
IPSJ SIG Technical Report

On Hardness of Sublinear-Space Lex-DFS
for Graphs of Maximum Degree Three∗

Taisuke Izumi1,a)

Abstract: The lexicographic depth-first search (Lex-DFS) is a popular variant of the standard depth-first
search, which is known as a P-complete problem under logspace reduction, i.e., unlikely to have an algorithm
using only O(logn)-bit working memory. From the upper-bound side, several algorithms attaining a space
complexity below the trivial O(n logn)-bit bound are recently proposed (where n is the number of vertices),
but none of them achieves o(n)-bit space complexity. In this research direction, it is a common view that
obtaining a Lex-DFS algorithm using o(n)-bit working memory is a challenging open problem. The main
contribution of this paper is to provide a new insight into that challenge. Specifically, we show that Lex-DFS
using o(n)-bit working memory for graphs of maximum degree 3 is as hard as that for sparse graphs (i.e.
graphs with O(n) edges).

Keywords: space-efficient algorithm, space-complexity, Lexicographic order DFS

1. Introduction

1.1 Background and Motivation

Depth-First Search (DFS) is one of the most fundamental

and elementary graph search algorithms with a huge number

of applications. Lexicographic DFS (Lex-DFS) is a popular

variant of DFS, which requires the search head always moves

to the first undiscovered neighbor in the adjacency list of

the current vertex (as long as it exists). Recently, it receives

much attention to attempt lowering the space complexity

of fundamental graph problems, including DFS, below their

trivial upper bounds [1], [2], [3], [4], [5], [6], [7]. These re-

searches are roughly motivated by the two aspects as follows:

First, the space matter is serious in the big-data (i.e., too

large inputs) and/or IoT (i.e., too small computational de-

vices) era. Second, the challenge of revealing the space com-

plexity of problems within class P still lies at the core of the

computational complexity theory. One of the ultimate goals

along this line is to prove or disprove the seminal P ̸= L

conjecture 1. Our study focuses on the space complexity

of Lex-DFS, which can be motivated from both sides but

much leans against the second one. We define the Lex-DFS

problem as the one of outputting the Lex-DFS ordering of

all vertices in streaming way, and measure its space com-

plexity by the required working-memory size in the classical

read-only model [8] where the system is equipped with three

memory areas, read-only input memory, write-only output

memory, and working memory. An input graph is initially

1 Nagoya Institute of Technology, Gokiso-cho, Showa-ku,
Nagoya, Aichi, 466-8555, Japan.

a) t-izumi@nitech.ac.jp
1 L is the class of problems decidable in poly(n) time using

O(logn)-bit working space.

written in the input memory, and the output must be writ-

ten in the output memory.

To argue the complexity of sublinear-space algorithms,

the notion of P-completeness under logspace reduction plays

an important role, which is analogous to NP-completeness in

P ̸= NP conjecture. A proof by Reif [9] shows that the Lex-

DFS problem is P-complete under logspace reduction. It

implies that no Lex-DFS algorithm only using O(logn)-bit

working memory exists unless P=L holds. Its counterpart is

the recent progress on (Lex-)DFS algorithms achieving both

polynomial time and o(n logn)-bit space complexity, where

n is the number of vertices in the input graph (note that

Θ(n logn) is the trivial upper bound for Lex-DFS). Initiated

by Asano et al. [1] and Elmasry et al. [2], a series of papers by

several authors explore the good time-space tradeoffs in im-

plementing (Lex-)DFS using o(n logn)-bit working memory.

The state-of-the-art best achievable bounds are O(m log∗ n)

running time and O(n)-bit working memory[7], O(m + n)

running time and O(n log logn)-bit working memory[2], and

(m+n) running time and O(n log(m/n))-bit working mem-

ory[3]. Looking at hidden coefficients, the smallest-space

algorithm is the one by Asano et al. [1], which attains a

polynomial time (with a high exponent) and (n + o(n))-bit

usage of working memory. There is no algorithm achieving

o(n)-bit working memory (or even weaker cn-bit memory

for c < 1) so far. Obtaining such an algorithm is commonly

recognized as a very challenging problem.

1.2 Our Result

The main result of this paper is the following theorem.

