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Abstract: This paper proposes a new garbage-collection (GC) algorithm, named buffered garbage collection. It allows
customizing a garbage collector through computational self-reflection. Although self-reflection seems a promising ap-
proach, self-reflection has not been well investigated for garbage collection as far as we know. Our buffered garbage
collector collects garbage objects while avoiding both infinite regression and unacceptable memory consumption. We
implemented a Scheme-subset interpreter supporting buffered garbage collection and evaluated its memory efficiency.
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1. Introduction

A garbage collector (GC) is a runtime component that is often
customized for heap analysis [10], [12] or runtime object evolu-
tion [5], [17]. The customization is however not a simple task.
A typical approach to customize a collector is to rewrite the pro-
gram that implements the collector. Since the collector is a part of
a programming language system, we cannot customize the collec-
tor as we customize applications. The developers have to modify
a low-level implementation of the GC component, and most im-
plementations do not provide clean programming interfaces for
such customization.

GC customization via computational self-reflection [14] is a
promising approach although self-reflection has not been well in-
vestigated for garbage collection as far as we know. Suppose that
we run a program in a language Lbase supporting garbage col-
lection. A reflective programming interface for customizing the
garbage collector allows developers to modify the behavior of that
collector via a program written in the base language Lbase instead
of the language the collector is implemented in. That program
can intercept the garbage collection during collection time and
run as if it is part of the implementation of the garbage collector.
For clarification, we below call such a program a meta program.

A design problem of such a reflection interface for garbage
collectors is how to manage objects created by a meta program.
Since a meta program is a normal program, it may create objects
and also turn them into garbage during runtime. The garbage col-
lector customized by the meta program should also collect these
garbage objects, but naive implementation may cause infinite re-
gression. Note that a meta program may create an object that will
substitute another live (base-level) object when it implements ob-

1 Graduate School of Information Science and Technology, The University
of Tokyo, Bunkyo, Tokyo 113–8656, Japan

a) yamazaki@csg.ci.i.u-tokyo.ac.jp
b) chiba@csg.ci.i.u-tokyo.ac.jp

ject evolution. Hence an object created by a meta program should
not be distinguished from normal (base-level) objects.

One possible approach is to allocate some special heap mem-
ory that only a meta program can use. Then we can separately col-
lect garbage in that heap memory by a dedicated collector. How-
ever, this approach does not satisfy our motivating requirement.
The customized garbage collector c1 never collects the objects
created by the collector itself. A different, uncustomized collec-
tor c2 collects them. Hence, the meta program that customizes c1

will never inspect these objects. We could customize that dif-
ferent collector c2 just like the original one c1. However, the
customization would introduce the third heap space to place ob-
jects created by the second customized collector c2 and the third
space is managed by the third collector c3 that uses the fourth
heap space. Thus, this approach causes infinite regression.

Another approach would be to let a meta program allocate ob-
jects in the regular heap memory where the garbage collector is
concurrently collecting garbage. It seems promising but its heap
memory consumption would be a problem. Since the meta pro-
gram may create several objects, it may create more objects in to-
tal than the existing live objects in the heap. Such huge memory
consumption is unacceptable. Reclaiming the objects allocated
by the meta program requires searching the whole heap space
again. Since the heap space is under garbage collection when the
meta program runs, reclaiming them is not feasible in the current
GC cycle.

This paper proposes a novel algorithm for reflective garbage
collection, buffered garbage collection. The paper is an exten-
sion to our previous paper [18]. This algorithm allows a meta
program customizing a garbage collector to create objects that
are also collected by that customized collector while avoiding
infinite regression of garbage collection. The buffered garbage
collection is based on copying garbage collection [4], [8] but it
manages the third space named buffer to buffer objects created by
a meta program. The buffer space is similar to the nursery space
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of the generational algorithm. An advantage of this algorithm is
that it will consume a smaller amount of heap memory than other
approaches. Through a reflection interface, a program can regis-
ter a callback function that is invoked whenever an object in the
old heap is copied to the new heap during GC time. This callback
function can customize the collector as it is a meta program in our
algorithm. The objects created by the meta program are stored in
the buffer space and effectively collected by the customized col-
lector. Since our algorithm introduces staged collection, those
objects are not collected until the garbage collection moves into
a stable state. We have implemented an interpreter for a subset of
Scheme with the proposed garbage collector.

