Feelifl Hisham. Z@Jl] &

F=FR—=AT AT L 119—67
(1999. 7. 23)

Shared nothing system DA > 7 v I AF—F _R—ZITRNWT, 4 OPEICAND B RTEEES, 2
TA=v A FETLTLES, FRX T, BADBEaR T, F—¥ 2B B LAK RS E
DI LITEY, ZORTF—v U ADET2EHETIFELRRL. 20HMMELRT,

Online Heat Balancing for Parallel Indexed Database
On Shared Nothing System

Hisham Feelifl and Masaru Kitsuregawa
Institute of Industrial Science, The University of Tokyo
{hisham, kitsure} @tkl.iis.u-tokyo.ac jp

Shared nothing systems offer a t dous prc ing capacity. In such highly parallel systems the data are typically declustered across the system
processing elements (PEs) to exploit the I/O bandwidth of the PEs. However, the access pattern is inherently dynamic, which in turn can lead to
performance degradation as some PEs become hot spot (bottleneck). Therefore, reorganization for heat (load) balancing is essential and should be
online. Our objective is to migrate the data from the hot PEs to the cold PEs with minimal cost of modifying the index structure of the system, so
that the system is heat balancing and c« Iy higher performance could be achieved with minimal reorganization cost. In this paper, we
propose an online heat balancing strategy for parallel indexed database on shared nothing system, in which the data migration process itself is
based on the heat statistics generated by the access pattern that may be directed to the distributed index structure of the system. The proposed
strategy captures the intuitive goal of distributing the given heat across the system PEs as evenly as possible and the result demonstrates that it is

efficient in correcting any degradation in the system petformance.

1. Introduction

Nowadays, the shared-nothing parallel architectures have
become increasingly popular and attractive for their cost
effectiveness, scalability, and availability. In such
architectures, there are many processing elements (PEs)
connected by an interconnection network where each PE
has its processor, exclusive memory modules and one or
more disk units. The data are typically declustered across
disk drives attached to each PE’s and the execution of a
transaction or a query is distributed over the network, the
only shared resource. However, the access pattern is
inherently dynamic, which in turn can lead to
performance degradation as some PEs become “hot spot”
(frequently accessed). Therefore, reorganization for heat
(load) balancing is essential. The basic motivation to
investigate and realize heat-balancing facilities comes
from simple experience that several applications in shared
nothing systems usually do not exploit the system very
good. Heat balancing is particularly challenging for
evolving workloads, where the hot and cold data change
over time. Data reorganization can only counteract such
situations, and such reorganizations should be performed
online without requiring the system to be quiescent
[WZS91 & SWZ93]. Additionally, to achieve efficient
query and transaction evaluation, data at each PE are
indexed. Therefore, data reorganization should
satisfactorily deal with the index modification as moving
data from “hot spot” PEs to cold PEs (infrequently
accessed) [AON96]. In this paper, we propose an online
heat balancing strategy for parallel indexed database on
shared nothing system, in which the data migration
process itself is based on the heat statistics generated by
the access pattern that may be directed to the distributed
index structure of the system. The organization of the

paper is as follows. In the next section, we briefly discuss
the related work for online data reorganization and index
modification. Section 3 is the basement for the system
distributed search structure. Section 4 clarifies our
considerations to the system workload and migration
strategy as well. In Section 5, we present our heat
balancing strategy. Sec. 6 deals with our experimental
work and finally, we summarize and present our
conclusions.

2. Related work

There is always some ideal data placement for the
workload, which is executing at a particular instant in
time. Usually, this ideal placement changes continuously
as the workload changes in time. Whenever the actual
placement is not ideal, there is a benefit in reorganization.
Unfortunately, there is a cost involved in reorganizing,
Obviously, reorganization should take place only when
the benefit outweighs the cost [CABK88]. Though there
has been much work in the area of online reorganization
in the recent years In [WZS91 & SWZ93], the authors
present an online method for the dynamic redistribution of
data, which is based on reallocation of file, fragments. A
limitation of their study is that they do not consider index
modification. Perhaps [SD92] is the first paper that
discusses a solution for online index reorganization. They
outline the issues involved in changing of all references to
a record when its primary identifier is changed due to a
record move. The techniques in the [SD92, ZS96] are
limited to centralized DBMS and require the use of locks,
where using locks during reorganization can degrade
performance significantly [AON96].