Theorem 1 Assume that there exists a polynomial-time

1ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-174 No.2
2019/9/17

IPSJ SIG Technical Report

Lex-DFS algorithm for any graphs of maximum degree 3

which uses O(n/f(n))-bit working memory. Then there ex-

ists a polynomial-time Lex-DFS algorithm for any graphs of

m edges using the working memory of O(m/f(m)) bits.

While these corollaries do not state any conclusive answer

for the question of sublinear-space solvability of Lex-DFS,

the author believes that they provide an interesting insight

into it: If the barrier of Ω(n)-bit space complexity for Lex-

DFS is not so strong, the theorem above will be a powerful

tool for breaking it because the constraint of maximum de-

gree 3 substantially simplifies the problem.

1.3 Related Work

As stated above, the space complexity of Lex-DFS is one

of the classical problems in the context of logspace com-

putability. As well as P-completeness result by Reif [9],

Anderson and Mayr also shows a restricted case of Lex-

DFS (lexicographically first maximal path) is also P-

complete [10]. The main interest in this early stage is s-t

connectivity of directed graphs, in relation to the theory

of NL-completeness. It is known that the s-t directed con-

nectivity problem allows an algorithm with a space com-

plexity sublinear of n [11], as well as its optimality within

a (naturally) restricted class of algorithms [12]. It is also

known that the space complexity of undirected s-t connec-

tivity drops into O(logn) bits, which is proved in Reingold’s

celebrating paper [13]. Despite the relatively rich litera-

ture on s-t connectivity, the space complexity of lex-DFS

receives less attention until recently, in particular, from the

aspect of upper bounds. After the two concurrent results

by Asano et al. [1] and Elmasry et al. [2], a few follow-up

results has been proposed, which consider the o(n logn)-

bit solvability for a variety of fundamental graph problems:

Lex-BFS [2], [3], single-source shortest path [2], biconnected

component decomposition [4], [5], s-t numbering [4], maxi-

mum cardinality search [6], and so on. It is also becoming

active to consider sublinear-space algorithms for fundamen-

tal non-graph-theoretic problems [14], [15], [16], [17], [18].

On the side of computational models, the read-only model

is one of the classical models to think about the com-

plexity of working memory. The first main topic in this

model is the time-space tradeoffs for sorting and/or selec-

tion [8], [19], [20], [21], [22], [23]. Recently, more unconven-

tional models are also considered; Stream model [24], re-

store model (algorithms can manipulate input memory but

after the computation the initial input data must be recov-

ered) [25], [26], and catalytic model (the algorithm can use a

large memory which are already used for other purpose, and

after the computation the memory state must be recovered

to the initial one)[27]. Some of the results in those mod-

els allows a lex-DFS algorithm using only a small working

memory, but they are incomparable to the ones for the stan-

dard read-only model. It is also worth touching the result by

Barba et al.[28], which presents a general scheme of realizing

stack machines using only a small memory space. While the

dominant part of the memory usage in lex-DFS algorithms

is to store the contents of the stack, the technique by Barba

et al. only applies to the algorithms whose access pattern to

stacks are non-adaptive. Thus that scheme does not work

for realizing small-space Lex-DFS algorithms.

1.4 Organization of Paper

In Section 2, we introduce the model, notations, and sev-

eral auxiliary matter for the Lex-DFS problem. Section 3

shows the proof of Theorem 1. Finally the paper is con-

cluded in Section 4 as well as a short discussion on related

open problems.

2. Preliminaries

2.1 Model and Notation

As stated in the introduction, throughout this paper (and

also in past literature), we measure the space complexity of

algorithms by the number of bits used for the working space

excluding the space for inputs and outputs. More specifi-

cally, we adopt the read-only model [8], which is equipped

with three memory areas, called input, working, and out-

put memories respectively. The input memory is read-

only, and the output memory is write-only. The memory-

access model follows the standard RAM of (log n)-bit words.

This paper considers only undirected graphs as inputs. Let

G = (VG, EG) be any input graph of n vertices and m edges,

which is stored in the input memory in the form of adja-

cency list AG. We assume VG = [0, n − 1], that is, each

vertex in VG is identified by an integer in [0, n− 1]. Letting

NG(v) ⊆ VG be the set of v’s neighbors in G, we refer to

the neighbor list of v ∈ VG as AG,v and denote the i-th

vertex in AG,v by AG,v[i] (index i starts from value one).

