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Abstract: Accurate evaluation of delay on timetables is crucial for railway companies. There have been some con-
ventional methods utilizing continuous random variables directly. These methods, however, suffer from combinatorial
expansion problems, which require complex pruning techniques. In this paper, discretizing the delay distribution on
railway networks, we present a method for calculating propagated delay distributions on each event analytically un-
der the assumption of propagated delays’ independence. We also show the complexity of the proposed method is
O(M log MN) in the general case and can be reduced to O(MN) for the special cases where the source distribution is
the negative binominal distribution, where M denotes the number of quantization levels in discretization and N de-
notes the total number of events. Finally, computational experiments show that the proposed method is much faster
than Monte Carlo simulations (MC), and provides almost the same results as MC when N is small.
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1. Introduction

Accurate evaluation of delay on timetables is crucial for rail-
way companies, since train delays cause dissatisfaction of passen-
gers, reduction in revenue, and increase in the penalty payment
for compensation when the delay exceeds some threshold time.

Thus, there are some buffer time for timetables to prepare for
the delay. If we increase buffer time, the frequency of delays can
be reduced. However, too much buffer time increases the service
time, causing the dissatisfaction of passengers. Thus, a trade-off
exists between punctuality and service levels of train operations.

To evaluate timetables, several indicators have been proposed.
For example in Refs. [1] and [2], practical indicators of delays
are summarized into the combination of (a) expected delay, (b)
expected delay in excess of a set value, (c) variance of a delay,
and (d) the probability of a delay at most or at least a set value.
These indicators can be evaluated if we introduce random vari-
ables representing delays on each station in timetables.

Railway timetables consist of multiple sequences, correspond-
ing to respective trains each of which consists of multiple sched-
uled events such as departures, arrivals, and passing of stations.
Train delays occur between two events. For example, the delay
while running occurs between the departure event at a station and
the arrival event at the following station.

Train delays are categorized into two types. First, we define
a source delay as a primary delay on each train typically due
to technical failures or unexpected passenger’s behaviors. Sec-
ond, we define a propagated delay is a secondary delay which
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is caused by preceding events of a train itself or different trains
when accumulating delays exceed some buffer time.

There are various causes of propagated delays. For example,
if the delay time of a running train exceeds buffer time, the train
arrives late at the next station. Moreover, if the delay of a preced-
ing train exceeds headway buffer time, the delay is propagated to
the following train. Actual delays are often caused by the combi-
nation of these factors.

In this paper, we propose the way of calculating the propagated
delays on each event where source delays are given.

The remainder of this paper is organized as follows. Section 2
provides related work. Then Section 3 gives a problem setting
and stochastic modelling of propagated delays. Section 4 gives an
algorithm and its complexity. Section 5 reports comparative re-
sults of the proposed approach and the conventional Monte Carlo
simulation-based approach. Finally, Section 6 provides a conclu-
sion.

2. Related Work

To evaluate propagated delays, there have been mainly three
approaches: deterministic approaches, Monte Carlo simulation-
based approaches, and stochastic approaches.

First of all, deterministic approaches for timetable simulation
have been well studied for a long time. PERT (Program Evalu-
ation and Review Technique), which can find out critical paths
of delays, is one of the methods which can be utilized in cases
such as diagram simulation [3], rescheduling [4], and shunting
scheduling [5]. However, since PERT deals with deterministic
variables, it cannot calculate the distribution of delays.

Then Monte Carlo simulation-based approaches (MC) can
evaluate propagated delays as well. For example, Ushida et al. [6]
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reports a method of evaluating robustness of timetables on a rail-
way company. Then Tatsui et al. [7] proposes a method simulat-
ing timetables based on predicted number of passengers by neural
network and Nakamura et al. [8] and Takeuchi et al. [9] evaluate
the robustness of railway timetable based on statistics of passen-
gers. However, though MC can evaluate timetables accurately if
there are the adequate number of iterations, it requires much time
to run many iterations. Moreover, for running detailed simula-
tion, we need to collect many kinds of accurate information and
to handle missing or error data, which usually takes a lot of time
and effort. On the other hand, our proposed method can be exe-
cuted only by easily-accessible operation records such as run and
dwell time statistics or, more simply, by the average of run and
dwell time.

Finally, stochastic approaches directly process cumulative dis-
tribution functions (CDF) of underlying random variables. To
deal with the CDF of propagated delays on the network similar to
ours, there have been some probability distribution classes which
have the closeness under required operations.

For example, Buker et al. [2] and Kirchhoff et al. [10] propose
the distribution classes that consist of the sum of extended expo-
nential polynomials. However, since the number of terms grows
exponentially when taking summation or determining the max-
imum, they require complex pruning techniques such as taking
the first three moments of the target distribution function [2] and
repeating a term-reduction-process to approximate the function
with a few terms [10].