The rest of this paper is as follows. In Section 2, we detail the
problem that occurs when we apply computational self-reflection
to garbage collectors; why infinite regression and unacceptable
memory consumption occurs. In Section 3, we propose buffered
garbage collection, our novel garbage collection algorithm that
avoids both infinite regression and unacceptable memory con-
sumption. In Section 4, we show the result of our experiment with
our Scheme-subset interpreter. It confirms our algorithm avoids
unacceptable memory consumption. In Section 5, we compare
our algorithm to other possible approaches to clarify the advan-
tages of our algorithm. In Section 6, we conclude this paper.

2. Self-reflective Customization of Garbage
Collector

We often customize a garbage collector for adjusting the
garbage collection algorithm to a specific application. The cus-
tomization of garbage collectors is also used for inspecting and/or
modifying live objects during the collection. An example is string
deduplication [9]. It finds multiple string objects representing
the same text and replaces them all with their single represen-
tative when they are immutable. Since a web application server
tends to construct a large number of duplicated string objects for
handling HTTP requests, the string deduplication can often im-
prove the memory consumption and thereby the execution per-
formance. However, searching a whole heap memory for dupli-
cated string objects takes non-trivial time. To hide the cost of this
search, string deduplication is often implemented by customizing
a garbage collector so that the search for duplicated string ob-
jects will be overlapped with the search for live objects. Some
garbage collectors perform compaction. Since they modify mem-
ory pointers contained in live objects, changing a pointer from a
duplicated string object to its representative for string deduplica-
tion can be also overlapped with the compaction by the collector.

Since string deduplication does not change the garbage col-
lection algorithm, the required customization is just to add extra
work to the existing implementation of the collector. However,
even such a small change is not easy to implement, in particu-
lar, for developers who did not develop the original implemen-
tation. A typical approach to customize a garbage collector is
to implement the customization in the language that implements
that collector. For example, we can customize the garbage col-
lector of the Java virtual machine in C++ since it is implemented
in C++, but such a customization will involve a number of low-
level implementation issues of Java. First, the representation of

Java objects in C++ is more complicated from the perspective of
the GC implementation. The developers have to deal with C++
data structures implementing Java objects; they have to be aware
of the objects’ meta data, memory layout, and how references
are implemented. Furthermore, various low-level invariants must
be preserved in the virtual machine. Since C++ code can access
hidden data such as meta data and accidentally destroy a mem-
ory layout, the developers have to carefully implement GC cus-
tomization to satisfy the low-level invariants. Note that it is not
a problem that the implementation language is C++. Even if the
Java virtual machine is implemented in Java as the Jikes RVM [1]
and the Maxine VM [16] are, those problems will be observed.

Computational self-reflection [14] is a promising approach to
customizing garbage collectors. A program sometimes has to
control a non-first-class data structure such as program text, an
inheritance mechanism, a JIT compiler, and a garbage collector.
Computational self-reflection can be regarded as a design pattern
for programming interfaces to access such non-first-class data.
Suppose that we run a program in a language Lbase supporting
garbage collection and the collector is not a first-class in Lbase.
A reflective programming interface for garbage collector allows
developers to modify the collector as if it has been implemented
in Lbase instead of the language that the collector is implemented
in. It often provides a proxy object as a first-class object and it
reflects the operations on the proxy object to the corresponding
non-first class data. The proxy object can hide low-level imple-
mentation details of the non-first-class data. It therefore releases
developers from being bothered about those details, for example,
when they are customizing the garbage collector for string dedu-
plication, heap analysis, and dynamic object evolution, which do
not need to access implementation details such as objects’ meta
data.

For example, Fig. 1 presents a pseudo implementation of string
deduplication in Scheme. It is a normal Scheme program but
uses computational self-reflection. def-refl! in line 13 is a
special-form for computational self-reflection, which overwrites
a (meta-level) function constituting the Scheme interpreter. The
syntax of def-refl! is similar to define. It redefines the
gc:copy-object function, which is part of the program of the
garbage collector. We here assume that the interpreter uses a
copying collector. The new function body is the expression in
lines 14 to 27. It moves a live object to a new space for com-
paction. gc:copy-object takes three parameters obj, old, and
new. obj specifies the object being copied, and old and new
specify the memory regions where obj is moved from and obj
is moved to, respectively. Besides copying an object, the new
gc:copy-object function first finds the representative of the
given object by intern if it is a string object. If the found object
actual-obj is allocated in the memory region specified by old
(that is, the object has not been moved yet), gc:copy-object
allocates a copy of actual-obj in the memory region specified
by new and calls set-color! in line 21 to change the meta data
of the object allocated in dst. It also calls set-forward! in
lines 22 and 23 to leave a forward pointer which specifies where
actual-obj was copied to. gc:copy-object leaves the for-
ward pointer not only in actual-obj but also in obj so that
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Fig. 1 String deduplication implemented with reflection.