We use notation u <(G,v) w for u,w ∈ NG(v) if u precedes

w in AG,v. We define the inverse mapping of AG,v as A−1
G,v,

that is, for any neighbor u of v, A−1
G,v[u] returns the order of

u in AG,v. For any graph H, we denote its vertex set and

edge set by VH and EH respectively if they are not explicitly

defined.

2.2 Lex-DFS

To explain the behavior of Lex-DFS, we utilize a coloring

scheme used in [1]: Initially, all the vertices are white, and

the search head h is placed at the starting vertex s. When

vertex v is visited from vertex u, the color of v changes from

white to gray and the search head moves from u to v. If

there is no white neighbor of v, the search at v finishes.

Then the color of v changes from gray to black, and the

search head returns back to u. We also introduce the notion

of time in the DFS search. The algorithm starts at time

t = 0. At t = 1, the starting vertex s becomes gray. At

each time t ≥ 1, exactly one vertex changes its color, either

from white to gray, or, from gray to black. At time t = 2n,

the color of s becomes black and the search finishes. For

vertex v ∈ V , the discovery time of v is defined as the time

when the color of v is changed from white to gray. Similarly,

we define the leaving time of v as the time when v changes

2ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-174 No.2
2019/9/17

IPSJ SIG Technical Report

Algorithm 1 Lex-DFS Algorithm for graph G starting from s

1: vcur ← s ▷ vcur is the search head

2: (color vcur gray)

3: t = 1

4: while true do

5: v ← Pivot(t) ▷ Find the white neighbor of vcur with the smallest order in AG,s.

6: if v = −1 then ▷ All neighbors have been already visited.

7: (color vcur black)

8: v ← Parent(t) ▷ Find the end of the gray path

9: if v = −1 then ▷ All vertices are visited

10: halt

11: vcur ← v ▷ Backtrack

12: else

13: vcur ← v ▷ Forward

14: (color vcur gray)

15: t← t+ 1

its color from gray to black. Note that gray vertices always

form a simple path from the starting vertex s to the one

where the current search head lies.

In what follows, we fix the starting vertex s. While we

introduce several notations and definitions which could de-

pend on the starting vertex, the information of s is not ex-

plicitly stated in those notations and definitions. We refer

to the task of the Lex-DFS search in graph G (starting from

s) as LDFSG. We define hG,t as the vertex pointed by the

search head at time t in LDFSG. The subgraph ofG induced

by the gray vertices at time t is denoted by SG,t. With a

small abuse of notations, we often treat SG,t as a sequence of

vertices in VSt
following the order of the gray path (starting

from s). For any vertex u ∈ SG,t, we also denote by pG,t(u)

and sG,t(u) the (immediate) predecessor and successor of

u in SG,t, and denote by SG,t(u) the prefix of S(G, t) up

to u (or the subgraph corresponding to it). The discovery

time and leaving time of u ∈ V in the task of LDFSG is

respectively denoted by dG(u) and lG(u). Note that all of

these notations are defined for the Lex-DFS task itself, and

does not depend on algorithms implementing Lex-DFS. In

the following argument, for all the notations introduced in

this paper (including NG(v), AG,v, <G,v and A−1
G,v defined

in Section 2), the subscript G is omitted if G is the input

graph.

The Lex-DFS algorithm based on the coloring scheme

stated above is presented in Algorithm 1. The pseudocode

does not prepare the memory space for storing the color of

each vertex explicitly. Instead, all the tasks dependent on

vertex coloring is encapsulated by two abstract procedures

called Pivot(t) and Parent(t). The procedure Pivot(t) tries

to find the white neighbor of ht whose order with respect to

≤ht
is the smallest. If there is no white neighbor, it returns

−1. The procedure Parent(t) returns the predecessor pt(ht)

in the current gray path. It returns −1 if ht = s holds.

3. Proof of Theorem 1

3.1 Reduction Gadget

This section provides the proof of the second reduction,

which reduces the task of Lex-DFS for graph H of n ver-

tices and m edges to that for a max-degree-3 graph H3 of

O(m) vertices. The reduction uses only O(logn)-bit work-

ing memory, i.e., it is a logspace reduction. We present the

detailed construction of H3 below:

Vertex set

Let δ(u) be the degree of u in H. The graph H3

consists of 4m + 2n vertices. We associate a set V̂u of

4δ(u) + 2 vertices in H3, which forms a gadget Γu corre-

sponding to u in H3. The vertices in V̂u are referred as

V̂h = {xu
0 , x

u
1 , . . . , x

u
2δ(u)−1, y

u
0 , y

u
1 , . . . , y

u
δ(u), z

u
0 , z

u
1 , z

u
δ(u)}.

