

A Method to Acquire Multiple Satisfied Solutions

TOMOHIRO YOSHIKAWA†1 KOUKI MARUYAMA†1

Abstract: In general, the main purpose of Genetic Algorithm (GA) is to acquire a solution with the highest evaluation value in a

single-objective problem or Pareto solutions with various evaluation values in a multi-objective problem. However, in engineering

problems, the acquisition of multiple satisfied solutions satisfying certain conditions is often more strongly desired than acquiring

a single best solution. In addition, to help set design choices, satisfied solutions should satisfy different design variable patterns

from one another. There are multiple objective functions and rather than being maximized/minimized these are intended to

approximate certain target values. These multiple objective functions can be unified into a single-objective function by summing

up the errors from the target values. Through this unification of objective functions, computing resources for searching can be

assigned in terms of the diversity in the design variable space rather than the objective space. In this paper, a method for acquiring

multiple satisfied solutions by GA in many constrained multi-objective optimization problems is proposed. The proposed method

is applied to a real-world problem and compared with Island model to investigate its performance.

Keywords: Satisfied Solutions, Design Variables Pattern, Unification of Objectives, Genetic Algorithm, Island Model

1. Introduction

 In addition to improving the performance of computers,

Genetic Algorithm (GA) is actively applied to engineering

problems. GA is an optimization method that imitates the

evolution of creatures. In general, the main purpose of GA is to

acquire a solution with the highest evaluation value in a single-

objective problem or Pareto solutions with various evaluation

values in a multi-objective problem. In both cases, evaluation

values are the highest priority, and the variety of individuals is

considered in the objective space. However, in engineering

problems, the acquisition of multiple satisfied solutions

satisfying certain conditions is often more strongly desired than

acquiring a single best solution [1]. In addition, to help set design

choices, satisfied solutions should satisfy different design

variable patterns from one another.

Because of the characteristics of GA, when applying it to the

acquisition of satisfied solutions and after a satisfied solution is

acquired, searches of the population are intensively performed

very close to the acquired solution because individuals with slight

differences from the satisfied solution could also be satisfied

solutions. As a result, many satisfied solutions in the design

variable space that are very similar to the first one are often

acquired. These similar solutions usually have no practical

meaning. Many methods that can maintain the diversity of design

variables have been proposed [2-4]. However, these methods aim

to prevent solutions from converging to local solutions by

maintaining the diversity of design variables, rather than

acquiring various types of satisfied solutions.

In the case of applying GA to multi-objective optimization

problems, searches are performed to acquire various and uniform

solutions in the objective space [5]. In this case, the diversity of

design variables is generally not considered. Thus, various

solutions are acquired in the objective space rather than in the

design variable space. In general, different solutions in the

objective space have different design variables. However, there is

 †1 Graduate School of Engineering, Nagoya University

no guarantee that solutions have different design variables.

In contrast, there are multiple objective functions, which

approximate certain target values rather than being

maximized/minimized. These multiple objective functions can be

unified into a single-objective function by summing up the errors

from the target values. Through this unification of objective

functions, computing resources for searching can be assigned in

terms of the diversity in the design variable space rather than the

objective space.

In this study, a method for acquiring multiple satisfied

solutions in unified single-objective optimization problems using

GA is proposed. To investigate the effectiveness of the proposed

method, an experiment is conducted. In the experiment, the

proposed method is applied to a two-objective optimization

problem with many constraints [6] and compared with Island

model [4] which is one of the most representative methods to

maintain the diversity of design variables.