Then Measter et al. [1] proposes a phase-type-distribution
based approximation for propagated delays. However, the size
of the transition matrix grows exponentially when taking summa-
tion or determining the maximum. Thus, they proposed a method
approximating the transition matrix with an upper triangular one.
They show computational results when the number of nodes is as
small as 24.

As another way to approximate distribution functions, Yuan et
al. [11], [12] proposes a method of discretizing random variables
in part. However, they use the discretization simply for the pur-
pose of integration approximation, which is different from our
approach.

Fig. 1 Directed network representing scheduled events and propagated delays.

3. Problem Setting

In this section, we summarize the delay modelling on a net-
work, most of which is commonly used in various previous re-
searches. See e.g., Ref. [10] for detailed description.

3.1 Network Model
Consider a directed network G(V, A) comprising node set V and

arc set A to represent delays on the timetable. The node set V

represents events on a timetable and the arc set A represents the
possibility of delay propagation between events on both side of
the arc. For each node v ∈ V , scheduled time t0

v is set to represent
the pre-determined time of the node v on the timetable.

For simplicity, we deal only three node types in this paper as
shown in Fig. 1 as follows:
• departure node representing a departure from one of the sta-

tions,
• arrival node representing an arrival at one of the stations,

and
• passing node representing a passing through one of the sta-

tions.
Then a directed arc ai j ∈ A that connects nodes i and j, means

the possibility of a delay of the node i can be propagated to the
node j. Note that the direction of arcs is determined to satisfy
t0
i < t0

j .
Though source delays are caused by several factors including

boarding passengers, turnarounds, platform tracks, or junctions,
we consider only three typical arc types in this paper for simplic-
ity:
• run arc representing a running phase of a train between a de-

parture or passing node and the following passing or arrival
node.

• dwell arc representing a dwell phase of a train between an
arrival node and the following departure node.

• headway arc representing a delay propagation possibility be-
tween different trains, which connects a departure node of
one train and the consecutive arrival node of the following
train.

Run and dwell arcs are defined between self-train’s nodes,
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while headway arcs are defined between different train’s nodes.
When we define arcs as above, the number of incoming arcs is 2
or less, as in Fig. 1. Note that, even in the general cases where
the number of incoming arcs to a node is 3 or over, the discussion
below in this paper holds as well.

3.2 Modelling Delays on the Network
For a node pair i, j where ai, j is defined, we also define mini-

mum arc time that represents the minimum required time of the
arc ai, j and buffer time that represents the marginal time set to ai, j.

Then the interval of scheduled times between t0
i and t0

j is de-
composed into minimum arc time hi, j(> 0) and the residual buffer
time bi, j(≥ 0) as follows:

t0
j = t0

i + hi, j + bi, j. (1)

Then consider actual operations on the graph. Let di, j be a ran-
dom variable representing delay time on an arc ai, j, which follows
a distribution Pi, j, and let t j be an operation time at which event j

actually occurs.
We assume source delays are generated only on run and dwell

arcs and no source delays are generated on headway arcs. Thus,
on a headway arc, we define Pi, j as taking all the probability mass
on the delay-zero-point for simplicity.

Moreover, we assume:
( 1 ) The delay of a node j is affected by the delay from multiple

nodes i(∈ prev( j)), where prev( j) is a set of nodes immedi-
ately before node j. Then the delay of j takes maximum of
propagated delays from multiple previous nodes.

( 2 ) On any node j, operation time t j is never earlier than sched-
uled time t0

j , since departing earlier than scheduled time is
banned in many railway companies.

Then the operation time t j on node j is represented as follows:

t j = max{t0
j , max

i∈prev( j)
{ti + hi, j + di, j}}, di, j ∼ Pi, j. (2)

Consider a random variable Xj = t j − t0
j representing the delay

from scheduled time on node j. Then from Eqs. (1) and (2), we
have

Xj = [ max
i∈prev( j)

{Xi + di, j − bi, j}]+, (3)

where [x]+ ≡ max{x, 0}.
When we evaluate each node in the topological order, we can

calculate all the propagated delays recursively by Eq. (3).
In this paper, we consider the problem of calculating the prob-

ability distribution of propagated delay Xj on all nodes j given
Pi, j and bi, j.

4. Delay Propagation Algorithm and Its Com-
plexity

4.1 Discretization of Random Variables
In the discussion above, we have regarded propagated delays X

as continuous random variables. However, handling continuous
random variables analytically suffers from combinatorial expan-
sion problems as shown in Section 2.

Thus, we discretize the random variable X, and deal the prob-
ability mass function (PMF) in the range from k = 1 to k = M.