We define X̂u = {xu
i | 0 ≤ i ≤ 2δ(u)− 1}, Ŷ u = {yui | 0 ≤

i ≤ δ(u)}, and Ẑu = {zui | 0 ≤ i ≤ δ(u)}.
Edge set

Precisely, we do not only specify the edge set EH3 , but

also its adjacency list AH3 . First, we specify the edge in

each gadget Γu. Let a(v, i) = AH3,v[i] for short. We call

edge (v, a(v, i)) the i-th edge of v.

• The edges inside Γu (see Figure 1): The first

and second edges of the vertices in X̂u, Ŷ u,

and Ẑu form three cycles respectively. Formally,

a(xu
i , 1) = xu

(i+2δ(u)−1 mod 2δ(u)) and a(xu
i , 2) =

xu
(i+1 mod 2δ(u)) hold for any 0 ≤ i ≤ 2δ(u) − 1.

Similarly, a(yui , 1) = yu(i+δ(u)−1 mod (δ(u)+1)),

a(yui , 2) = yu(i+1 mod (δ(u)+1)), a(zui , 1) =

zu(i+δ(u)−1 mod (δ(u)+1)), and a(zui , 2) =

zu(i+1 mod (δ(u)+1)) hold for any 0 ≤ i ≤ δ(u).

For any 0 ≤ i ≤ δ(u) − 1, connect xu
2i+1 and yui by

the third edge of them, i.e., a(xu
2i+1, 3) = yui and

a(yui , 3) = xu
2i+1. In addition, connect yuδ(u) and

zuδ(u) be their third edge, i.e., a(yuδ(u), 3) = zuδ(u) and

a(zuδ(u), 3) = yuδ(u).

3ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-174 No.2
2019/9/17

IPSJ SIG Technical Report

• The edges between two gadgets: Connect zui and xv
2j−1

by their third edge if and only if AH,u[i + 1] = v and

AH,v[j + 1] = u (recall that the indices of adjacency

lists start from one). Note that there exists an edge

crossing between X̂u and Ẑv if and only if there exists

an edge crossing between Ẑu and X̂v.

3.2 Simulation of LDFSH

The output sequence of Lex-DFS for H is obtained by

running any Lex-DFS algorithm for H3 with starting vertex

xs
0. In the run of the task LDFSH3 , u is outputted when xu

0

is discovered.

3.3 Correctness

Let d̂(u) be the earliest time when a vertex in V̂u is discov-

ered in LDFSH3 . To prove the correctness of this reduction,

we first presents an auxiliary lemma below:

Lemma 1 For any two vertices u and v such that d̂(u) <

d̂(v) holds, all the vertices in V̂u is discovered by d̂(u).

Proof We first prove that if hH3,d̂(u) ∈ Xu holds then

all the vertices in V̂u are discovered by time d̂(v). Fig-

ure 2 almost proves this fact. Starting from xu
2i for any

0 ≤ iδ(u) − 1, the search head discovers all the vertices in

X̂u and then moves from xu
2i+1 to yui . The search head

discovers all the vertices in Ŷ u with termination at yui+1.

Then it starts the backtrack to yuδ(u). After moving from

yuδ(u) to zuδ(u), it discovers all the vertices in Ẑu without

going out of Γu. The remaining issue is to show that

hH3,d̂(u) ∈ X̂u holds for any u ∈ VH . Suppose for con-

tradiction that hH3,d̂(u) ̸∈ X̂u (i.e., hH3,d̂(u) ∈ Ẑu) holds

for some u ∈ VH . Then we have hH3,d̂(u)−1 ∈ X̂w for some

w. Letting xw
j = hH3,d̂(u)−1, the search head finishes the

backtrack at all the vertices in Zw. However, X̂w has an

outgoing incident edge to a vertex in V̂u. Let zwj′ ∈ Zw be

the vertex having an outgoing edge to a vertex in V̂u. Then

the search head finishes the backtrack at zwj′ despite leaving

an undiscovered neighbor of zwj′ . It is a contradiction. 2

Lemma 2 For any u, v ∈ H, dH(u) < dH(v) implies

dH3(xu
0) < dH3(xv

0).

