technique that detect statically many kinds of program
codes to violate exclusive management. We think the
works for shape type [4] and pointer analysis [6] will
be a help.

References

[1] C. Antini, M. Lenzerini, and S. B. Navathe.
A comparative analysis of methodologies for
database schema integration. ACM Computing
Surveys, 18(4):323-364, 1986.

[2

—

Jay Banerjee and Won Kim. Semantics and
implementation of schema evolution in object-
oriented databases. In ACM SIGMOD Record,
pages 311-322, 1987.

—
24
—_

Fabrizio Ferrandina, Guy Ferran, Thorsten
Meyer, Joélle Madec, and Rober Zicari. Schema
and database evolution in the O, object database
system. In Very Large Data Bases, pages 170-
182, 1995.

Pascal Fradet and Daniel Le Métayer. Shape
types. In ACM Principles of Programmzng Lan-
guages. ACM, 1997.

[5] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vissides. Design Patterns. ADDISON-
WESLEY, 1994.

[6] Rakesh Ghiya and Laurie J. Hendren. Putting
pointer analysis to work. In ACM Principles of
Programming Languages. ACM, 1998.

(4

[7] Peter M. Heinckiens. Building Scalable Database
Applications: Object-Oriented Design, Architec-
ture, and Implementations. Object Technology.
ADDISON-WESLEY, 1998.

Richard Helm, Ian M. Holland, and Dipayan
Gangopadhyay. Contracts: Specifying behav-
ioral compositon in object-oriented systems. In

ECOOP/OOPSLA, pages 169-180, 1990.

—_—
[e)
(v}

[9

—

John Hogg. Islands: Aliasing protection in object-
oriented languages. In ACM OOPSLA, pages
271-285, 1991.

Ling Liu, Roberto Zicari, Walter Hiirsch, and
Karl J. Lieberherr. The role of polymorphic reuse
mechanism in schema evolution in an object-
oriented database. IEEE Trans. on Knowledge
and Data Engineering, 9(1):50-67, 1997.

[10]

{11] Mira Mezini. Maintaining the consistency of class
libraries during their evolution. In ACM QOP-

SLA, volume 32, pages 1-21. ACM, 1997.

[12] Amihai Motro. Superviews: Virtual integration
of multiple databases. IEEE Trans. on Software

Engineering, 13(7):785-798, 1987.

[13] Object Design, Inc. ObjectStore C++ API User
Guide Release 4.0.1.

[14] Roberto Zicari. A framework for schema up-
dates in an object-oriented database system. In
IEEE International Conerence on Data Engineer-
ing, pages 2-13, 1991.

—188—