In [AON96] they examined the problem of online
index reorganization. They present two alternatives for

—399—

performing the necessary index modifications, called one-
at-a-time OAT page movement and BULK page
‘movement. The OAT moves one data page at a time, and
modify the indexes for records in that data page. While
the BULK makes a copy of the entire chunk of data
(typically 16 or 32 pages) that is to be moves at the
destination node, and then modify the indexes at the
source and the destination node. While these algorithms
are extremes on the spectrum of the granularity of data
movement, they both use the conventional B+-tree
algorithms for insertion and deletion. This dependency on
the conventional B+-tree algorithms slowdown the
migration process and consequently, affect the system
performance. To minimize the index modification cost, in
[LKOT99] they suggest the Fat-Btree as a powerful
search structure that supports the data reorganization and
speeds up the migration process. While range partitioning
can efficiently support range and exact match queries, it
can lead to data skew where certain values of the key-
range attribute occur more frequently than other values.
To solve this problem, they base their strategy on the
“Disk Cooling” algorithm [SWZ93]. Although, the
strategy is simple and has better control when multiple
PEs are overloaded, but there is no guarantee for
distributing the given load as evenly as possible. By
taking the advantages of the Fat-Btrees and a new
proposed heat balancing strategy, we propose an efficient
strategy to reorganize the data online with minimal cost of
modifying the indexes.

3. The System Distributed Search structure

We assume that data are initially range partitioned
across all the system PEs so that the access method can
associatively access data for strict match queries, range
queries and cluster data with similar values together.
Using a B-tree based index enables more efficient
processing of range queries than a hashed index, where
only the nodes containing data in the specified range are
accessed. One solution to associative access is to have a
global index mechanism replicated on each PE [OV91].
The global index indicates the placement of a record onto
a set of PEs. Conceptually, the global index is a two-level
index with a major clustering on the PE range and a minor
clustering on some attribute of the relation (see Fig. 1.A.).
The first level directs the search to the PE wherein the
data is stored. This indexing layer is essentially a
partitioning vector with n-1 and n “pointers” for a system
of n PEs. This layer can be cached in main memory for
fast access and it is duplicated across the system PEs to
ensure that there is no central PE through which all
accesses must pass. Since this indexing level is often read
but rarely updated, the maintenance of the copies of this
layer is hardly be required. The second level of the index
is a collection of Fat-Btrees, one at each PE, each Fat-
Btree independently indexes the data at its PE. The Fat-
Btree is basically B+ tree with additional properties:

1. The root node can be a fat node, i.c., for a B+tree of
order d (and maximum of 2d entries), the root can
contain more than 2d entries.

2. From (1), the height of a Fat-Btree can be designed to
a prescribed value.)

3. The tree is able to exploit the bulk-loading
mechanism.

If the height of the Fat-Btree at the migration source
and destination are the same, then the amount of data to
be migrated correspond to the entirety of one or more
branches of the Fat-Btree at the source PE [LKOT99]. So
that, it would be easy to prune the entirety of the branches
from the Fat-Btree at the source PE as well as attaching
these branches into the Fat-Btree at the destination PE
using bulk-loading technique without excess overhead.
Thereby, it is required to design all the Fat-Btrees at the
same height, which is essentially determined by the PE
with the fewest number of records. We adopt our
reorganization strategy on the advantages of the Fat-Btree
in speeding up the migration process and consequently
minimizing the reorganization cost. We also treat an index
branch as a unit of migration.