Proof Let u0, u1, u2, . . . , un−1 (u0 = s) be the output

sequence of LDFSH , and x0, x1, · · · , xn−1 (x0 = s) be the

sequence of vertices in {xv
0 | v ∈ VH} sorted by the order

of their discovery time in LDFSH3 . It suffices to show that

xi = xui
0 holds for any 0 ≤ i ≤ n − 1. The proof is by the

induction on i. (Basis) For i = 0, u0 = s and x0 = xs
0 holds.

(Inductive Step) Suppose as the induction hypothesis that

xi′ = x
ui′
0 holds for any i′ ≤ i and consider the case of i+1.

Let w1, w2, . . . wk be the sequence of the vertices whose leav-

ing time is in [dH(ui), dH(ui+1)]. Assume that this sequence

is sorted in the order of their leaving times. Since the back-

track is performed on those vertices in LDFSH , any vertex

in
∑

0≤j≤k NH(wj) has been discovered at dH(ui). By the

induction hypothesis and Lemma 1, for any 1 ≤ j ≤ k, all

the destinations of the edges outgoing from Γwj are discov-

ered at d̂(ui). Thus the run of LDFSH3 performs backtrack

after discovering all the vertices in Γui until the search head

goes back to a vertex zwk

j in Zwk . Since LDFSH discov-

ers ui+1 at the run of Pivot(dH(ui+1) − 1) executed when

hH,t = wk, there exists j
′ such that AH,wk

[j′] = ui+1 holds

and all the vertices in AH,wk
[j′′] for j < j′′ < j′ are already

discovered. By Lemma 1 and the induction hypothesis, all

the vertices in ∪j≤j′′≤j′ V̂AH,wk
[j′′] are discovered when the

search head goes back to zwk

j . Thus the destinations of the

outgoing edges of Γui from zui

j−1, z
ui

j , . . . , zui

j′−2 are all dis-

covered, and thus zui

j′−1 has the first undiscovered neighbor

in the backtrack process starting from zui

j−1. That is, the

search head discovers a vertex in Γui+1 next. By Lemma 1,

it implies xi+1 = x
ui+1

0 . The lemma is proved. 2

4. Concluding Remarks

In this paper, we proved that undirected Lex-DFS for

maximum-degree-3 graphs is as hard as that for any sparse

graphs with respect to sublinear-space solvability. The au-

thor believes that this result will give a new insight into the

big question if there exist a lex-DFS algorithm using o(n)-bit

working space or not. Our result yields several interesting

open problems, which are listed below.

• Is it possible to obtain a reduction from the sublinear-

space solvability for general graphs (not necessarily

sparse) to maximum-degree-3 cases? The author con-

jectures it is true, but the proof is still missing.

• A more weaker form of Lex-DFS problem is the lex-

icographically minimum maximal path (Lex-min-max

path) problem, which must output the prefix of the

Lex-DFS ordering before the first backtrack point. Is it

possible to obtain the reduction from Lex-DFS to Lex-

min-max path preserving sublinear space complexity?

• Can we find any reason why sublinear-space Lex-DFS

is difficult? In the case of directed s-t connectivity, it

is shown that the currently-best algorithm by Barnes

et al. [11] is space-optimal under the NNJAG compu-

tational model[12]. For example, can we prove that no

sublinear-space algorithm for Lex-DFS in the NNJAG

model?

• What other problems are as hard as sublinear-space

Lex-DFS? Will our result be a powerful tool for identi-

fying such a problem?

Acknowledgments This work was supported by JST

SICORPGrant Number JPMJSC1606 and JSPS KAKENHI

Grant Number JP19K11824, Japan.

References

[1] Asano, T., Izumi, T., Kiyomi, M., Konagaya, M., Ono,
H., Otachi, Y., Schweitzer, P., Tarui, J. and Uehara, R.:
Depth-First Search Using $$O(n)$$Bits, International Sym-
posium on Algorithms and Computation (ISAAC), pp. 553–
564 (2014).

[2] Elmasry, A., Hagerup, T. and Kammer, F.: Space-efficient
Basic Graph Algorithms, International Symposium on Theo-

4ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-174 No.2
2019/9/17

IPSJ SIG Technical Report

3

3

11 21 22
1

212

11 21 2211 22 12 12
1

…

…
𝑥0
𝑢

𝑥2𝛿 𝑢 −1
𝑢

𝑦0
𝑢

𝑦𝛿(𝑢)
𝑢

3333

3333

3 3 3 3

11 21 22
1

212
…

3333𝑧0
𝑢

𝑧𝛿(𝑢)
𝑢

Fig. 1: Gadget Γu. The bold numbers written around each vertex are the order of the incident edges in its adjacency list.