2. Unification of Objectives

2.1 Multi-objectives optimization problems

 There are multiple objective functions. When these functions

are not to be maximized/minimized but rather approximated to

certain target values, they can be unified into a single objective

function by summing up the errors from the target values in each

objective function. The formulas for calculating this unification

of objectives are shown in eqs. (1), (2), and (3).

min 𝐹 = ∑ |𝑓𝑖̂|
𝑚

𝑖=1
 (1)

 𝑓𝑖̂ =
𝑓𝑖̅

𝑓𝑖̅
𝑚𝑎𝑥

 (𝑖 = 1,2, … , 𝑚) (2)

𝑓𝑖̅ = {

max(|𝑓𝑡𝑖 − 𝑓𝑖| − 𝑡ℎ𝑖 , 0) (𝑎)
max(𝑓𝑡𝑖 − 𝑓𝑖 , 0) (𝑏)
max(𝑓𝑖 − 𝑓𝑡𝑖 , 0) (𝑐)

 (3)

𝑓𝑖̅
𝑚𝑎𝑥is the maximum value of 𝑓𝑖̅ in all 𝑓𝑖̅. When a function aims

to keep the error from the target value 𝑓𝑡𝑖, within an allowable

ⓒ 2019 Information Processing Society of Japan 1

IPSJ SIG Technical Report Vol.2019-MPS-124 No.12
2019/7/29

value 𝑡ℎ𝑖, (a) is selected as 𝑓𝑖̅. When a function aims to obtain a

larger value than the target 𝑓𝑡𝑖 , (b) is selected as 𝑓𝑖̅ . When a

function aims to obtain smaller value than the target 𝑓𝑡𝑖, (c) is

selected as 𝑓𝑖̅ . An individual for which F is equal to 0 is a

satisfied solution, which indicates that all functions satisfy the

given conditions.

2.2 Many-constrained

 In optimization problems with many constraints, the

unification below can be applied [7, 8].

min 𝐹 = ∑ |𝑓𝑖̂|
𝑚

𝑖=1
+ ∑ |𝑔𝑖̂|

𝑙

𝑖=1
 (4)

 𝑔𝑖̂ =
𝑔𝑖̅

𝑔̅𝑖
𝑚𝑎𝑥

 (𝑖 = 1,2, … , 𝑙) (5)

Here, 𝑓𝑖̂ is same as in eq. (2) in 2.A, 𝑔𝑖̅ is the amount by which

the i-th constraint is violated, and 𝑔̅𝑖
𝑚𝑎𝑥 is the maximum value

of all 𝑔𝑖̅. In this case, an individual for which F is equal to 0 is a

feasible and satisfied solution, as in constrained multi-objective

optimization problems.

3. Proposed Method

3.1 Flow of proposed methods

 First, initial individuals are generated randomly, then

“neighbors” are defined. When 𝑟_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 > 𝑑𝑥𝑦 is true, x and

y are defined as mutual neighbors, where x and y are individuals,

𝑟_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is the neighbor range, which is input in advance, and

𝑑𝑥𝑦 is the distance between x and y in the design variable space.

After defining neighbors, one child (C) is generated. Then, the

child’s neighbors (𝑪𝑛) are defined. When 𝑪𝑛 contains at least

one satisfied solution, the child is not evaluated, and the

generation of a child is repeated. When 𝑪𝑛 does not contain

satisfied solutions, the child is evaluated. After the evaluation, the

population is selected according to the flow. In the flow, |𝑨| is

the number of individuals in 𝑨 , where 𝑨 is a set of some

individuals. Furthermore, 𝑓(𝑥) > 𝑓(𝑦) denotes that y’s

evaluation value is better than that of x, and 𝑥 ← 𝑦 indicates

that the information of x is updated, including y. After the

selection, the generation of a child is repeated. This process is

repeated until the end condition is satisfied.

3.2 Feature of proposed method

 Distributing computing resources dynamically

— When a satisfied solution exists among the neighbors

for a new child, the child is deleted without evaluation

to assign computing resources to search other areas

(see Fig. 1(a)).

 Sequential update

— Like MOEA/D [9], a good child with a high fitness

value can become a parent immediately. Thus, high

convergence can be expected.

 Defining neighbors in the design variable space

— Defining neighbors using the neighbor radius in the

design variable space can enact a group search. The

use of group search leads to diversity being

maintained, and sometimes results in high

convergence [10] in each group search.

— We can adjust the granularity of the distance between

acquired satisfied solutions in the design variable

space. When the neighbor range is large, the distance

between satisfied solutions is expected to be large,

and vice versa.