4. The Heat Migration Strategy

Online heat balancing is done in four basic steps:
monitoring PE workload, exchanging this information
between PEs if it is necessary, calculating new
distribution and making the work migrating decision, and
the actual data migration.

4.1 The workload

The system workload is reflected by a metric, called heat

[CAB88]. The heat of an object is the access frequency

of the object over some period of time. The following heat

statistics may be collected continuously (or periodically)

while the system is running:-

® H (Pg): the heat of the data page; the access
frequency to the page Pg.

® H (Br): the heat of a branch in a Fat-Btree, i.e., the
sum of the access frequencies of the data pages that
belong to the branch Br.

® H (Ft): The heat of a Fat-Btree, i.e., the accumulated
heat of the branches of the tree.

Since every PE has only one Fat-Btree, thereby, the heat

of a PE, H (PE), equals the heat of its Fat-Btree.

Nevertheless, we can generally define the heat of a range

R = {Rmin .. Rmax} as the access frequency of R over

some period of time. A range R as a logical or abstract

quantity could be achieved at any physical quantity such

as a database page, an index branch, an index tree, and a

PE, so that: Heat (R) = Heat (0),

where O = { data page, index branch, index tree, PE }

that holds the range R = {Rmin.. Rmax}.

—400—

Firstlevel At PE n-1 L) g e i S o | plepals s |

First Level Index

Firstlevel A1 PE1 <
Firstlevel At PEO

145 J150 l155 |” I‘JOS I910 |9|5 I‘>|325 1930 JQJS H945]950 I955 I-’
A Fat - Blree A Fal - Biree A Fat - Buree
AtPEO AUPEL ACPE n-1
Figure 1.A: A sample global index structure for illustration.
Firstlevel At PE n-1 =[E—— o —— 1

First Level Index

Firstlevel At PE1
Fitst level At PEO

o]

105 |ito fiis

e e e
™ [T o] o] bw]]
b

Second Level Index

[pos Joro Jors Pawfoas Jsso Joss HM

A Fat - Bitree
AtPEO

A Fal - Bree

ALPE1 A Fat - Btree

AUtPE n-1

Figure 1.B: The consequent index structure after migration of data from PE1 to PEO’

FatRootnodeofzil_’gofmenuia -
Ing?mﬁon m o E w w Information

1
! Hi= access frequency for the sub-range r f
Ki-l<r <Ki, i=0m.
K-1 = minimum of the holding range of the encountered PE,
Km = Maximum of the holding range of the encountered PE

p Heat 4 Heat
— Threshold Level ~ Threshold Level
” H loa ” Oala
0123456 PE 0123456 PE
1;Hea\ t A Heat t
H lon “ Oaln__,
0123456 PE 0123456 PR
(6] ®)

Figure 2: Heat statistics at the fat root node of a PE.

The complexity of maintaining statistics on a range R
varies from maximal cost cases to minimal cost cases
depending upon the physical quantity O that holds the
range R. The maximal cost cases in their extreme fashion
could be high if we maintain the heat statistics for every
data page in the system, O = {data page}, which roughly
requires maintaining statistics for every possible point in
the whole range. Although this approach for the workload
is very costly, but it has its own advantage in estimating
an accurate figure of the workload. On the other extreme,
the minimal cost cases in their extreme way could be
achieved if we maintain the heat statistics for every tree
(or PE) in the system, O = {PE}, which requires only
information proportional to the number of the system PEs,
Although this approach is not costly, but it has its own
disadvantage in inaccurate estimation of the workload. On

Figure 3: Examples of useless migrations

the middle of the spectrum, there are mid-cost cases, e.g.,
maintaining the heat statistics for every index branch in
the system or even for every sub-tree at every root node in
the system, O = {Sub-tree}. The main advantage of these
mid-cost alternatives is; they may provide some
compromise solution in term of cost and accuracy for
measuring the system workload and migration cost. For
sake of simplicity, we will focus on the minimal cost and
mid-cost alternatives.

