119—-59

23)

FeH R= AT AT L
(1999. 7.

TR R U BISART L 7 s v a v E
P. Krishna Reddy. Z#&/Il &
wE

KL TIEIHEAEO IS 72 a VBB 2HTHH 7T VIV OREFEERET 2, BRETIHBHANLT
v 7 (SNL:speculative nested locking) 71 P 2V Tid, Bl M7 ¥ H7 ¥ a V¥ (EFRA A —VEEVRT) 75 4
TV MO TAHERRT LARCRECHEIT Yy 728K TL L) 0o T, HIEFORIN S Y F oy a
VREITTABINT vV a Y OEFHERMEDAA—JILT 7 AT HI LI Lo THRIBIHET 217, Higd
DINIvH I aryBEfTTH8IMN T V7 a VORTRECES SHLETEERT S5, TORHE, BETS
b U a v EOEFIRSED5NS, SNLT T —F CREBNETEXETA-DIFOSORIE Y 57
BEESICERENLZIE D, TORLTRSNLT7 70 —F5REL, SOT7 70 —FIZL > T Moss DANF
Uy Fr 7O baNVERBLTMN I Y2 a v, FI U IYa VEOBEA KB AERTHIVRIIRD LR
ZPIOVTEHAT S, CO77u—FTIERLNFFREICBVWTEREL CPUBRONT Y ALERL I LT
LY BITREEBBDO TS,

Increasing Concurrency of Nested Transactions Through Speculation
P. Krishna Reddy and Masaru Kitsuregawa
Institute of Industrial Science, The University of Tokyo

{reddy, kitsure} @tkl.iis.u-tokyo.ac.jp
Abstract

We propose an improved concurrency control protocol for nested transactions based on speculation. In the proposed speculative
nested locking (SNL) protocol, whenever a sub-transaction finishes work with a data object (produces after-image), it's parent
inherits the lock. The waiting sub-transaction carries out speculative executions by accessing both before- and after-images of
preceding sub-transaction. The waiting transaction selects appropriate execution after termination of preceding sub-transaction. As
a result, parallelism among conflicting transactions increases. The SNL approach requires both extra processing power and main
memory to support speculative executions. In this paper, we presented SNL approach and explained how it increases both intra- and
inter-transaction concurrency as compared to Moss’s nested locking protocol. This approach increases concurrency by trading main
memory and CPU resources under limited resources environments.

Index terms Concurrency control, nested transactions, locking, serializability, transaction processing

1 Introduction

In nested locking (NL) protocol proposed by Moss
[16], each leaf-transaction follows two-phase locking
(2PL) protocol [8, 9] for concurrency control. If a sub-
transaction obtains a write lock, its parent inherits the
lock only after its termination, as per 2PL rules. The
longer lock holding time degrades performance of the
database system. In this paper we propose speculative
nested locking (SNL) protocol to increase concurrency
by employing extra computing resources. In SNL when-
ever a sub-transaction T; finishes work with a data object
(produces after-image), it’s parent inherits the lock. The
waiting (sub)transaction accesses both before- and after-
images of T; and then carries out speculative executions.
However, the order is maintained; i.e., the waiting trans-
action selects appropriate execution only after termination
of T;. As such, there is no limitation on the number of
levels of speculation but this number depends on the
system’s resources, such as the size of main memory and
processing power. In SNL, the number of speculative
executions carried out by a transaction increases expo-
nentially as data contention increases. This approach can
be extended under limited resources environments. Using
SNL, both inter- and intra-transaction parallelism can be
increased, without violating serializability criteria.

The work is motivated by the fact that with the contin-

val improvement in hardware technology, we now have
systems with significant amounts of processing speed and
main memory, but more time is spent by transaction wait-
ing for data (both I/O and remote data) than performing
actual computations. Since the cost of both CPU and main
memory is falling, extra processing power can be added
to the system at reasonable cost. The strength of SNL is
that it offers the potential to increase concurrency by trad-
ing extra main memory and processing resources without
violating seralizability as a correctness criteria. The spec-
ulative processing is transparent to the user. Since SNL is
lock-based, it could be integrated with existing applica-
tions based on Moss’s nested locking protocol with little
effort. - i i

In section 2 we discuss related work. In section 3 we
explain nested transaction model and nested locking pro-
tocol. In section 4, we present SNL approach. In section
5 we explain how SNL increases concurrency through an
example. In section 6, we present concurrency analysis.
In section 7, we extend SNL under limited resource en-
vironments. The last section consists of summary and
conclusions.