When we set sufficiently large M, the PMF is considered to ap-
proach the continuous probability distribution function (PDF).

Note that when the delay time takes negative values, we shift
the domain of the distribution to k ≥ 1 without loss of general-
ity. In this case, let k = k0 be the delay-zero-point in the original
distribution.

4.2 Assumption
In our proposed method, we will make the following two as-

sumptions:
S Independence All the source delay distributions are indepen-

dent.
P Independence All the propagated delay distributions from

different routes are independent.
The first assumption means the independence of all Pi, js. This

is natural assumption since small-scale delays usually occur in-
dependently.

Additionally, as in previous studies including [1], [2], [10], we
assume the second assumption, which indicates the independence
of all the preceding nodes’ delays Xi(i ∈ prev( j)) when we evalu-
ate Xj in Eq. (3). This assumption can be violated in general since
our network is grid-like and all the routes to a node originate from
the initial node (e.g., the node at Station A on Train 1 in Fig. 1).
We will discuss this issue again in Section 5.

Then in this section, all the random variables but source delay
distribution D are discrete variables defined on k = 1, 2, . . . ,M.
Note that only source delay distribution D takes a value at k = 0
so that the range is k = 0, 1, . . . ,M. Then all the deterministic
values b and d take values on k = 0, 1, . . . ,M. Moreover, for
simplicity, we denote Pr(X = k) by X[k].

4.3 Calculation of Propagated Delays in Each Node
The process of calculating Xj in each node j from previous

nodes’ propagated delays ({Xi}|i ∈ prev( j)) can be written in the
following Algorithm 1, where CONV(X,D) is a convolution of X

and D, SHIFT(Y, b) is a shift operation to Y by a constant value
b, GETMAXi∈prev( j)({Zi}) is the operation for determining maxi-
mum among Zis, and FLOOR(W, k0) is an operation flooring a W

by a constant value k0.

Algorithm 1 The procedure of getting propagated delays on node
j
Require: j: current node id

Require: Di, j: discrete distribution of source delays on ai, j

Require: bi, j: buffer time on ai, j

Require: prev( j): node j’s previous node set

Ensure: Xj: discrete distribution of propagated delays on j

1: for all i ∈ prev( j) do

2: Yi ← CONV(Xi,Di, j)

3: Zi ← SHIFT(Yi, bi, j)

4: end for

5: Wj ← GETMAXi∈prev( j){Zi}
6: Xj ← FLOOR(Wj, k0)

When we consider the fact that distribution of the sum of two
independent random variables can be represented as convolution,
Algorithm 1 strictly corresponds to Xj = [maxi∈prev( j){Xi + di, j −
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bi, j}]+ in Eq. (3).
Here, since X and D are independent under S Independence

assumption, the result PMF of Y ← CONV(X,D) is obtained as
follows:

Y[k] =
k∑

i=1

X[i] · D[k − i] (k = 1, 2, . . . ,M), (4)

where X[k] and D[k] are the inputs of the convolution. Note that
while the complexity of convolution is O(M2) when calculating
Eq. (4) as it is, it can be reduced to O(M log M) based on the FFT
approach (detailed description is shown e.g., in Section 4.3.3. C
on Ref. [13]).

Then the result PMF of Z ← SHIFT(Y, b) is

Z[k] = Y[max{1, k − b}] (k = 1, 2, . . . ,M), (5)

where Y[k] and b(= 0, 1, 2, . . .) are the inputs of the shift opera-
tion.

Moreover, we have the following PMF of X ← FLOOR(W, k0):

X[k] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W[k] if k > k0∑k0

i=0 W[i] if k = k0

0 if k < k0

(6)

(k = 1, 2, . . . ,M),

where W and k0 are the inputs of the flooring operation.

4.4 Algorithm for Determining the Maximum
Let L be the number of input variables and Cl be CDF of Zl.

Then since all the Cls are independent under P Independence
assumption, the probability that all {Cl}Ll=1 are k or less is rep-
resented as

∏L
l=1 Cl[k]. Let W[k] represent the probability that

the maximum of {Cl}Ll=1 is just k. Then W[k] is obtained by sub-
tracting the probability that all the variables are under k from the
probability under k + 1. Thus, we obtain W[k] as follows:

W[k] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∏L
l=1 Cl[1] (k = 1)∏L
l=1 Cl[k] −∏L

l=1 Cl[k − 1]
(k = 2, 3, . . .)

(7)

Utilizing this fact, we can obtain the following Algorithm 2 to
determine the maximum of multiple variables.