3

3

11 21 22
1

212

11 21 2211 22 12 12
1

…

…
𝑥0
𝑢

𝑥2𝛿 𝑢 −1
𝑢

𝑦0
𝑢

𝑦𝛿(𝑢)
𝑢

3333

3333

3 3 3 3

11 21 22
1

212
…

3333𝑧0
𝑢

𝑧𝛿(𝑢)
𝑢

Fig. 2: The Lex-DFS tree in Γu. Assume that xu
2 is discovered first.

retical Aspects of Computer Science (STACS 2015), pp. 288–
301 (online), DOI: 10.4230/LIPIcs.STACS.2015.288 (2015).

[3] Banerjee, N., Chakraborty, S. and Raman, V.: Improved
Space Efficient Algorithms for BFS, DFS and Applica-
tions, International Computing and Combinatorics Confer-
ence (COCOON), pp. 119–130 (2016).

[4] Chakraborty, S., Raman, V. and Satti, S. R.: Biconnec-
tivity, Chain Decomposition and st-Numbering Using O(n)
Bits, International Symposium on Algorithms and Com-
putation (ISAAC), Vol. 64, pp. 22:1–22:13 (online), DOI:
10.4230/LIPIcs.ISAAC.2016.22 (2016).

[5] Kammer, F., Kratsch, D. and Laudahn, M.: Space-Efficient
Biconnected Components and Recognition of Outerplanar
Graphs, Algorithmica, Vol. 81, No. 3, pp. 1180–1204 (on-
line), DOI: 10.1007/s00453-018-0464-z (2019).

[6] Chakraborty, S. and Satti, S. R.: Space-efficient Algorithms
for Maximum Cardinality Search, Its Applications, and
Variants of BFS, Jouanal of Combinatorial Optimization,
Vol. 37, No. 2, pp. 465–481 (online), DOI: 10.1007/s10878-
018-0270-1 (2019).

[7] Hagerup, T.: Space-Efficient DFS and Applications: Sim-
pler, Leaner, Faster, CoRR, (online), available from
⟨http://arxiv.org/abs/1805.11864⟩ (2018).

[8] Frederickson, G. N.: Upper bounds for time-space trade-
offs in sorting and selection, Journal of Computer and Sys-
tem Sciences, Vol. 34, No. 1, pp. 19 – 26 (online), DOI:
https://doi.org/10.1016/0022-0000(87)90002-X (1987).

[9] Reif, J. H.: Depth-first search is inherently sequential, In-
formation Processing Letters, Vol. 20, No. 5, pp. 229 – 234
(online), DOI: https://doi.org/10.1016/0020-0190(85)90024-

9 (1985).
[10] Anderson, R. and Mayr, E. W.: Parallelism and the maximal

path problem, Information Processing Letters, Vol. 24, No. 2,
pp. 121 – 126 (online), DOI: https://doi.org/10.1016/0020-
0190(87)90105-0 (1987).

[11] Barnes, G., Buss, J. F., Ruzzo, W. L. and Schieber, B.: A
Sublinear Space, Polynomial Time Algorithm for Directed S-
t Connectivity, SIAM Journal on Computing, Vol. 27, No. 5,
pp. 1273–1282 (online), DOI: 10.1137/S0097539793283151
(1998).

[12] Edmonds, J., Poon, C. K. and Achlioptas, D.: Tight Lower
Bounds for st-Connectivity on the NNJAG Model, SIAM
Journal on Computing, Vol. 28, No. 6, pp. 2257–2284 (on-
line), DOI: 10.1137/S0097539795295948 (1999).

[13] Reingold, O.: Undirected Connectivity in Log-space,
Journal of the ACM, Vol. 55, No. 4 (online), DOI:
10.1145/1391289.1391291 (2008).

[14] Kiyomi, M., Ono, H., Otachi, Y., Schweitzer, P. and Tarui,
J.: Space-Efficient Algorithms for Longest Increasing Sub-
sequence, Theory of Computing Systems, (online), DOI:
10.1007/s00224-018-09908-6 (2019).