2 Related work

Several protocols exist to synchronize the execution of
nested transactions. Reed developed a time-stamp based

—351—

technique for nested transactions [20]. In [16], Moss
presented a concurrency control algorithm using 2PL for
a nested transaction environment. Nested transactions
were implemented in system R [10], Argus [14], Clouds
[5], Locus [17] and Eden [12]. In [19] theoretical frame-

work has been presented to prove the serializability of -

synchronization protocols for nested transactions. In [18],
overview of research in the area of nested transactions
is given. In [11], a concept of downward inheritance is
introduced to improve the parallelism within the nested
transaction. In [18] the pre-write operation is introduced
to increase concurrency in a nested transaction processing
environment. This model allows some particular sub-
transactions to release their locks before their ancestor
transaction’s commit. This allows other sub-transactions
to acquire required locks earlier. However, it is assumed
that once the sub-transaction pre-writes the value, it will
not abort in future.

In the context of flat transactions, speculation has been
employed in [2] to increase the transaction processing
performance for real-time centralized environments that
employ optimistic algorithms for concurrency control. In
[13] we proposed a transaction processing approach for
distributed database systems where a transaction releases
locks after completing execution by employing static 2PL.
The ordered sharing protocol [1], allows multiple trans-
actions to hold conflicting locks on data objects as long as
operations are executed in the same order as that in which
locks are acquired. The altruistic locking protocol [21]
allows transactions to donate previously locked objects,
once they are done with them but before the object is
unlocked. Another transaction may lock a donated object,
but to ensure serializability it should remain in the wake
of the original transaction. This protocol is proposed to
synchronize long lived transactions.

The SNL differs from above approaches as it is a lock
based approach and proposed for nested transactions.
Also, in SNL approach a transaction releases locks before
execution. The SNL approach trades extra resources to
increase concurrency.

3 Nested transactions and locking protocol
3.1 Nested transaction model

In nested transaction model [16] a transaction may
contain any number of sub-transactions, which again may
be composed of any number of sub-transactions- con-
ceivably resulting in an arbitrary deep hierarchy of nested
transactions. The root transaction which is not enclosed in
any transaction is called the top-level transaction (TLT).
Transactions having sub-transactions are called parent
transactions (PTs), and their sub-transactions are their
children. Leaf-transactions (LTs) are those transactions
with no children. The ancestor (descendant) relation is
the reflexive transitive closure of the parent (child) re-
lation. We will use the term superior (inferior) for the
non-reflexive version of the ancestor (descendant). The
children of one parent are called siblings. The set of de-
scendants of a transaction together with their parent/child
relationships is called the transaction’s hierarchy. In the
following, we will use the term ‘transaction’ to denote

TLT, PT, and LT.
We employ XY, ... to represent data objects. Trans-
actions are represented by T, T}, ...; where, 4,7,... are’

integer values. The hierarchy of a top-level transaction
(TLT) can be represented by a transaction tree. The nodes
of the tree represent transactions, and the edges illustrate
the parent/child relationships between the related trans-
actions. In the transaction tree shown in Figure 1, T} rep-
resents TLT or root. A children of sub-transaction T3 are
T4, T, and T4, and the parent of T3 is T3. The properties
defined for flat transactions are atomicity, consistency,
isolated execution, and durability (ACID properties). In
the nested transaction model, the ACID-properties are ful-
filled for TLTs, while only a subset of them are defined
for sub-transactions. A sub-transaction appears atomic
to the other transactions and may commit and abort in-
dependently. Aborting a sub-transaction does not effect
the outcome of the transactions not belonging to the sub-
transaction’s hierarchy, and hence sub-transactions act
as fire-walls, shielding the outside world from internal
failures. The durability of the effects of a committed
sub-transaction depends on the outcome of its superiors.
Even if a sub-transaction commits, aborting one of its
superiors will undo its effects. A sub-transaction’s effect
becomes permanent only when its TLT commits.