 Neighborhood crossover

— High convergence can be expected because of

neighborhood crossovers [11, 12].

 Mechanism for maintaining diversity in the design

variable space

 When the number of neighbors (|𝑪𝑛|) for a new child (C) is

greater than the maximum neighbor population (𝑛𝑚𝑎𝑥) and 𝑓(𝐶)

is better than 𝑓(𝐶𝑛
𝑛𝑎𝑑) , the child replaces 𝐶𝑛

𝑛𝑎𝑑 , and the

information on the worst individual is updated (𝐶𝑛
𝑛𝑎𝑑: the worst

individual among the child’s neighbors, see Fig. 1(b)). When the

number of neighbors (|𝑪𝑛|) for a new child (C) is less than 𝑛𝑚𝑎𝑥

and the number of neighbors |𝑰𝑛
𝑚𝑎𝑥| is greater than 𝑛𝑚𝑎𝑥, the

child replaces 𝑰𝑛𝑛𝑎𝑑

𝑚𝑎𝑥 , and the information on the worst individual

is updated (see Fig. 1(c)).

4. Experiment

 In this study, an experiment was conducted. In the experiment,

an engineering problem in the real world [6] was considered. This

is a constrained two-objective optimization problem. The

problem comprises 222 design variables, 54 constraints, and two-

objective functions (𝑓1 is minimized, and 𝑓2 is maximized). In

constrained optimization problems, feasible solutions are defined

as those that satisfy all constraints [13]. In this problem, satisfied

solutions are also defined as those that satisfy certain conditions

(evaluation values are less than target values or greater than target

values) among feasible solutions. In the experiment, the

conditions were set to 𝑓1 ≤ 3.0 and 𝑓2 ≥ 34. These values are

those introduced as the evaluation values of the solution designed

by a human in the benchmark problem [6].

4.1 Problem settings

 In the experiment, the searches using Island model and the

proposed method with the unification of the objective functions

and constraints described in Section II were compared. In the

proposed method, plural groups are generated by defining

neighbors based on neighbor range, which gives similar feature

for maintaining diversity in the design variable space. Thus Island

model was compared with the proposed method.

4.2 Experimental conditions

 In the searches using Island model and the proposed method,

the numbers of individuals, evaluations, and trials were 100,

30,000, 21, respectively. The initial population for both methods

was the same in every trial. In the search using the proposed

method, the maximum neighbor population 𝑛𝑚𝑎𝑥 was 15, the

neighbor range 𝑟_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 was 22.2 using the Manhattan

distance, and the crossover rate with neighbors 𝑃𝑟 was 0.7. In

the search using Island model, the number of islands was 5, 10,

15. From the result of the pre-experiment, there was no migration.

4.3 Results

 The results for Island model are shown in Tables 2 to 4. Table

2 shows the number of islands which succeeded in acquiring

ⓒ 2019 Information Processing Society of Japan 2

IPSJ SIG Technical Report Vol.2019-MPS-124 No.12
2019/7/29

satisfied solutions and the number of satisfied solutions. The

number of satisfied solutions decreased as the number of islands

increased (see Table 2). It is thought that the number of

individuals for one island decreased as the number of islands

increased. Thus the number of islands which could acquire

satisfied solutions decreased because of low convergence by

small number of individuals. Table 3 shows the distance between

satisfied solutions in each island in a trial whose number of

acquired satisfied solutions was the median in 21 trials in the case

that the number of islands was 5. In this trial, 4 islands could

acquire satisfied solutions, and each island was named “island 1”