the collector will update pointers to obj to point to the copy of
actual-obj later. It finally returns the allocated object new-obj
in line 24. If actual-objwas not allocated in the memory region
specified by old, gc:copy-object leaves a forward pointer to
actual-obj in new in line 26 and returns actual-obj in line
27. The intern function maintains a hash table from string texts
to their unique representative. It is a normal Scheme function
but runs at the meta level. It is part of the implementation of the
garbage collection.

The gc:copy-object function is invoked when the garbage
collector of the Scheme interpreter moves a Scheme object for
compaction. Thus, when a string object is moved and another
object representing the same character string has been already
moved, that object is deleted and all the references to that object
are modified to point to the equivalent object that was already
moved. Note that the meta program invoked instead of the nor-
mal copy function may put a new element into the hash table
intern-table. This implies the creation of a new key-value
pair. It may cause rehashing and create a number of key-value
pairs.

To enable the customization by reflection shown in Fig. 1, we
have to address the garbage collection for the objects created by
the meta program. As mentioned above, the gc:copy-object
function creates an object representing a key-value pair for each
string object. It will be garbage when rehashing occurs. Some im-
plementation may use an object to represent a stack frame. Then
every call to gc:copy-object will create an object and it will
be garbage soon after the call. A Scheme program including a
meta program like Fig. 1 tends to create objects with short life-
spans. For example, string concatenation usually creates a new
string object. Evaluating a list literal allocates a new list instance.
Most list operations in Scheme create cons cells.

One possible approach is to allocate a special heap memory

that only the meta program can use. Then we can separately col-
lect garbage in that heap memory by a dedicated collector. How-
ever, this approach does not satisfy our motivating requirement.
The garbage collector customized by the meta program never col-
lects the objects created in that heap memory by the meta program
itself. A different, uncustomized collector will collect them. For
example, when the meta program for string deduplication creates
an object, this object will be never inspected by the garbage col-
lector c1 customized by that meta program. They are not passed
to redefined gc:copy-object when a garbage collector c1 does
collection later. To avoid this, we might have to write another
meta program for customizing the garbage collector c2 for that
heap memory where c1 creates objects. The meta program for c2,
however, will need another heap memory where c2 creates ob-
jects. Who collects garbage in the heap memory used by c2? The
third collector c3 will collect dead objects, and so forth. Hence,
this approach causes infinite regression.

Another approach would be to let a meta program allocate ob-
jects in the regular heap memory where the garbage collector is
concurrently collecting the garbage. It seems promising but its
heap memory consumption would be a problem. For example, the
gc:copy-object is invoked for every live object during garbage
collection. When it creates objects, therefore, it may rapidly con-
sume the remaining heap memory under the garbage collection
and then the heap memory may run out. This might be avoided
by concurrently running another collector to reclaim dead objects
in that heap. This approach, however, would not work since this
second collector would also invoke gc:copy-object for each
object.

3. Buffered Garbage Collection

In this section we propose an algorithm for garbage collec-
tion, buffered garbage collection, which enables computational
self-reflection while keeping extra memory consumption within
a practical amount. The buffered garbage collection is based on
Cheney’s copying garbage collection [4] and it enables meta pro-
grams to create objects while avoiding both infinite regression
and unacceptable memory consumption.