@ Q @ hierarchy of T3‘

Figure 1. Example of a Transaction tree.

We assume that the PTs act as a place holders for the
locks. Only LTs perform data manipulation operations
and issue lock requests to obtain locks. In this paper, we
consider LT as a flat transaction as defined in [3]. An LT
is a representation of execution that identifies Read and
Write operations and indicates the order in which these
operations are executed. It is assumed that no transaction
reads or writes data objects more than once. We assume
that a transaction reads before it writes any data object.

Knowledge of after-image : Normally, an LT copies
data objects through read operations into private working
space and issues a series of update operations. We
assume that for any data object X, write operation is
issued whenever it completes work with the data object.
This assumption is also adopted in [1, 21].

3.2 Nested locking protocol

In this section we will summarize the nested locking
protocol proposed by Moss [16]. Conventional locking
protocols offer two modes of synchronization - Read,
which permits multiple transactions to share an object
at a time, and Write, which gives the right to a single

—352—

transaction for exclusively accessing an object. Possible
lock modes on an object are NL-, R-, and W-mode. The
null mode (NL) represents the absence of a lock request
for or a lock on the object. A transaction can acquire a
lock on object X in some mode M; then it holds lock in
mode M until its termination. Besides holding a lock a
transaction can retain a lock. When a sub-transaction
commits, its PT inherits its locks and then retains them.
If a transaction holds a lock, it has the right to access the
locked object (in the corresponding mode); which is not
true for retained locks. A retained lock is only a place
holder. A retained W-lock, indicates that transactions
outside the hierarchy of the retainer can not acquire the
lock, but that descendants of the retainer potentially can.
That is, if a transaction T; retains an W-lock, then all
non descendants of T; can not hold the lock .in either
W- or in R-mode. If T; is a retainer of an R-lock, it is
guaranteed that a non-descendant of T; can not hold the
lock in W-mode, but potentially can in R-mode. As soon
as a transaction becomes a retainer of a lock, it remains a
retainer for that lock until it terminates.

The NL rules for a transaction 7} are as follows.
e NL1 : T; may acquire a lock in R-mode if’

-- no other transaction holds the lock in W-mode, and

-- all transactions that retain the lock in W-mode are
its-ancestors.

e NL2: T may acquire a lock in W-mode if

== no other transaction holds the lock in W- or R-
mode, and
-~ all transactions that retain the lock in W- or R-mode
- are its ancestors.

e NL3: When T; commits, its parent inherits its (held or
retained) locks. After that, T}’s parent retains the locks
in the same mode (W or R) in which T held or retained
the locks previously.

e NL4 : When T; aborts, it releases all locks it holds or
retains. If any of its superiors holds or retains any of
these locks they continue to do so.

Note that the inheritance mechanism (Rule NL3) may
cause a transaction to retain several locks on the same
object. In such a case, a transaction retains a most
restrictive lock.

4 Speculative nested locking
4.1 Lock modes and commit dependency

In the SNL approach, the duration of lock in W-mode
is partitioned into three modes, EW- (Executive Write)-
, PSW(Passive Speculative Write)- and ASW (Active
Speculative Write)-mode. The transactions only request
either R- or EW-mode lock. Also, note that an LT holds
alock, and a PT (or TLT) retains a lock.

An LT requests lock in R-mode to read a data object
and in EW-mode both to read and write a data object. An
LT converts lock from EW-mode to PSW-mode whenever
it produces after-image and holds the lock in the same
mode until its termination. Whenever an LT holds lock
in PSW-mode, its parent inherits and retains a lock in an

ASW-mode. Let T; be a PT and retained lock in ASW-
mode on a data object. Whenever all sub-transactions
of T} finish work on a data object, T; converts lock
from ASW-mode to PSW-mode and retains in the same
mode. Whenever T; retains a lock in PSW-mode its
parent inherits and retains lock in ASW-mode.