[15] Wang, J. R.: Space-Efficient Randomized Algorithms for K-
SUM, Algorithms - ESA 2014, pp. 810–829 (2014).

[16] Lincoln, A., Williams, V. V., Wang, J. R. and Williams,
R. R.: Deterministic Time-Space Trade-Offs for k-SUM,
43rd International Colloquium on Automata, Languages,
and Programming (ICALP), Leibniz International Proceed-
ings in Informatics (LIPIcs), Vol. 55, pp. 58:1–58:14 (online),
DOI: 10.4230/LIPIcs.ICALP.2016.58 (2016).

[17] Darwish, O. and Elmasry, A.: Optimal Time-Space Tradeoff

5ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-174 No.2
2019/9/17

IPSJ SIG Technical Report

for the 2D Convex-Hull Problem, Algorithms - ESA 2014,
pp. 284–295 (2014).

[18] Banyassady, B., Korman, M., Mulzer, W., van Renssen,
A., Roeloffzen, M., Seiferth, P. and Stein, Y.: Improved
Time-Space Trade-Offs for Computing Voronoi Diagrams,
34th Symposium on Theoretical Aspects of Computer Sci-
ence (STACS), Leibniz International Proceedings in In-
formatics (LIPIcs), Vol. 66, pp. 9:1–9:14 (online), DOI:
10.4230/LIPIcs.STACS.2017.9 (2017).

[19] Pagter, J. and Rauhe, T.: Optimal time-space trade-offs
for sorting, 39th Annual Symposium on Foundations of
Computer Science (STOC), pp. 264–268 (online), DOI:
10.1109/SFCS.1998.743455 (1998).

[20] Borodin, A. and Cook, S.: A Time-Space Tradeoff for Sort-
ing on a General Sequential Model of Computation, SIAM
Journal on Computing, Vol. 11, No. 2, pp. 287–297 (online),
DOI: 10.1137/0211022 (1982).

[21] Chan, T. M.: Comparison-based Time-space Lower
Bounds for Selection, ACM Transactions on Algo-
rithms, Vol. 6, No. 2, pp. 26:1–26:16 (online), DOI:
10.1145/1721837.1721842 (2010).

[22] Munro, J. and Paterson, M.: Selection and sorting with lim-
ited storage, Theoretical Computer Science, Vol. 12, No. 3,
pp. 315 – 323 (online), DOI: https://doi.org/10.1016/0304-
3975(80)90061-4 (1980).

[23] Chan, T. M., Munro, J. I. and Raman, V.: Faster, Space-
Efficient Selection Algorithms in Read-Only Memory for In-
tegers, Algorithms and Computation, pp. 405–412 (2013).

[24] Khan, S. and Mehta, S. K.: Depth First Search in the
Semi-streaming Model, International Symposium on Theo-
retical Aspects of Computer Science (STACS), Leibniz Inter-
national Proceedings in Informatics (LIPIcs), Vol. 126, pp.
42:1–42:16 (online), DOI: 10.4230/LIPIcs.STACS.2019.42
(2019).

[25] Chakraborty, S., Mukherjee, A., Raman, V. and Satti, S. R.:
A Framework for In-place Graph Algorithms, 26th Annual
European Symposium on Algorithms (ESA 2018) (Azar, Y.,
Bast, H. and Herman, G., eds.), Leibniz International Pro-
ceedings in Informatics (LIPIcs), Vol. 112, Dagstuhl, Ger-
many, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
pp. 13:1–13:16 (online), DOI: 10.4230/LIPIcs.ESA.2018.13
(2018).

[26] Kammer, F. and Sajenko, A.: Linear-Time In-Place DFS
and BFS on the Word RAM, Algorithms and Complexity,
pp. 286–298 (2019).

[27] Buhrman, H., Cleve, R., Koucký, M., Loff, B. and
Speelman, F.: Computing with a Full Memory: Cat-
alytic Space, Forty-sixth Annual ACM Symposium on The-
ory of Computing (STOC), pp. 857–866 (online), DOI:
10.1145/2591796.2591874 (2014).

[28] Barba, L., Korman, M., Langerman, S., Sadakane, K. and
Silveira, R. I.: Space–Time Trade-offs for Stack-Based Algo-
rithms, Algorithmica, Vol. 72, No. 4, pp. 1097–1129 (online),
DOI: 10.1007/s00453-014-9893-5 (2015).

6ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-174 No.2
2019/9/17