The buffered garbage collection only supports a restricted re-
flection API we call copy-time callbacks. Since customizing a
garbage collector is delicate and possibly crashes the interpreter,
we restrict the reflection API to have customizations safe and
easy. With this style of API, a program can register a callback
function that is invoked whenever the garbage collector copies a
live object from the old space to the new space. For every copy-
ing of a live object, the callback function is called with the ob-
ject being copied. It can inspect it and returns an object. The
garbage collector copies the returned object to the new space for
heap compaction if the returned object is still in the old space.
Otherwise, the collector does not perform copying. The callback
function may return a different object from the object received
as the argument. For example, it may return not a duplicated
string object but its representative, which may already be copied
into the new space. All the pointers to the duplicated objects are
changed to the pointers to their representatives returned by the
callback function during garbage collection, when pointers to the
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Fig. 2 String deduplication implemented with copy-time callback.

old space are replaced with the corresponding pointers to the new
space. We designed this style of reflection API for extensions to
the garbage collection such as string deduplication. Note that this
API does not enable to change a garbage collection algorithm.

Despite the simplicity of our copy-time callback API for re-
flection, we can easily implement string deduplication with this
API. Fig. 2 shows its implementation in a Scheme-like language.
register-on-copy in line 15 is a primitive for reflection. It
is the special form that registers a function as a copy-time call-
back function. The registered function callback-function is
a normal Scheme function defined in lines 12–13. It passes the
given argument to intern if the argument is a string object. Oth-
erwise, it returns the given argument as it is. intern is also a
normal Scheme function and it is the same as the intern func-
tion in Fig. 1. It maintains a hash table so that it can quickly look
up the representative of the given string object. It may allocate a
new object to add a hash table entry or rehash the hash table.

Our buffered garbage collection efficiently manages the objects
created by the callback function. Those objects are allocated in a
dedicated small memory region, called the buffer space, when the
callback function creates them. The garbage in the buffer space
is frequently collected by minor copying collection between the
buffer space and the new space. Those objects in the buffer space
are copied into the new space if they are alive when the garbage
collector reaches a certain safe point, for example, when each in-
vocation of the callback function finishes. This minor collection
does not invokes the callback function. Since all the live objects
created by the callback function are moved into the new space,
they are processed by the callback function at the next major col-
lection between the new and old spaces. The next major collec-
tion will copy them as it copies other normal objects if they are
alive.

This buffered garbage collection is based on a simple idea but
its algorithm is not such simple. Since two copying collections
between old and new and between buffer and new are concur-
rently performed, the algorithm has to consider more intermediate
states of objects. We will next mention details of the algorithm.

3.1 The Colors of Objects
First we introduce several states for objects. These states are

based on the tri-color marking abstraction [7], but we use more
colors. The tri-color marking abstraction categorizes objects into

Fig. 3 The colors of objects and the three memory spaces. The arrows rep-
resent state transitions (not pointers).

three groups: white, black, and grey, but for buffered garbage col-
lection we add yellow, silver, and red (see Fig. 3). Yellow denotes
that the object is already copied into the new region, it contains
a forward pointer to the copy, and it may be destroyed. Silver
denotes that the object may contain pointers to the buffer region.
Red is a special color to detect cyclic object replacements and
prevent infinite recursion during the GC.

Since our algorithm is an extension to copying collection, the
memory space is divided into three regions: old, new, and buffer.
At the beginning, objects are in the old space. They are white and
their liveness is uncertain. When the garbage collector finds a live
white object, it makes a copy of that object in the new space. The
copy is colored grey. The grey objects become black if they do
not contain any references to white or yellow objects. After mak-
ing the copy, the collector modifies the copied white object to
contain a forward pointer to the copy. We assign the color yellow
to the object containing a forward pointer.

Some objects are created by a copy-time callback function and
allocated in the buffer space. At first, these objects are white.
Our algorithm performs copying collection from the buffer space
to the new space as well as one from old to new. Hence a copy
made in the new space may contain a reference to an object in the
buffer space. Such an object is colored silver. A silver object may
contain a reference to the old space.

Finally, we assign the color red to an object in the old space
while it is processed by a callback function. This is for avoiding
an infinite loop in our algorithm.

3.2 The Algorithm
The buffered garbage collection splits memory space into three

regions: old, new, and buffer. An object newly created is allocated
in the old space. When the garbage collection starts running, the
objects in the old space are moved to the new space if they are
alive. The collection continues until all live objects have been
moved.

Figure 4 shows an outline of our algorithm. First, the collector
colors all objects white in the old space. Then, it makes a copy of
every root object in the new space. The copy is colored grey. The
references in the root set are updated to point to the copies. The
original object in the old space is changed into yellow to contain
a forward pointer to its copy. Before making a copy, the collec-
tor invokes a callback function. Details of this procedure named
callback-and-copy are described in Section 3.2.1.