4.1.1. The Minimal Cost Workload.

One straightforward way for quantifying the workload
is to consider the following scenario; if N queries are
issued to the system, then, a PEi will receive Ni queries,
from these N queries. The number Ni varies from a PE to
another, depending on the PE holding range. One can

—401—

assume this Ni represents the heat of this PEi (and its Fat-
Btree) during this interval of time. Moreover, if we
assume the tree heat is uniformly distributed across its
branches, then we can simply - with minimal statistics
information - estimate the heat of every branch in the
distributed Fat-Btree by using a top-down strategy.. By
this way, we approximate the actual workload to the index
pages workload with the advantage of minimal heat
statistics and simple algorithms are needed.

4.1.2 A Mid-Cost Workload.

Instead of assuming uniform heat distribution at the
Fat-Btree root node, we can additionally maintain the heat
of every sub-tree at the root node of every PE in the
system (see Fig. 2). Then, in order to minimize the heat
statistics information, we assume a uniform heat
distribution in the deeper levels (than the root). This
assumption is based on; as we traverse a tree from the root
to the leaves, as the range become narrower and the
possibility of uniform heat distribution become higher.
This approach has its own advantage in getting more
accuracy in the workload estimation with a reasonable
heat statistics information. As well, we can extent the
strategy by maintaining the heat statistics information
beyond the root node at deeper levels in the encountered
tree. In our simulation, we consider this mid-cost
approach. In principle, we consider the selection of the
workload is a “design parameter” which depends upon the
applications and their requirements.

4.2 Data Migration Strategy: Branches Migration

A source PE (PEr) can be defined as the PE from
which the data pages (through the corresponding index
branches) have to be moved to other PEs. Similarly, a
destination PE (PEd) can be defined as the PE at which
the data pages (and index branches) have to be stored.
Recall that data is range partitioned, thereby we can only
move data from one PE to its neighboring PEs (left or
right or both), which hold the preceding or succeeding
ranges. However, there are only two exceptions. The first
exception deals with the “rightmost” PE, which has the
capability of data migration only in the left direction,
while the second exception deals with the “leftmost” PE,
which has the capability of data migration only in the
right direction. These migration directions represent the
heat balance horizon.

Assume that we initiate the migration process between
a PEr and a PEd, where each of these PEs has its own
search structure. Traditionally, the migrated data are
inserted one at time (one record at time, one page at time),
which can be very costly especially if the number of
records (or pages) is very large. The idea behind our
migration strategy is as follows:

1. Since every branch in the search structure represents
a unique sub-range form the whole range of the key
attribute, so migration of branches (physical point of
view) means migration of sub-ranges (logical point of
view) from the PEr to the PEd. Every sub-range has
its own access history (heat), therefore, if we balance
the hot sub-ranges as even as possible across the
system PEs, then, the system performance is higher.

2. The hot sub-ranges migration may be very costly as it
includes index modification at the PEr and PEd.
However, this critical cost could be kept minimal if
both the PEr and PEd have flexible search structures
that can support this kind of migration with minimal
cost, so that both insertion at the PEd and deletion at
the PEr can be carried out in simple and inexpensive
way. Our objective with the search structures is just
fulfilled with the distributed Fat-Btree as a powerful
index structure that could support the sub-ranges
migration with minimal cost.

The attachment of branches at the destination tree and
detachment these branches at the source tree are
essentially pointer updates (see Fig. 1.B.). The migration
itself can be undertaken locally among adjacent PEs
because of the features of the Fat-Btree. Therefore, the
cost of controlling concurrency and synchronization is
kept lower in the Fat-Btree. The amount of data to be
migrated is obtained from the index branches at the source
PE. By this way, the tree structure itself does not change
by the branch migration. However, branches migration
itself changes the data pages distribution at both the PEr
and PEd. In the same time, it causes an update in the root
node of the Fat-Btrees at both the PEr and PEd. Thereby,
the migration of branches in the Fat-Btrees requires that
the index entries in the first level node copies to be
updated. During migration process the first level entries at
the source and destination PEs are already updated. While
the other copies at the other PEs are updated in a lazy
manner by piggybacking update messages onto messages
used for other purposes. In the same time, the 2-level
index structure remains usable even some copies of the
first level are not completely updated. Since if there is
search, based on the old copy of the first level, then the
search will direct to the source or destination PE, wherein
the updated version of the first level.

