Fe b R=X VAT A 116-10
(1998. 7. 8)

/

27 R+ 7 HFO0DBMS IZ BT 55 €
=33 v DINT F < v AT |

Ly V¥ u—L VA, KRESK, K. BHRE
mutenda@tkl.iis.u-tokyo.ac.jp
B R BRI ZERT

{kim,yoshi,baba.}@lynx.infor.utSunon1'1ya~u.ac.kp

FEE RFELEERE L TEH

Abstract
EFAT Vs MEEEETH S A-NETL (235 {5 OODBMS ##2%E L7/:. 20 OODBMS ik,
ST Ry Ly SR LTRI L, AR TREFIAT Y 2 s M EMREICEY 8IS -V
VNI ZLRARD. ZOT NI ZLEIATF L/ —FDO =K NF VY7 EFL.007T XV FT -
IS VEFHICL) 16 /—FTLT A EN Ty 7 2B

Evaluation of a Parallel Navigation Algorithm for
a Shared-Nothing Parallel OODBMS

Lawrence Mutenda, Kanemitsu Ootsu, Tsutomu Yoshinaga and Takanobu Baba
mutenda@tkl.iis.u-tokyo.ac.jp
Institute of Industrial Science, Tokyo University.

kim,yoshi,baba@lynx.infor.ustunomiya-u.ac.jp
Department of Information Science
Utsunomiya University
Utsunomiya 321, JAPAN
Phone/fax: 028-689-6284

Abstract

Object oriented database management systems provide rich facilities for the modelling and processing
of structural as well as behavioral properties of complex application objects. However due to their
inherent generality and the high performance demand in many application domains, efficient parallel
algorithms are necded to meet the requirements of such systems. In this paper we evalnate an algorithm
for navigating complex object assemblies in parallel in a shared-nothing environment. Evaluation based
on the OO7 benchmark adapted for a parallel environment achieves 1.7 speedup over 16 nodes.

—— 73_

1 Introduction

The object oriented data model is expected to be
among the most prominent models for representing
and manipulating data. Business application ori-
ented relational systems cannot provide the func-
tionality required by newer application areas, like
CAD, CAM and GIS, which require more power-
ful structural and behavioural facilities. OODBMS
are a viable alternative to relational databases in
these new areas [6] [4] . Much research has been
done for OODBMSs and a number of systems have
become commercially available, for example Gem-
stone, Vbase, ObjectStore and Versant [7].

Due to the inherent generality of OODBMS and
the high performance requirements of correspond-
ing applications, high performance implementation
of system algorithms is required [3], the obvious
candidate to obtain such performance gains being
parallel processing. The past several years have
seen the significant commercial success for rela-
tional databases, demonstrating convincingly that
parallelim is a highly effective tool for providing
high performance processing[4]. In addition, pow-
erful algorithms have been designed like the Grace-
Hash algorithm [10], to improve the performance
of the join function, an expensive operation in re-
lational database systems. Some work has been
done on parallelism in OODBMS which has demon-
strated that parallel processing can be effectively
applied in such environments [3] [4] [9] [5]. As in re-
lational databases, in these research projects, data
is partitioned into a number of disks, in a paral-
lel shared-nothing environment, to remove the I/0
botteneck and then apply processing to the data in
an MIMD fashion.

Similar to the way in which the join function is
an important operation for relational database, our
work tackles the problem of traversing links in an
object graph to identify the objects that make up a
complex object.In a parallel database, I/O band-
width, a major bottle neck for databases, is in-
creased by introducing multiple disks. Traversing
the links of an object stored in one disk may require
accessing a second disk. Ghandeharizadeh et al [6]

introduce a way partition data in an OODBMS to
limit inter-disk references. Without paying much
attention to careful object placement, we present
an algorithm for speeding up the traversal of an
object graph in a shared-nothing OODBMS. The
shared nothing paradigm has been the system of
choice for parallel systems since it facilitates scal-
ability. We present experimental evaluation of the
algorithm based on the 007 benchmark [2].

The rest of this paper is organized as follows. Sec-
tion 2 briefly describes related work. The design of
the algorithm is covered in section 3. Experimen-
tal evaluation are described in section 4. Finally we
discuss results, further work and conclude in section

5.