The collector examines all grey objects to find a reference to a
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Fig. 4 Procedure collect.

Fig. 5 Procedure callback-and-copy.

white or yellow object in the old space. If the object is white, a
copy of the object is created in the new space by callback-and-

copy. The resulting copy is (usually) a grey object. The reference
is modified to refer to this grey object. If the reference points to a
yellow object, it is modified to refer to the object that the forward-
ing pointer in the yellow object points to. After this examination,
the object is turned into black since it does not contain a reference
to a white or yellow object.

The garbage collection finishes when all the objects in the new
space become black. Then the old space is cleared and the roles
of the old and new spaces are swapped. The program execution
is resumed.
3.2.1 Procedure Callback-and-copy

callback-and-copy makes a copy of a live white object in the
old space. The details of callback-and-copy are shown in Fig. 5.
The copy is stored in the new space. Then, the garbage collector
invokes a callback function if it is registered. The white object
being copied is passed to the function as an argument. The call-
back function can access any objects except yellow since yellow
objects are already copied and may be destroyed. To avoid ac-

Fig. 6 Procedure copy.

cesses to yellow, the algorithm introduces read barriers. When
the callback function creates a new object, the object is allocated
in the buffer space and colored white. When finishing, the call-
back function returns any object except yellow ones. The returned
object may be in either the old, new, or buffer space.

When the callback function finishes, the procedure named
flush-buffer is executed (its details are described in Section 3.2.2).
It performs copying collection from the buffer space to the new
space. After the execution of flush-buffer, there exist no refer-
ences to an object in the buffer space. If the callback function
returns the given white object as is, the collector passes it to copy

function shown in Fig. 6 to make a new copy of that white object.
Since it is not flushing, the copy is created in the new space and
colored grey. If the callback function returns a white object dif-
ferent from the given white one, the collector recursively invokes
callback-and-copy to make a copy of that different white object.
Otherwise, if the object returned by the callback function is grey
or black, the returned object is regarded as a new copy that this
invocation of callback-and-copy is supposed to make. In either
case, the collector finally gives the yellow color to the white ob-
ject passed to the callback function. It modifies the white object
to contain a forward pointer to the copy of that object created by
callback-and-copy.

As shown above, callback-and-copy may recursively invoke it-
self. To avoid infinite regression, the white object being copied is
changed into red before being passed to the callback function. If
callback-and-copy is invoked later to make a copy of a red object,
the collector throws an error.
3.2.2 Procedure Flush-buffer

flush-buffer performs copying collection from the buffer space
to the new space as shown in Fig. 7. We call this minor collec-

tion. The buffer space contains the objects created by the callback
function. flush-buffer does not invoke the callback function when
it copies a live object from the buffer space to the new space.

Since flush-buffer is invoked after the callback function fin-
ishes, flush-buffer does not consider stack frames as the root set.
The root set for this copying collection is only the remembered set
constructed by the write barriers. The reference value returned by
the callback function is included in the root set. Hence, if it points
to an object in the buffer space, it will be updated to a reference
to an object in the new space after the minor collection.

During this minor collection, a copy of an object in the buffer
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Fig. 7 Procedure flush-buffer.

Fig. 8 Procedure read.

Fig. 9 Procedure write.

space is made in the new space. The copy is at first colored silver.
The minor collector modifies a reference in the silver object only
if the reference points to an object in the buffer space. A copy of
this object is made in the new space and the reference is updated
to point to that copy. This modification is repeated until all the
references into the buffer space are updated. A silver object con-
taining no reference into the buffer space is changed into a grey
object, which may contain a reference into the old space.
3.2.3 Read and Write Barriers

In our algorithm, a user program runs as a callback function
while garbage collector is running. This is similar to concurrent
garbage collection, hence our algorithm requires read and write
barriers. Their details are shown in Fig. 8 and Fig. 9.

When a callback function writes a value to a black object and
the value is a reference pointing to a white object, the black ob-
ject is changed into grey. When such a reference is written to a
grey object, the grey object is marked to be revisited for exam-
ining the references in that object. As mentioned in Ref. [15], if
this write barriers are used, a live object might be accidentally
reclaimed since the references contained in the black object are
never examined.