5. The Heat Balancing Strategy

The heat balancing is an important factor that can
determine the response times, speedups, and throughput
of the system. The data reorganization should
satisfactorily deal with this issue. Generally, the heat
balance problem is closely related to scheduling and
resource allocation, and can be static or online. A static
strategy relates to decisions made a-apriori. On the other
hand, it is important that heat balancing acts dynamically

—402—

by measuring the current system heat. To come up with
such balancing, the balancing has to be aware of the
periodic workload changes of the system PEs and needs to
take into account the heat distribution during the data
availability period. In this section, we present our online
heat balancing strategy, which is based on the following
two observations:

Observation (1): The useless migrations

In order to balance the given heat to the system through
the access pattern, one may use the well-known “Disk
Cooling” Algorithm (DCA) [WZS91 & SWZ93]. The
DCA was introduced for balancing disk arrays, as an
efficient general greedy algorithm, in which the hottest
disk is first selected as the migration source, then, the
coldest disk is selected as the migration destination. The
process is repeated until the system is heat-balanced. If
we apply this strategy to our system with its special
characteristic in the migration directions. Then, the DCA
procedure for selecting the coldest PE will be shorten as
checking the right and the left neighbors of the hottest PE.
The neighbor that has minimum heat will be selected as
the migration destination. We refer to this strategy as the
“maximum heat” strategy.

Obviously, the strategy is simple but it has some
useless migration cases that could arise while the heat
balancing process is running. Fig. 3 gives two examples
for such unsatisfactory cases. For example, in Fig. 3.A,
the maximum heat is at PE1, in order to balance its heat,
its excess heat over the threshold level have is migrated to
one its coolest neighbor, in this example PE2 is the
coolest neighbor. However, after migrating the heat from
PE2 to PE1, the maximum heat becomes at PE2 and its
coolest neighbor becomes PE1 which in turn will repeat
the whole process with inefficiency in distributing the
given heat across the system PEs, even though there are
many cold PEs in the system. Briefly, in the maximum
heat strategy there is a missing mechanism to stop further
migrations from arriving to the hottest PE again. Such
mechanism becomes a need in a system like shared
nothing system, in which the useless migration of large
data dramatically degrades its performance. This
observation leads us to consider a new strategy for
balancing the given heat.

Observation (2): The Rightmost and the Leftmost PEs

Since the data are initially range partitioned across all the
system PEs, thus the rightmost PE (RMPE) must be heat-
balanced by one of the following two cases:

(1) If the heat at the RMPE is larger than the average (or
threshold) heat value, then in order to balance this
PE, it is essential to migrate its excess heat to its left
neighbor PE (LNPE). The amount of migrated heat

should be corresponding to the excess heat at this
RMPE as far as we can.

(2) If the heat at the RMPE is less than the average value,
then in order to balance this RMPE, it is essential to
migrate a missing heat from its left neighbor PE
(LNPE) to it. The amount of migrated heat should be
also corresponding to the missing heat at the RMPE
as far as we can.

In the first case, we called the migration as “direct

migration”, since we can directly initiate the migration

process from the RMPE to the LNPE, so that the RMPE is
heat-balanced. However in the second case, it depends
completely upon the heat at its LNPE as:

® If this LNPE has the missing heat at the RMPE; then

we can directly initiate the heat migration from
LNPE to RMPE, so that the RMPE is heat-balanced.
® If the LNPE has not the missing heat at the RMPE;
then it is essential to get this missing heat —
recursively- from some PEs in the system. We called
the migration in this case a “stacked” migration,
because at this moment, we can not initiate the
migration from the LNPE to RMPE. However,
whenever the LNPE gets this missing heat, we can
initiate the migration. Therefore, we push the action
of this type into a stack called the migration stack,
by recording the action components: source,
destination, and, amount of the missing heat.
With the same point of view, we can balance the leftmost
PE (LMPE) and record its balancing cases.