For X, aretained ASW-lock indicates that descendants
of the retainer potentially can acquire lock in EW-mode,
but all non descendants of the retainer can acquire a
lock only after all its sub-transactions finish work with
that object. As soon as a transaction becomes a retainer
of a lock, it remains the retainer for that lock until it
terminates. Similarly, a hold/ retained lock in PSW-mode
indicates that any other transaction which accesses X
should form commit dependency with T;. If T; forms
commit dependency with T;, T; is committed only after
termination of T;. The commit dependency rules in
SNL are as follows.

o IfT; obtains the lock in EW-mode, while T} holds/retains
a lock in R-mode, or PSW-mode on a data object, T
forms a commit dependency with T;.

o If T; obtains the lock in R-mode, while T} holds/retains
a lock in PSW-mode on a data object, T} forms a commit
dependency with T;.

4.2 Speculative nested locking protocol

We first explain the data structures used in SNL
protocol.

o treex : We employ a tree data structure to organize
the uncommitted versions of a data object produced by
speculative executions. The notation X, (g > 1) is used
to represent the ¢** version of X. For a data object X,
its tree is denoted by treex. It is a tree with committed
version as the root and uncommitted versions as the rest
of the nodes.

Depend_set; : Depend_set; is a set of transactions
with which T; has formed commit dependencies for all
the data objects it has accessed.

We now present SNL synchronization rules. Each
data object X is organized as a tree with X as a root.
We use the notation T}, to represent the m*? (m>1)
speculative execution of T;. Note that deadlock handling
[16] algorithms needs to be initiated whenever a deadlock
oceurs.

e SNL1 : Lock acquisition Note that during lock
acquisition whenever T; forms a commit dependency
with T}, the identity of T} is included in depend._set;.

-- Transaction T; may acquire a lock in R-mode if

* no-other transaction holds the lock in EW-
mode, and -

* -all transactions that retain the lock in ASW-
mode are ancestors.of T; and

* no other transaction retains the lock in
ASW-mode and for each transaction that
retains/holds a lock in PSW-mode,its TLT
retains a lock in PSW-mode.

-- Transaction T; may acquire a Jock in EW-mode if

* no other transaction holds the lock in R- or
EW-mode and

—353—

* all transactions that retain the lock in R- or
ASW-mode are ancestors of T; and

* no other transaction retains the lock in
ASW-mode and for each transaction that
retains/holds a lock in PSW-mode,its TLT
retains a lock in PSW-mode.

e SNL2 : Execution and inheritance

-- Execution Suppose T; be an LT, and is carrying
out m speculative executions and obtains a lock in
EW-mode on X. Let treex contains n versions.
Then, Tiq (g=1 ...m) splits into n speculative
executions (one for each version of treex).

-- Inheritance The inheritance can be separated into
two types: LT to PT and PT to PT.

* LT to PT Whenever a transaction produces
after-images during its execution, after in-
cluding each after-image of X as a child to the
corresponding before-image of X’s tree, the
lock in EW-mode is changed to PSW-mode
and holds in the same mode. Next, its parent
inherits and retains a lock in ASW-mode.

* PT to PT Let T} be a PT and retained lock in
ASW-mode. Whenever all sub-transactions
of T; finish work on a data object, T; converts
the lock from ASW- to PSW-mode and retains
in the same mode. Whenever a T; changes
the lock to PSW-mode its parent inherits and
retains in ASW-mode.

e SNL3 : Termination

-- Commit A transaction T; selects appropriate exe-
cution only after termination of all transactions in
depend_set;. Each tree of locked data object is
updated with after-image as the root. Its identity is
removed from depend_set; of all remaining trans-
actions. The waiting transactions drop speculative
executions carried out by reading before-images of
committed transaction.

-- Abort A transaction T; could abort at any time
during processing. Let T, be the TLT of both T;
and T;. When T; aborts, T; is also aborted if (i)
T; € depend_set; or (i) T; € depend_set;.

When T aborts, each tree of a data object (accessed
by T3) is updated by removing after-images (with
sub-trees) which were included by 7. Its identity is
removed from the depend_set of all waiting trans-
actions. The waiting transactions drop speculative
executions carried out by reading after-images of
T:.