When a callback function writes a value to an object in the old
or new space and the value is a reference pointing to an object
in the buffer space, the written reference is added to the remem-
ber set, which is used by flush-buffer as the root set for the minor

collection. Like in the generational collection [13] and the re-
gional collection [6], cross-region references have to be remem-
bered. Note that our algorithm requires remembering only cross-
region references from the old or new space to the buffer space.

Our algorithm also needs a read barrier. When a callback func-
tion attempts to read a value from an object and the value is a
reference to a yellow object, the function does not obtain this ref-
erence to the yellow object but a forward pointer contained in the
yellow object. An object is yellow after its copy is created in the
new space. The forward pointer points to this copy. The read bar-
rier guarantees that a callback function never accesses a yellow
object and a reference to a yellow object is never written to other
objects.

4. Experiment

We compared a buffered garbage collector with a normal copy-
ing collector by examining their memory consumption when run-
ning micro benchmarks. Since a different configuration of the
collectors causes different amount of memory consumption, we
ran benchmarks with various restrictions on the heap size and ex-
amined whether it could run without a memory error or not. The
normal copying collector also supported a copy-time callback.
The objects created by the callback function were allocated di-
rectly in the new space as discussed in Section 2. It performed
garbage collection when the memory consumption exceeds the
preset threshold to keep available memory space for the callback
function. We examined various thresholds.

For the experiment, we implemented an interpreter for simple
Scheme-like language in C++. The interpreter supports not only
the buffered garbage collector but also the normal copying collec-
tor. In this Scheme-like language, a symbol value is not unique
(the same-looking symbols may not be identical), numeric val-
ues are not unboxed, every stack frame is allocated as an object
in the heap memory, and key/value pairs in hash tables are allo-
cated as objects in the heap memory. The experiment was taken
on a machine with the Intel R© Core i7-4770S processor (eight
3.10 GHz cores) and 16 GB of memory. Its operating system was
Ubuntu16.04 LTS. We used GNU gcc 5.4.0 for compiling the
interpreter.

4.1 Benchmarks
We prepared two micro benchmark programs. The first one

counts bi-gram frequencies in a long character string while string
deduplication is performed. The character string contained 10240
letters randomly selected among four letters: a, b, c, and d.
The copy-time callback function implemented string deduplica-
tion and its code was shown in Fig. 2. The callback function just
returns the given object if it is not a string, or otherwise it returns
a string object taken from intern-table. The returned object
is in the old space or in the new space, depending on the order of
copying. Most objects created by the callback function turn into
garbage after the callback function finishes, but key/value pairs
in intern-table will not. Note that key/value pairs created by
the callback function has eternal lifetime since no key/value pair
is deleted from intern-table.

Another micro benchmark is the n-body simulation in Fig. 10.
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Fig. 10 The benchmark program of the n-body simulation.

When running this benchmark program, the garbage collector
was enhanced to perform simple object evolution. It replaced
two-dimensional vector objects with three-dimensional vector
objects dynamically. The n-body simulation simulates gravita-
tion between mass points. It does not consider collisions. The
mass points and vectors are implemented as immutable message-
passing style objects; they are functions and receive a symbol as
the first argument. It represents the name of the method to invoke.
The simulation is non-destructive and all the mass points and vec-

Fig. 11 Bi-gram counting with the buffered garbage collector (top) and with
the normal copying collector (bottom).

tors are reconstructed at every step of the simulation. The simu-
lation simulates thirty mass points for forty steps. After twenty
steps of the simulation, all the vector objects are evolved to three-
dimensional ones. The functions on the vectors are also replaced
at the same time so that the rest of the simulation does not throw
type errors.

4.2 Experimental Results
Figure 11 and Fig. 12 show the results of the experiments with

the benchmarks for bi-gram counting and n-body simulation, re-
spectively. Each result contains two charts: the results of the ex-
periment with buffered garbage collector and the normal copying
collector. Each row represents the total heap size excluding the
buffer space. The columns in the upper charts in both Fig. 11 and
Fig. 12 represent the size of the buffer space. The columns in the
lower charts in both Fig. 11 and Fig. 12 represent the threshold
when the garbage collection is invoked. The black cells denote
heap memory exhaustion and the failures of the execution. The
left numbers in the white cells denote the average execution time
in seconds over 100 executions. The right numbers in the white
cells denote how many times major garbage collection was per-
formed during each execution.