2 Related Work

Research in parallelism for OODBMSs is rel-
atively new, compared to that for parallel rela-
tional databases. Kim[9] describes sources of par-
allelism in an OODBMS. Here path parallelism,
node parallelism and class-hierachy parallelism are
identified as three types of parallelism possible in
a OODBMS. All three schems are based on a ob-
ject query graph. Path paralelism is the one that
most resembles the algorithm evaluated in this pa-
per. Kim defines path parallelism as the explotaion
of all different paths in the query graph such that
all the nodes in the different paths are processed in
parallel. The difference with our work is the we use
the path expression based on the notion of a set-
valued attribute. Here one path in a query graph
becomes multiple paths if that source node follows
that path from a set-valued attribute, Each of the
object elements of the set-valued attribute becomes
an indepedent path that can be processed in paral-
lel.

The algorithm we describe assumes that the
OODBMS uses phyical OIDs (Object Identifiers),
so that the node and disk page on which that par-
ticular object is stored can be found by examining
its OID. In this respect our work is similar to the
parallel pointer-based join techniques described by

— 74_.

Lieuwen et al [11]. Lieuwen describes pointer-based
Jjoins for 2 classes where one class links to a second
class using a set-valued attribute. We use the same
idea here but we also apply it to a path-expression
of infinite length. We also use dynamic load bal-
ancing to even out the load in the case where some
nodes process more objects than other.

The work described in [4] uses par-sets to paral-
lelize traversals of objects in a Parallel OODBMS.
We share goals with this work, i.e, speeding up the
navigation of objects related by links but the meth-
ods used are different. Chen et al [3} introduce elim-
ination and identification based techniques, that use
the concept of multi-wavefronts. Again the meth-
ods used differ from our work.

All parallel databases systems use data partition
across multiple disks to increase I/O bandwidth.
Ghandeharizadeh [6] explores the efficient partition
of objects across disks in a shared-nothing environ-
ment o maximise parallelism and minimise interfer-
ence from excessive message passing. Our parallel
Navigation Algorithm does not assume particular
partitioning scheme. However we intend to inves-
tigate the effect of data partioning that results in
low locality of reference. Our evalution basically as-
sumes that we have 90 percent locality of reference

and 10 percent external references.

3 Algorithm Description

Having described work related to our own we will
describe the parallel navigation with dynamic load-
balancing algorithm evaluated in this paper.

Every object has a set of attributes which de-
scribe its composition. Some of these attributes are
set valued, with either absolute values or object-
identifier (OID) values .
such as a three-dimensional prism may have an at-

For example an object

tribute, sides, which may be a collection of OIDs
dereferencing the sides of the object. Set-valued ob-
Jjects whose elements are OIDS are quite common in
OODBMSs.

It is important to consider the parallel navigation

of object pointers of such objects. Consider the

The
professor object has a set-valued attribute, courses

object whose structure is shown in Fig. 1.

which is a set of OIDs representing the courses that
professor teaches. In turn each course has a set-
valued attribute whose value is the set of students

(OIDs) taking that course.

Node 1 Node 2 Node 3 Ject
fessor 3 sele:
professor 1 professor 2 protesso professor
objects
N {4 navigate
through
course link
/ / , / Locate :zach
referenced

course objects

I
T

Ilﬂ JIII
\/ T

Node 1 Node 2 Node 3 redistribute
s course objects
to balance
load
E selected object
ﬂ unselected object
Figure 1: Navigating in Parallel with

Load-Balancing

Fig. 1 also shows how such object may be tra-
versed in parailel. The first stage in the navigation
process involves selecting the professor objects at
The OIDs in' the set-valued attribute

courses are then traversed to select course objects

each node.

in the second stage. At this point it is noted that
node 3 will need to process 6 objects but node 2
only has two selected objects. The system then ini-
tiates transfer of two objects from node 3 to node 2
at the third stage, to balance the system load. Such
transfer will be especially significant if each object

requires a method to be executed.

3.1 Parallel Navigation with Dy-

namic Load Balancing

Our algorithm assumes a shared-nothing environ-

ment where each processing node in the system has

— 75_

Initial Input at each node

Path Expression
(Paculty.courses.student)

@ — @ Algorithm points

Path Expression(PE)
selection predicates
Projcctjon data

Scan object set:
select, project,

For each OID in next PE

attribute value for each

selected object creatc/add
data to OID linked list

oD
/po& Y
o external
node
finished
loop
Synchronize
©)
~
Broadcast Number of | To o >
Entrics in Hash Table, Nodt g
Using Reccived Stats
set Data Distribution

Receive/Disiribute | — .}
Datp To/frpm Nodes >

process hash table objects
and redistibuted objects
(select/project)

Hash QID lists N

(last OID page no.)

Distribute OID list
1o extemal node

' Receive Stauisticy

Figure 2: Parallel Navigation with Dynamic Load

Final Quiput at each node

N Y Link with other
Endof Pat, Navigation Operation
Xpression to evaluate FROM

Balancing Algorithm

access to its own disk and communicates with other

nodes in the system via message passing.