to “island 4.” The distances between satisfied solutions in each

island were very small, which shows that very similar satisfied

solutions were acquired (see Table 3). It is thought that when a

satisfied solution was acquired on a certain island, very similar

solutions also became satisfied solutions and were acquired by

intensively searching around the satisfied solution. In practice,

these similar satisfied solutions are regarded to be only one

satisfied solution. Thus, in this trial, the substantial number of

acquired satisfied solutions were 4, which was the number of

islands which succeed in acquiring satisfied solutions. In Island

model, because there is no mechanism for controlling the distance

between islands, it is possible that the distance between islands

become small and the diversity of the design variable space

cannot be maintained. This tendency has seen by migration in

Experiment 1. The distance between islands which could acquire

satisfied solutions (one island is regarded as one satisfied

solution) is shown in Table 4. The distance between islands was

calculated as the distance between their center of gravity of

satisfied solutions in each island. The distance between islands

was sufficiently large (see Table 4). The influence of the number

of islands to the distance between satisfied solutions was very

small. In other words, regardless of the number of islands, it is

considered that the distance between islands would be around 50

in Manhattan distance in Island model without migration.

Although it is possible to acquire satisfied solutions in Island

model, it is difficult to adjust the distance between islands, that

is, satisfied solutions expressly.

The results for the proposed method are shown in Table 5 and

6. Table 5 shows the number of satisfied solutions acquired by the

proposed method. The smaller the neighbor range was, the more

satisfied solution were acquired (see Table 5). Table 6 shows the

distance between satisfied solutions. It was confirmed that the

granularity of the distance between satisfied solutions was

adjustable by changing the neighbor range 𝑟_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟.

It was confirmed that in Island model without migration,

diverse satisfied solutions were also acquired. However, because

Island model does not explicitly give the distance between islands,

it is difficult to adjust the granularity of the satisfied solutions,

while the granularity of the satisfied solutions can be adjusted in

the proposed method by changing the neighbor range. The

evaluation value of satisfied solutions in island model is shown

in Table 7 and in the proposed method is shown in Table 8. There

was no big difference in both methods (see Table7 and 8).

(a) Case (A)

(b) Case (B)

(c) Case (C)

Figure 1: Mechanism for maintaining diversity

Table 2: Number of islands which succeeded in acquiring

satisfied solutions and number of satisfied solutions using Island

model (no migration)

 Number of islands

5 10 15

Number of islands which

succeed in acquiring

satisfied solutions

4 2.6 1.3

Number of satisfied

solutions
80 25.7 8.4

Table 3: Distance between satisfied solutions

in each island (Manhattan distance)
island 1 island 2 island 3 island 4

Min. 0.05 0.05 0.05 0.05

Max. 1.70 1.45 2.35 1.50

Ave. 0.61 0.41 0.75 0.71

ⓒ 2019 Information Processing Society of Japan 3

IPSJ SIG Technical Report Vol.2019-MPS-124 No.12
2019/7/29

Table 4: Distance between islands (Manhattan distance)

 Number of islands

5 10 15

Min. 42.42 47.27 45.53

Max. 52.18 50.69 48.26

Ave. 48.15 49.04 47.05

Table 5: Number of satisfied solutions

in the proposed method

 Neighbor range

4.4 8.8 22.2

Number of satisfied

solutions
14.24 4.95 3.9

Table 6: Distance between satisfied solutions

in the proposed method (Manhattan distance)