The results of our experiments revealed that our collector could
run the micro benchmarks with a smaller amount of heap mem-
ory than the normal copying collector. When more than 2 KB was
given to the buffer space, the buffered garbage collector could run
the program of bi-gram counting with only 8 MB of heap mem-
ory (the total heap size including the buffer space was 8,104 KB)
and when more than 2.25 KB was given to the buffer space, the
buffered garbage collector could run the program of n-body sim-
ulation with only 1 MB of heap memory (the total heap size was
1,026.25 KB). The normal copying collector could not run the
programs with those amounts of heap memory; it needed at least
24 MB for bi-gram counting and needed 5 MB for n-body simu-
lation. Note that the interpreter with 24 MB of heap memory did
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Fig. 12 N-body simulation with the buffered garbage collector (top) and
with the normal copying collector (bottom).

not have to perform garbage collection to run bi-gram counting.
The normal copying collector mostly ran the benchmark pro-

grams faster. In the experiment with the benchmark of n-body
simulation, the normal copying collector involved a huge over-
head caused by a huge number of collections when the threshold
was 10%. However, the normal copying collector runs faster than
the buffered collector at the same heap size if the threshold was
greater than 10%. For example, the normal copying collector runs
in 18.39 sec. with 80% threshold but the buffered collector runs
in 18.95 sec. with 3.5 KB buffer space when the heap size was
7 MB. Since the variance was 1e-2, the difference is not thought
as an error of measurement.

5. Comparison to Related Works

Although there are several approaches to customizable garbage
collectors, we designed a copy-time callback function and
buffered garbage collection to satisfy our requirements presented
in Section 2. The first requirement is the use of reflection because
of its ease of customization. The other is to avoid large memory
overheads due to the customizability. In this section, we com-
pare the buffered garbage collection to other approaches, which
include ones we have briefly presented in Section 2.

5.1 Dynamically Linked Library
One of the simplest approaches to implementing a garbage col-

lector with a copy-time callback function is to have the interpreter
dynamically link a callback function written in C++ (for the clar-
ity of the presentation, we assume that we are implementing a
Scheme interpreter in C++).

Most C++ execution environments support dynamically linked
libraries. We can build a library module containing a callback
function and load it on demand to be linked with the garbage col-
lector of the interpreter. The callback function can flexibly cus-
tomize the garbage collector since both the callback function and
the collector are written in C++.

Fig. 13 String deduplication by a dynamically-linked callback function.

A problem of this approach is that a callback function has to
be written at the level of abstraction of the C++ implementa-
tion of the garbage collector. Figure 13 shows an example of
the callback function implementing string deduplication in this
approach. It is equivalent to Fig. 2, which our approach en-
ables. SchemeObject (or SO in short) and SchemeObjectRef
(or SORef in short) are utility data types provided by the inter-
preter implementation for the developers of callback functions.
SO is a C++ object implementing a Scheme object. SORef is also
a C++ object but implementing a reference value in Scheme. It is
a smart pointer that points to an SO and encapsulates the mainte-
nance of the root set for garbage collection. Without these utility
data types, implementing a callback function would be extremely
error-prone for developers who do not know the detailed imple-
mentation of the interpreter. For example, developers need care-
ful attention for appropriately removing reference values from the
root set when an exception is thrown.

The main part of the callback function is onCopy in lines 27–
34. Note that it inspects the meta data of obj to determine
whether it is a string object or not. Although line 28 inspects
the meta data of a given reference value, line 29 inspects the meta
data of the Scheme object that the reference value points to. The
developers have to be aware of these details.
onCopy calls intern, which returns a canonical represen-

tation for the given string object. It looks into the hash ta-
ble intern table. This hash table is declared in lines 10–17.
schemeHash and schemeEqual are provided by the interpreter

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 14 String deduplication by a callback function written in Scheme.

implementation. The former computes a hash value of the string
object and the latter compares two string objects. These string
objects are not ones in C++ but the C++ objects implementing
Scheme’s string objects. This meta perception often causes er-
rors.

5.2 Single Language
Another approach is to implement an interpreter in the same

language that the interpreter interprets. If we are implementing
a Scheme interpreter, the interpreter is implemented in Scheme.
Implementing such an interpreter is feasible; we can run a
Scheme interpreter written in Scheme on top of the Scheme inter-
preter written in C++.