Figure 2 is a flow chart of the algorithm that
implements parallel navigation as described above.
We assume that an object OID is physical and iden-
tifies the node and page on which an object is lo-
cated and that objects are not shared. The inpuf
to the algorithm is a path expression (PE) of arbi-
trary length as well as any necessary selection pred-
icates and projection requirements. We will briefly

explain the algorithm below.

Take the faculty.courses.student as an example
path expresssion. The algorithm executing at each
system node will take the faculty class, scan the
portion of the faculty class at that node, selecting
and projecting as required by the query. The query

relevant data from these objects is used to create a

To other
Nodg

send

Data from buffers
all nodes
::::x’:‘:mmr I 10 node 1
—
hash table
T
ok @ to node nt
Overfl disk input
[] [] Mo p—
hash table Disk object
overflow loading
P

An OID linked list

Proj/sel Proj/sel
Object || Objest | .
data data

Figure 3: Data Distribution Diagram

stripped down version of the object. The value of
the next attribute in the PE , in this case courses, is
then examined. For each object, every OID in this
multi-attribute value is combined with the stripped
down version of the object to form an OID linked
list. This linked list as shown in, fig. 3, consists of
the source object data and an OID from a multival-
ued attribute as the last element.

Each OID linked list is then transmitted to the
node pointed to by its last element (a multi-valued
attribute OID) . Lists bound for the node executing
the algorithm are hashed on the page number of
the last element. Lists going to other nodes are
transmitted accordingly and each node receives lists
sent from other nodes and inserts them into its hash
table. The process is illustrated in Fig. 3. When
all OID lists have been processed a synchronisation
step then is executed. Dynamic load balancing is
then initiated.

It is likely that when data is referenced via OIDs
somes nodes may contain more query relevant ob-
jects than others. If such object data skew is severe
it can potentially lead to load imbalance. The time
to each synchronisa,tioh scheme is determined by the
slowest node in the system. Our navigation algo-
rithm implements where objects are relocated from

lightly loaded nodes to heavily loaded nodes. We

Table 1. Parameter Definition List

[Parameter | Value |
Size of a disk page 8kbytes
Size of an object 256bytes
Number of nodes 2-16
Send time(8kbytes) 2.5ms
Receive time (8kbytes) 7.2ms
Disk Access (8kbytes) 20ms
Method execution 10ms
Number of Objects 200,000
Number of links/object 3
Reference Locality 90,70,50,30 %

assume that the objects all need to have a method
executed on them. Each method is assumed to take
a,pproxima.tély the same amount of time for execu-
tion. Balancing the load is then a matter of sending
some objects to lightly loaded nodes for execution
of a method. Note however that since method is
abitrary, execution time for a method is difficult to
predict before hand. However in a real life situa-
tion, a database can determine the average execu-
tion time for frequently used methods and use those
averaged times to determine wether load balancing
should be executed. Dynamic load balancing in our
algorithm does not eliminate but rather limit loads
at all node to within 10 percent of the average sys-
tem load. ‘

After load balancing, the second level of the path
expression is executed with the algorithm looping

until all path expression elements are processed.

4 Algorithm Evaluation

We implementated our parallel navigation algo-
rithm on the A-NET multi-éomputer in the parallel
object oriented language A-NETL [1].

The A-NET multi-computer is a prototype ma-
chine with 16 processing nodes. Each node has one
processing element and one router. each node is
connected to the other nodes via a staticédly recon-
figurable topology. However the machine cycle of
the A-NET machine, a prototype, is low at 167ns,
but the results we report here can be taken to be
relative rather than absolute. The A-NET machine

does not have user disk access facilities and there-

Traversing 200,000 objects
- 700000 T T T T T T T
90/10 -o—
70/30 =o-
50/50 0
600000 | 30/70 =
500000 ~ T
z
5 400000 |
o
£
H
= 300000 i
200000 -
100000
0 L L f L s s L
2 4 12 14 18

6 8 10
Number of Nodes

Figure 4: Response time with Varying Locality of

Reference

fore our evaluation employed a disk simulator.

A-NETL is a locally designed parallel object ori-
ented language designed for use in defining parallel
object-oriented programs. The language provides
easy to use message passing functions, object def-
inition facilities and efficient program synchronisa-
tion constructs. Objects in A-NETL communicate
via message passing.

We based our evaluation on the OO7 [2] bench-
mark adapted for a parallel environment but took
liberties to alter some of the provisions of the bench-
mark to suit our conditions. We report results on

the traversal operation of the benchmark.