4.3 SNLnp and SNLp approacches

In SNL, after inheriting a lock from a sub-transaction
(as per rule SNL2), a PT can not donate the locks in
turn to its PT, unless all sub-transactions in its hierarchy
finish the work with corresponding data object. Without
having knowledge of data objects accessed by its sub-
transactions, a lock is held by a PT till termination of all
transactions in its hierarchy. Therefore, based on the prior
knowledge of data objects accessed by a transaction, SNL
can adaptively operate in two modes: SNLnp (SNL-no-
predeclaration) and SNLp (SNL-predeclaration).

In SNLnp mode, a lock is held by a PT till termination
of all transactions in its hierarchy. ' Therefore, SNLnp
increases only intra-transaction parallelism (up to only
one level in the nested hierarchy). Also, a transaction
abort does not lead to cascading aborts. The waiting
transaction selects appropriate execution.

On the other hand, in SNLp-mode, once 1nhented the
speculative locks from a LT T}, its PT T; checks if any of
its other sub-transactions requires access to corresponding
data object. If none, then T;’s PT inherits the locks on
the corresponding data object. In this way, speculative
locks can be donated out side nested transaction before
its termination. As a result, SNLp increases both intra-
and inter-transaction concurrency. Also, in SNLp, since
locks are eagerly propagated to outside TLT to increase
concurrency, SNLp is robust with aborts only with respect
to TLTs. That is, if a transaction aborts, other TLTs which
accessed after-images of aborted transaction need not be
aborted. But, within TLT, other L'Ts which have accessed
data objects of aborted transaction have to be aborted to
ensure serial consistency.

The two variations of SNL are appropriate for dif-
ferent kind of environments depending on the data con-
tention. SNLnp is appropriate in environments where
data contention is high within TLT. On the other hand,
if data contention within TLT is low, predeclaration
property of SNLp significantly enhances both itra- and
inter-transaction concurrency.

5 Example

Consider follwmg two transactions Ti(b (T4 :
{V,X} Ts : {X,Y}), T3 : {U,V}) and Ts(T;
{U}, T3 : {Z}) which are simulataneously entered into
the system (see Figure 2). Consider that all request locks
in EW-mode. The processing employing NL and SNLp
is as follows.

e NL Figure 3(a) depicts the processing employing
NL. 7, obtains lock on X only after termination
of Ts. Similary T3 obtains lock on V only after
the abort of T4 or the commit of both Ty and T5.
Similarly, T7 obtains lock on U only after the abort
of T3 or the commit of both 73 and 73.

e SNL Figure 3(b) depicts the processing with
SNLp. At first, Ts, T4, T3, and T3 obtain locks in
EW-mode on X, V, U, and Z respectively. When-
ever T5 and T} produces after-images of X and V,
respectively, T inherits the lock in ASW-mode and
whenever T3 produces after-images of U, 77 inher-
its the lock on ASW-mode. Next, T, obtains lock
in EW-mode and carries out two speculative exe-
cutions by accessing both before- and after-images
of X. Due to pre-declared assumption (since T
would not access V), T, decides that it has fin-
ished work with V and therefore changes lock on
V from ASW- to PSW-mode. Then, T} inherits
lock in ASW-mode on V and retains in the same
mode. Next, T3 obtains lock on V in EW-mode and-
carries out two speculative executions. Due to pre-
declaration assumption (no other transaction would

—354—

access U), T} decides that it has finished work on
U, and converts lock from ASW- to PSW-mode.
T, carries out two executions by accessing before-
and after-images of X.

In this way SNLp increases both intra- and inter-
transaction parallelism of nested transactions.

/TG\
Tg:2
: 8
T7.U

/"N

0,V
T3

(a) NL appraoch

time

(b) SNL approach

Figure 3. Depiction of processing (a) NL (b) SNLp

6 Concurrency analysis

In SNL approach, speculative executions of transac-
tion depends on its speculation level and number of data
objects it conflicts with other transactions. We first define
the term speculation level which is used to quantify the
parallelism that could be achieved using SL.