From the above observation, assume we have a system
of N PEs and we divide its PEs into two groups: left
group and right group (see Fig. 4.B). We formulate the
principal idea of our algorithm on balancing first (or to
know the needed migrations) the system’s RMPE and
LMPE, and, if it is necessary, push the corresponding
actions into the migration stack. Then, by dropping
virtually these PEs from the system, there will be a new
RMPE and LMPE for the system. Consequently, we can
consider these new RMPE and LMPE as before and
repeat the same procedure until the system virtually
consists of only two PEs. At which, It will be so easy to
migrate the heat between the right and left groups. Using
the migration stack, we can pop the actions to balance the
system PEs by sequentially traversing the right group
from left to right and sequentially traversing the left group
from right to left. The algorithm will be terminated in
these traversing whenever the migration stack is empty.

The algorithm starts by sequentially traversing the
right group from the right to the left and in the same time,
sequentially traversing the left group from left to right.
This suggests a variable pointer called “right pointer”
initially pointed to the RMPE and decreases by “one” as it
traverses from right to left. Similarly, sequential
traversing the left group from left to right, suggests a
pointer variable called “left pointer” is initially pointed to

—403—

the LMPE and increases by “one” as it traverses from left
to right. During these sequential traverses, two variables
called the “right excess heat” and the “left excess heat”
are used to record the excess heat at any subsequent
traversing in the right and left groups, respectively.
Fig.4.C gives a high level description of this algorithm.

PEi-1 PEi PEi+l
o O O
Left Neighbor PE PE Right Neighbor PE
A
e semPBs]
PEO PE1 PE2 PEn-3 PEn-2 PEn-1
OO0 O +-——> O O O
LMPE i RMPE
!
1 |
Left!Pointer i Right Polinter
‘¢——— Left Group ! Right Group —/

(B)

HeatType BalanceProcessor(PE, neighbor, ExcessHeat)

// Balance the given PE with its neighbor

// identify the source, destination, migrated heat, and type of migration

// (direct or stacked).

CurrentAction={Source,Destination,MigratedHeat, Type }

if(CurrentAction. Type=="Direct Migration)

StoreMigartion (CurrentAction);

else PushMigration (CurrentAction);

// then Calculate the new excess heat

void StackedMigration()

{ While (! EmptyStack()) {

CurrentAction = PopMigrationAction();
StoreMigration(CurrentAction); }

}

void HeatBalancingStrategy(PEMin, PEMax)

{ ClearMigrationStack(); // clear migration stack
RMPE=PEMax; // Right pointer = Rightmost PE
LMPE=PEMin; // Left Pointer = Leftmost PE
REH=0; // Right excess heat
LEH=0; // Left excess heat.

Done=0;
while(!Done){
LEH=BalanceProcessor(LMPE,1,LEH);
if(RMPE<=LMPE) Done=1;
else{ REH=BalanceProcessor(RMPE,-1,REH)
RMPE--;
LMPE++; }
StackedMigration();}

©
Figure4: (A), (B) Algorithm notation, (C) A high level
description of the proposed algorithm.

By applying our heat balancing strategy, it can build a
migration “directory” in which the sequence and all
required migrations to be done so that the system is heat
balancing are stored. From this. migration directory, we
can additionally tune the migration decisions as follows:

e If the total amount of heat in the migration directory to
be moved is below a threshold, then this directory can
be dropped, since this may indicate that the system is
almost balanced.

e It can apply a profitability analysis, a trade-off
between the benefits of moving work to balance heat
and the cost of work movement. So that some

migrations in the directory may be prioritized or
postponed or dropped.