Developers can now write a copy-time callback function in
Scheme since the interpreter is written in Scheme. Although
Scheme provides a much higher-level programming abstraction
than C++, they still encounter the problem of the low-level ab-
straction used by the interpreter implementation. If the interpreter
directly exposes the implementations of the garbage collector to
a callback function, the developers have to write a Scheme pro-
gram similar to the C++ program in the previous approach. A
callback function would have to process a given object from the
perspective of the interpreter implementation. The programming
might be confusing and worse than the previous approach since
the developers have to distinguish Scheme objects processed by
the garbage collector from Scheme objects used in the callback
function.

Figure 14 shows a callback function written in this approach
for string deduplication. We can observe a one-to-one similarity
between Fig. 13 and Fig. 14 while Fig. 14 has to deal with lower-
level abstractions than Fig. 2 that our approach enables. The call-
back function on-copy in Fig. 14 uses ref-type and type-of
in lines 21 and 23 for accessing the meta data of obj. The de-

velopers cannot use the standard function string? to determine
whether obj is a string object or not. If we call string? with
an object implementing a string object in the interpreted Scheme,
string? will return false. A similar problem is seen for the
hash table.

This single-language approach was adopted by a more practical
system, Jikes Research Virtual Machine (Jikes RVM) [1]. It is an
implementation of the Java virtual machine written in Java. Jikes
RVM provides the Memory Management Toolkit (MMTk) [3] for
implementing a new garbage collector as easily as our copy-time
callback function. However, implementing a new garbage col-
lector with MMTk for Jikes RVM causes the problem mentioned
above.

5.3 Other Garbage Collectors
As we have shown in Section 2, a copy-time callback function

will need a large amount of extra memory space if the objects
created by the callback function are allocated directly in the new
space, which live objects are being moved into. According to our
requirement, the callback function is invoked for every live ob-
ject in the old space and thus the total amount of objects created
by the callback function is proportional to the number of the live
objects. In some interpreter implementations, a callback function
may implicitly create an object for its stack frame and so on. If
so, collecting every small live object consumes a bigger memory
block than the object’s.

Our buffered garbage collection first allocates those objects
in the buffer space and then moves only live objects to the new
space. The move from the buffer space to the new space is fre-
quently performed every time when the callback function fin-
ishes. We can expect that our collector consumes a smaller
amount of memory.

A key idea of our approach is to reclaim garbage objects cre-
ated by a callback function while the garbage collector is still
running. Hence, a concurrent garbage collector [2] might seem
to be able to reclaim the garbage objects created by the callback
function if they are allocated in the old space. An issue with this
approach however is whether garbage is reclaimed faster than it
is produced. Recall that the callback function may create several
larger objects when it collects one live object. We will also need
to study the execution of the callback function during the second
pause time (or the remark phase) of the concurrent collection.

The buffered garbage collection can be regarded as a variant of
the generational collection [13]. Like the generational collection,
the minor collection from the buffer space to the new space ex-
ploits the fact that most objects created by the callback function
are garbage when the function finishes. The buffered garbage col-
lection uses the buffer space to identify such short-lived objects.
On the other hand, the generational collection exploits the fact
that most of the recently created objects are short-lived. It does
not provide multiple regions where objects are initially allocated.
All objects are initially allocated in the young space and they are
equally treated.

We see a similarity to the regional garbage collection [6], [11]
in the fact that objects are initially allocated in two regions, the
old space or the buffer space, and that they are separately scav-
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enged. Although our aim is not to reduce the pause time related
to garbage collection, it would be possible to emulate our algo-
rithm by customizing a regional collector. The customized col-
lector would use one region as the buffer space and, at the first
time, scavenge that region without invoking a copy-time callback
function. Then that region would be changed into part of the nor-
mal space where the callback function does not create objects.
When that region is scavenged next time, the collector invokes
the callback function. The collector uses another fresh region as
the buffer space where the invoked callback creates objects.

6. Conclusion

This paper proposed the buffered garbage collection, which al-
lows us to customize a garbage collector via computational self-
reflection. The experiment showed that the buffered garbage col-
lector could run our benchmark program without consuming un-
acceptable huge memory. A limitation is that our garbage collec-
tion is based on copying algorithm. Therefore, the collector stops
the world during garbage collection and only the half of an avail-
able memory space is used. To avoid these problems, applying
our idea to regional collectors is a future work.
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