Definition. Speculation level: For T}, the speculation
level is denoted by p;. If T; executes without conflict, p;
=0. Let T; speculatively reads a set of data objects, say,
spec_set updated by n transactions. Each X € spec_set
is updated by some T}, at speculation level pi. Let prmaz
be the maximum of all p;, where T}, has updated a data
object in spec_set. Then, p; = (Pmaz + 1).

Now we derive relationship between speculative exe-
cutions of a transaction and its speculation level.

—355—

Let T; conflicts on m (m > 0) data objects with other
transactions. When T; obtains lock on first data object
with v; nodes ‘in its tree, it carries out v; executions.
When it accesses the second object having v, nodes in its
tree, each one of the v, executions carries out v, execu-
tions. Following this, after accessing all m objects, the
total number of speculative executions carried out by T;

= Hr:l Uk-

Note that, if a transaction has no conflict with other
transaction on the kt* data object, vy, is one. Otherwise,
if a transaction obtains the lock on k** data object in
speculative mode (some other transaction has updated the
object tree), v, > 1. For the sake of simplicity, let ¢
be the mean of number of data objects that a transaction
conflicts, p be the mean speculation level. Also, let v,
be the mean of number of versions in the tree of a data
object and N, be number of executions at level p. Then,

Np = ; (€]

For the sake of simplicity we make two worst-case
assumptions. First, we assume that a transaction requests
only write locks and releases these locks after completing
execution.-And second when a transaction carries out N,
executions, N, distinct versions are included to the tree
of each data object it accessed after its execution. Then,
the number of versions at the next level v, is given

below.
Yoyt =V, + N, where vo=1LNo=1 (2)

[] 1 2 a 4 5 6
levels

Figure 4. Number of levels versus speculative executions

From Equations 1 and 2, given N and ¢ we can estimate
p. Database systems vary with respect to available
resources and data contention. We discuss how SNL
increases concurrency in such environments.

A Single conflict (Hot spots) From Equations 1
and 2, with c=1, the relationship between p and
N, is, N, = 2°. Therefore, p = log N,. From
Fig. 4, it can be observed that, in single conflict
environments, even we support either speculative
executions for a transaction (i.e., with N=8 and
¢=1), concurrency can be increased up to three
speculation levels.

B Multiple conflicts (long transactions) From
Equation 3, with p=1, the relationship between
c and Nj is, N; = 2°. Thus in database environ-
ments in which majority of transactions conflict
_ on multiple data objects, if we support 2° specula-
tive executions for a transaction, concurrency can

be increased up. to one speculation level. So, SL
achieves 1-level speculation with manageable extra
resources. However, at multiple conflicts (¢ > 2)
and higher speculation levels (p > 2), the value of
N explodes.

7 Extension of SNL under 1imited resource
environments

In SNL approach, the number of speculative exe-
cutions. of a transaction increases exponentially as data
contention increases. Since each speculative execution
needs separate work space, the size of main memory
available in the system limits the number of speculative
executions that can be carried out. With this limitation,
processing cost may not be considered as a consider-
able overhead as current technology provides high speed
parallel computers at low cost. Under limited resource
environments the number of speculative executions of a
transaction is limited as follows. Let amount of memory
to carry out single execution is one unit. Based on the
available memory units, we decide the feasible number
of speculative executions that could be carried out by a
transaction. During processing if the number of execu-
tions crosses the fixed value, the transaction is either put
to wait or aborted.

8 Summary and conclusions

In this paper we have proposed concurrency control
approach based on speculation for nested transactions. In
a (sub)transaction releases lock on the data object when it
produces after-image. The SNL approach increases con-
currency without violating the serializability criteria. It
requires extra processing and memory resources to carry
out speculative executions. By trading extra resources
SNL increases concurrency under limited resources en-
vironments. Through example we illustrated how SNL
increases concurrency as compared to nested locking.
Also, we analyzed how SNL increases concurrency under
limited resource environments. As a part of future work,
we evaluate the performance through simulation experi-
ments.