6 Simulation Result

In this section, we describe our experiments to study the
performance of the online data reorganization with two
heat balancing strategies: “the maximum heat” and our
strategy. The metric used is the impact on the response
time of queries. Table 1.0 shows the major system,
database and query configuration parameters with their
default values and variation settings. We use a functional
shared nothing parallel database system where each PE
has its own disk(s) and memory. The system PEs
communicate with each other by exchanging messages
across the interconnection network, set at 120 Mbit per
second, the communication bandwidth is hardly a
bottleneck during reorganization, therefore, the
communication delay is set at 2 msec. We first create an
initial Fat-Btree with the tuple key values generated using
a uniform distribution. Then we generate 2,000,000 range
queries using Zipf-distribution, which concentrates the
queries in a narrow key range. These queries are
generated with skew that defined by the skew factor (T) of
Zipf-distribution. Therefore, there are more range queries
issued at one PE than the other PEs, depending on the
skew factor 1. The heat skew will initiate the migration of
branches between the PEs, depending on the running heat
balancing strategy. We model each of the PEs as a
resource and the queries as entities. We assume the heat
balancing is done in centralized scheme and it is initiated
after every 1000 queries.

Table 1: the parameters and their used values.

Parameter Default values / variation
System Parameters;

Number of PEs in the cluster 16 /32

Index node size 4K page

Network bandwidth 120 Mbits/s

Time to read or write a data page 8 ms

Database Parameters;

Number of records 1 million

Key size 4 bytes

Query Parameters:

Number of queries 2,000,000

Zipf distribution decay factor 0.2/0.5/0.1 - 0.9
Mean arrival rate 20 per second / 5.0 — 60.0
Mean service time 500 ms

We study the effect of heat balancing on the response
time. Figure 5 compares the average response time
without and with heat balancing. It shows the
effectiveness of heat balancing in reducing the average
response time and increasing the system bandwidth. We
observe that the response time of a query in the “hot spot”
PE differs greatly from the system response time. Figure 6
shows the effect of migration on the response time of the
“hot spot” PE. These figures affirm the effectiveness of
distributing the given heat as even as possible, on the

—404—

system response time and that of the “hot spot” PE, by
migrating some index branches and hence data pages
from the hot PEs to the cold PEs. In addition, Figure 7
shows the scalability on the average response time with a
cluster of 32 PEs.

In order to evaluate the performance of the considered
strategies; we first focus on the “hot spot” PE and record a
measure, CD, which is the total migration cost (time),
whenever the “hot spot” PE is a migration destination. We
define a term called “average useless migration per
second” which is CD divide by the time required for
executing the considered queries (experiment time).
Intuitively, this measure should be equal zero since the
“hot spot“ PE should not be a migration destination. Any
migration that involves this PE as destination may
considered as a useless migration. Figure 8 shows the
“maximum heat” strategy, as a result of the missing
mechanism to stop further migrations from arriving to the
hot spot” PE again, has a high figure of useless migration
as the skew increases and the number of PEs decreases.
Our strategy does not record any cases of useless
migrations. Figure 9 shows the migration cost per second
against the skew factor of our strategy for clusters of 8,16
and 32 PEs. The result affirms that as the number of PEs
increases and as the skew increases the migration cost
increases, as a result of distributing the given heat as even
as possible between the system PEs. In order to cover the
variation of the skew factor, all the experiments of the
skew factor variation are carried out at a low arrival rate
of 5 per second.

7. Conclusion

In this paper, we have proposed a heat balance model
including data migration with minimal cost of index
modification on a shared nothing system that can be
employed in many practical database applications. Data
reorganization is necessary because the optimal data
placement changes with time and usage of the parallel
database system, and significant performance
improvements can be obtained by reorganization. Data
reorganization has been studied before, bot no work
addresses the critical issue of balancing the given heat as
even as possible across the system PEs with minimal
index modification. Thus decreasing the response time
and increasing the throughput of the system. This paper
fills an essential void.