Table 1 shows the parameters used in the evalua-
tion. The send and receive times indicate the actu-
ally send and receive times on the A-NET machine.
For disk access we use the time normally used for
such accesses [12].

Evaluation ignored the effects of memory buffers
and assumed that all objects can fit in memory at
the same time, a condition that can be fulfilled with
today’s large memories. We also evaluated traver-
sal for the “cold” case where all needed objécts have
to be accessed from disk. To illustrate the effect of

message passing in this case we also varied the ref-

Speedup Traversing 200000 cbjects
8 T T T T T T T o
90/10 4~
linear ;4- -
Tr R -
8 R4 ’ -
5 s 4

Speedup
IS
T
e
n

Figure 5: Speedup for 2-16 nodes

erence locality for each node, i.e, the percentage of
OIDs pointing to external nodes and the percentage
referencing local objects.

Fig. 4 shows the results of navigating 200,000
objects with varying locality of reference. All four
graphs scale reasonable well when the number of
nodes varies from 2 to 16. It can alo be deduced
that when the locality of reference is high, execu-
tion time increases. This is due to the increase in
message passing. A locality of reference of 30 % lo-
cal and 70% remote gives the worst performance for
the four cases. This is not unexpected and Ghande-
harizadeh et al [6] attempt to reduce remote object
access by locating objects on nodes with the high
access frequency for an object.

Fig. 5 shows the speed up. The speedup from
2 to 16 nodes is about 1.7. This may be due to
the dominace of disk access which is a sequential
process. It would be instructive to examine speedup
in the case of a main memory OODBMS.

5 Conclusion and Further

Work

We have described the design outline of the par-

allel navigation algorithm and compared it with re-

lated work. We have also presented results from
experimental evaluation of the algorithm on the A-
NET multicomputer using the A-NETL language.
Preliminary results show a speedup of 1.7 from 2-16
nodes. We are continuing the evaluation of the al-
gorithm to improve performance. We will evaluate
the dynamic load balancing scheme included in our
algorithm. At the same time we will run the rest of
the tests in the OO7 benchmark.

Acknowledgments

The authors would like to thank other members
of the A-NET lab for their helpful comments.

References

[1] Baba T., Yoshinaga T., Furuta T.: Programming and De-
bugging for Massive Marallelism:The Case for a Parallel
Object-Oriented Language A-NETL, Proc. France-Japan
Workshop on Object-Based Parallel and Distributed Com-
putation (OBPDC’95), Lecture Notes in Computer Science
1107, pp 38-58 (1996).

2] Carey M.J., DeWitt D.J., Naughton 1.F.: The 007 Bench- ~
mark, Univ. Wisconsin January (1994).

[3] Chen Y.H., Su S.: Identification and Flimination-bused
Parallel Query Processing Techniques for Object-Oriented
Databases, Journal of Parallel and Distributed Computing,
Vol. 18, No. 2, August (1995).

0

DeWitt, D.J., Naughton I.F., Shafer J.C., Venkataraman
S.: ParSets for Parallelizing OODBMS Traversals: Im-
plementation and Performance, Univ. Wisconsin Tech Re-
port (1995).

Ghandeharizadeh S, Choi V., Ker C., Lin K. : Design and
Implementation of the Omega object-based system, Proc.
of the Fourth Australian Database Conference, (1993).

5

—

6

=

Ghandeharizadeh S, Wihite, D. Lin,K. Zhao X.: Object
Placement in Parallel Object Oriented Database Systems,
Proc 10th International Conference on Data Engineering,
pp253-262 (1994)

7

Kempter A., Moerkotte G.: Oject Oriented Database Man-
agement, Prentice Hall, pp609-620, {1994).

{8] Khosafian S. Valduriez P Copeland G.:Parallel query pro-
cessing for complez objects,Proc 4th Int’l Conf on Data
Engineering, pp202-209, (1988)

9] Kim K.C Parallelism in Object-Oriented Query Process-
ing, Proc. 6th Int’l Conf on Data Engineering,pp. 209-217,
(1990)

[10] Kitsuregawa M, Tanaka H. Motooka T.:Application of
Hash to Data Base and its Architecture New Generation
Computing No 1, pp62-74 (1983).

[11] Lieuwen, D.F., DeWitt, D.J., Mehta M. Parallel Pointer-
based Join Techniques for Object-oriented Databases,
Univ. Wisconsin Tech Report (1993)

{12] Walton C.B., Dale A.G., Jenevein R.M.: A Tazonomy
and Performance Model of Data Skew Effects in Parallel
Joins, Proc. of the Int. Conf. on VLDB, September 1991
pp537-548.