Acknowledgments

This work is partially supported by Grant-in-Aid for Creative
Basic Research # 09NP1401: ‘‘Research on Multimedia Media-
tion Mechanism for Realization of Human-oriented Information
Environments’’ by the Ministry of Education, Science, Sports
and Culture, Japan and Japan Society for the Promotion of
Science, Japan.

References

[1] D.Agrawal, A.El Abbadi, and A.E.Lang, The performance
of protocols based on locks with ordered sharing, IEEE
Transactions on Knowledge and Data Engineering, vol.6,
no.5, October 1994, pp. 805-818.
Azer Bestavros and Spyridon Braoudakis, Value-
cognizant speculative concurrency control, proc. of the
21th VLDB Conference, 1995, pp. 122-133.
P.A.Bemstein, V.Hadzilacos and N.Goodman, Concur-
rency control and recovery in database systems(Addison-
Wesley, 1987).)

[2

—

[3

—

[4] P.K.Chrysanthis and K. Ramamritam. A formalism for
extended transaction models. In proc. of 17th VLDB
conference, 1991.

P.Dasgupta, R.Liblanc Jr, and W.Appelbe. The clouds
distributed operating system. In proceedings of 8th Inter-
national Conference on Distributed Computing Systems,
San Jose, CA, 1988. :

C.T. Davies, Data processing spheres of control, IBM
Systems Journal. 17(2), pp. 179-198, 1978.

A K.Elmagarmid (ed.), Database transaction models for
advanced applications, Morgan Kaufmann, 1992.

[8] K.R.Eswaran, .N.Gray, R.A.Lorie, and I.L. Traiger, The
notions of consistency and predicate locks in a database
system, Communications of ACM, November 1976.
J.N.Gray, Notes on database operating systems: in oper-
ating systems an advanced course, Volume 60 of Lecture
Notes in Computer Science, 1978, pp. 393-481.

[10] J.Gray. et all. The recovery manager of the system R
database manager, ACM Computing Surveys, 13, pp.223-
244, 1981.

[11] T.Harder and K.Rothermel, Concurrency control issues
in nested transactions, The VLDB Joumal, vol.2, no.1,
pp.39-74, 1993.

[12] W.H.Jessop, D.M.Jackobson, J.Baer, and C.Pu. An intro-
duction to the Eden transactional file system. In proceed-
ings of 2nd IEEE Symposium on Reliability in Distributed
Software and Database Systems, Pittsburgh, PA, 1982.

[13] P.Krishna Reddy and Masaru Kitsuregawa, Improving
performance in distributed database systems using specu-
lative transaction processing,in proceedings of The Second
European Parallel and Distributed Systems conference
(Euro-PDS’98), 1998, Vienna, Austria.

[14] B.Liskov, Distributed computing in Argus, Communica-
tions of ACM, 31, pp.300-312, 1988.

[15] S.K.Madria, A study of the concurrency control and
recovery algorithms in nested transaction environment,
The Computer Journal, vol. 40, no.10, pp.630-639, 1997.

[16] J.E.B.Moss, Nested transactions: An approach to reli-
able distributed computing. Cambridge, mass, MIT Press,
1985.

[17] E.T. Mueller, J.D.Moore, and G.Popek. A nested trans-
action mechanism for Locus. In proceedings: of 9th ACM
Symposium on Operating Systems Principles, Bretton
Woods, USA, 1983,

[18] S.K.Madira, S.N.Maheswari, B.Chandra and Bharat Bhar-
gawa, Crash Recovery algorithm in open and safe nested
transaction model, Lecture Notes in Computer Science,
vol. 1308, Springer-Verlag, 1997, pp. 440-451.

[19] R.F.Resende, Synchronization in nested transactions,
Ph.D thesis, University of California, Santa Barbara,
1994.

[20] D.P.Reed, Naming and synchronization in a decentral-
ized computer system. Ph.D thesis. Technocal report
MIT/LCS/TR-205, MIT Laboratory for Computer Sci-
ence, MA.

[21] K.Salem, H.Garciamolina and J.Shands, Altruistic lock-
ing, ACM Transactions on Database Systems, vol. 19,
no.1, March 1994, pp. 117-165.

[5

-

[6

—

[7

—

[9

—

—356—