References

[AON96] K.J. Achyutuni, E. Omiecinski, and S. B.
Navathe. Two techniques for On-line Index Modification
in Shared Nothing Parallel Databases. Proceedings ACM
SIGMOD 1996.

[CABKS8] G. Copeland, W. Alexander, E. Boughter, and
T. Keller. Data Placement in Bubba. In Proceedings of
ACM SIGMOD Conference, pages 99-108,1988.

[LKOT99] M.L. Lee, M. Kitsuregawa, B.C. Ooi and
KL. Tan. Online Reorganization in Shared Nothing
Systems. 1999.

[OV91] M.T. Ozsu and P. Valduriez. Principles of
Distributed Database Systems, Prentice Hall, 1991.
[SD92] B. Salzberg and A:. Dimock. Principles of
transaction-based on-line reorganization. Proceedings of
the 18" International Conference on Very Large
Databases, pages 511-520, 1992.

[SWZ93] P. Scheuermann, G. Weikum, P. Zabback.
Adaptive Load Balancing in Disk Arrays. In Proceedings
of the 4" International Conference on Foundations of
Data Organization and Algorithms (FODO), 1993.
[WZS91] G. Weikum, P. Zabbak, and P. Scheuermann.
Dynamic file allocation in disk arrays. In Proceeding of
the ACM SIGMOD Conference, 1991.

[ZS96] C. Zou and B. Salzberg. On-Line Reorganization
of Sparsely-Populated B+ Trees, Proceedings ACM,
pages 115-124,1996.

4000 -
- - -¢- - - Without migration
é\ i~ M aximum heat ?
E —A——Proposed
£ 2000 -
o
8
o
g
2
< Skew=0.2
0 T T T T T 1
0 5 10 15 20 25 30
Arrival rate (per second)
(5-a)
4000 - .
---¢--- Without
migration
= i~ M aximum
g heat
e ~—tr——Proposed
3 2000 -
=
2
8
o
&
z Skew=0.5
0 T T T T T 1
0 5 10 15 20 25 30,
Arrival rate (per second)

(5-b)
Figure 5: Effect of heat balancing on the average response
time of 16 PEs cluster. (a) Skew=0.2, (b) Skew=0.5

—4056—

- - -¢--- Without migration
—#— M aximu heat

———Proposed

Average response time (ms)
1

Skew=0.2
0 T T T T T 1

0 5 10 15 20 25 30
Arrival rate (per second)

4000 :
---¢--- Without
migration !
e M AXimom -+
heat .
~——Proposed |

:

Average response time (ms)

Skew=0.5
O T T T T T 1

0 5 10 15 20 25 30
Arrival rate (per second)

(6-2)

-- -4 -- Without
migration

e lfreeee MaX imum
heat

——Proposed

Average response time (ms)

Skew =0.5
0 . T T T T !

0 5 10 15 20 25 30
Arrival rate (per second)

(6-b)
Figure 6:Effect of heat balancing on the average response
time of the “hot spot” PE in a 16-PEs cluster.

(b

0.08 -

Useless migration per second

0.1 0.3 0.5 0.7 0.9

Skew factor

Figure 8: The average useless migration cost per second
of the maximum heat strategy with the skew variation.

:

---#-- Without
migration
el M aximum

heat :
—A—Proposed

Average response time (ms)
g

0 T - T T T]
0 10 20 30 40 50 60

Arrival rate (per second)

0.03
]

0.025 -
0.02
0.015
0.01

0.005
X

Average migration cost per second

0.1 03 0.5 0.7 0.9
Skew factor

(7-a)
Figure 7: Effect of heat balancing on the average response
time of a 32-PEs cluster, (a) Skew=0.2, (b) Skew=0.5.

Figure 9: The average migration cost per second of our
heat balancing strategy with the skew variation.

—406—