 Neighbor range

4.4 8.8 22.2

Min. 5.03 16.66 43.69

Max. 25.05 38.69 50.6

Ave. 14.78 31.14 47.54

Table 7: Evaluation values of satisfied solutions

in Island model

 Number of islands

5 10 15

f1 Ave. 2.993 2.993 2.994

Std. 0.004 0.004 0.002

f2 Ave. 34.03 34.04 34.08

Std. 0.12 0.12 0.14

Table 8: Evaluation values of satisfied solutions

in the proposed method

 Neighbor range

4.4 8.8 22.2

f1 Ave. 2.994 2.993 2.993

Std. 0.005 0.005 0.004

f2 Ave. 34.08 34.01 34.01

Std. 0.20 0.02 0.02

5. Conclusion

 In this study, the unification of objective functions in multi-

objective optimization problems and many-constraint

optimization problems was introduced. This paper proposed a

method for acquiring multiple satisfied solutions in unified

single-objective optimization problems. To investigate the

effectiveness of the proposed method, an experiment was

conducted. In the experiment, a 54 constraint two-objective

optimization problem was considered, and the proposed method

and Island model were compared. The results showed that both

Island model and the proposed method could acquire diverse

satisfied solutions in the design variable space. The results also

showed that the proposed method could adjust the granularity of

the distance between acquired satisfied solutions in the design

variable space while Island model could not. In the experiment,

although satisfied solutions could be acquired in all trials, there

was one trial in which only one satisfied solution could be

acquired. Because the purpose of this study was to acquire

various satisfied solutions in engineering problems, multiple

satisfied solutions should be acquired in all trials. A study of the

appropriate neighbor range is necessary. Further studies are also

needed in order to make the proposed method more suitable for

engineering problems.

Reference
[1] K.Deb, “Evolutionary Algorithms for Multi-Criterion Optimization

in Engineering Design,” Evolutionary Algorithms in Engineering

and Computer Science 2, pp. 135-161, 1999.

[2] L.Nguyen, L,Bui, H.Abbass, “A new niching method for the

direction-based multi-objective evolutionary algorithm,” IEEE

Symposium on Computational Intelligence in Multi-Criteria

Decision-Making, pp. 1-8, 2013.

[3] H,Toshio, N.Kenta, “Structural Morphogenesis by the Genetic

Algorithms Considering Diversity of Solution” J.Struct. Constr.

Eng. AIJ, No.614, pp35-43, 2007.

[4] D.Whitely, R.Soraya, H.Robert B, "Island model genetic

algorithms and linearly separable problems.", In: AISB

International Workshop on Evolutionary Computing. Springer,

Berlin, Heidelberg. pp. 109-125, 1997

[5] H.Li, Q.Zhang, “Multiobjective Optimization Problems With

Complicated Pareto Sets, MOEA/D and NSGA-II,” IEEE

Transactions on Ecolutionary Computation, Vol. 13, No. 2, pp.

284-302, 2009.

[6] T.Kohira, H.Kemmotsu, A.Oyama, T.Tatsukawa, “Proposal of

Simultaneous Design Optimization Benchmark Problem of

Multiple Car Structures Using Response Surface Method,” The

Japanese Society for Evolutionary Computation, 2017.

http://ladse.eng.isas.jaxa.jp/benchmark/index.html.

[7] K.Deb, “An efficient constraint handling method for genetic

algorithms,” Computer Methods in Applied Mechanics and

Engineering, Vol. 186, No. 2, pp. 311-338, 2000.

[8] E.Mezura-Montes, “Constraint-Handling in Evolutionary

Optimization,” Springer, 2009.

[9] Q.Zhang, H.Li, “MOEA/D: A Multiobjective Evolutionary

Algorithm Based on Decomposition,” IEEE Transactions on

Evolutionary Computation, Vol. 11, No. 6, pp. 712-731, 2007.

[10] D.Whitley, S.Rana, R.B.Heckendorn, “Island model genetic

algorithms and linearly separable problems,” AISB International

Workshop on Evolutionary Computing, Vol. 1305, pp.109-125,

1997.

[11] S.Kikuchi, T.Suzuki, “The Effect of Neighborhood Crossover in

Evolutionary Search Methods for Landscape Photograph

Geocoding Support,” IPSJ SIG Technical Report, Vol. 2010-FI-98,

No. 10, 2010.

[12] S.Watanabe, T.Hiroyasu, M.Miki, “NCGA: Neighborhood

Cultivation Genetic Algorithm for Multi-Objective Optimization

Problems,” Proceedings of the Genetic and Evolutionary

Computing Conference, pp. 458-465, 2002.

[13] E.Mezura-Montes, C.A.C.Coello, “Constraint-handling in nature-

inspired numerical optimization: Past present and future,” Swarm

and Evolutionary Computation, Vol. 1, No. 4, pp. 173-194, 2011.

[14] JB.Kruskal, M.Wish, “Multidimensional scaling” Vol.11, Sage,

1978.

ⓒ 2019 Information Processing Society of Japan 4

IPSJ SIG Technical Report Vol.2019-MPS-124 No.12
2019/7/29