Algorithm 2 The procedure of W ← GETMAXl∈L{Zl}
Require: M: the number of quantization levels in discretization

Require: L: the number of input variables

Ensure: Zl: input discrete distributions

Ensure: W: result discrete distribution

1: for l = 1, 2, . . . , L do

2: Cl[1]← Zl[1]

3: for k = 2, 3, . . . ,M do

4: Cl[k]← Cl[k − 1] + Zl[k]

5: end for

6: end for

7: W[1]←∏L
l=1 Cl[1]

8: for k = 2, 3, . . . ,M do

9: W[k]←∏L
l=1 Cl[k] −∏L

l=1 Cl[k − 1]

10: end for

The complexity of this algorithm is O(LM).

Fig. 2 An example of the geometry distribution (r = 1) and the negative
binomial distribution (r = 2) with these averages at 6.0.

4.5 Accelerated Convolution Algorithm in Case of Negative
Binomial Distribution

Since we assume the random variables as discrete in this pa-
per, the distribution of source delays may also be discrete. For
the distribution of source delays D[k], it is desirable to have most
of the masses on small k domain, and to have long tails.

The negative binomial distribution, which includes the geomet-
ric distribution as a special case, is one of such examples as shown
in Fig. 2.

The PDF of the negative binomial distribution Dr[k] is as fol-
lows:

Dr[k] =

⎛⎜⎜⎜⎜⎝ k + r − 1
k

⎞⎟⎟⎟⎟⎠ pk(1 − p)r (8)

(k = 0, 1, 2, . . .),

where p and r are the parameters of the distribution. Note that
when r = 1, we get the geometric distribution.

Consider the negative binomial distribution as source delays.
Then Zr[k] =

∑k
i=1 X[k] · Dr[k − i] which is the convolution of

X[k] and Dr[k] satisfies the following recurrence (The proof is
given in the Appendix):

Zr[k] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − p) · X[1] (k = 1, r = 1)
(1 − p) · Zr−1[1] (k = 1, r = 2, 3, . . .)
p · Z1[k − 1] + (1 − p) · X[k]

(k = 2, 3, . . . ,M, r = 1)
p · Zr[k − 1] + (1 − p) · Zr−1[k]

(k = 2, 3, . . . ,M, r = 2, 3, . . .)

(9)

Utilizing this recurrence, we can obtain the following Algo-
rithm 3 to get the convolution.

Algorithm 3 The procedure of ZR ← CONV(X,D)
Require: M: the number of quantization levels in discretization

Require: R: parameter of negative binomial distribution

Ensure: ZR: result discrete distribution

1: Z1[1]← (1 − p) · X[1]

2: for r = 2, 3, . . . ,R do

3: Zr[1]← (1 − p) · Zr−1[1]

4: end for

5: for k = 2, 3, . . . ,M do

6: Z1[k]← p · Z1[k − 1] + (1 − p) · X[k]

7: for r = 2, 3, . . . ,R do

8: Zr[k]← p · Zr[k − 1] + (1 − p) · Zr−1[k]

9: end for

10: end for

c© 2019 Information Processing Society of Japan 95



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.12 No.2 92–100 (July 2019)

The complexity of this Algorithm 3 is O(MR), where R is the
parameter of the negative binomial distribution. We can also
show that the complexity of O(M) is achieved in the case where
D is divided into multiple segments each of which corresponds
to the part of the negative binomial distribution’s PDF. Having a
large degree of freedom, this PDF is useful to approximate actual
delays.

Note that we must care truncation errors in Algorithm 3 since
the output distribution is terminated in finite k. To deal with this,
we implement two measures. First, we calculate Zr[k] on the do-
main not only in the range from k = 1 to k = M but in the range
from k = 1 to k = M + b, since we need to apply SHIFT(Y , b)
immediately after the convolution.

However, even if we consider the extended domain, we still
have truncation errors, since the distribution Dk has the mass over
M+b. Thus, we normalize Z[k] after the operation so that the sum
becomes 1.0.

These computational efforts mitigate truncation errors.

4.6 Complexity of the Algorithm
In general case, the complexity of the convolution is

O(M log M) and that of other operations in Algorithm 1 is O(M).
Thus, the total complexity of the Algorithm 1 is O(M log M);
therefore, the total complexity of the proposed approach is
O(M log MN) since we have to apply Algorithm 1 once to each
node in the topological order, where N is the number of nodes.

On the other hand, in special cases where source delays are the
negative binominal distributions, the complexity can be reduced
to O(M) as shown in Section 4.5, so that the total complexity of
the algorithm is reduced to O(MN), which means linear (means
very fast) in both of M and N.

5. Computational Experiments

In this section, we evaluate the proposed discrete delay prop-
agation method (DDP) from the viewpoints of accuracy and cal-
culation time.

5.1 Monte Carlo Simulation-Based Approach
To get propagated delay distributions, Monte Carlo simulation

(MC) can also be used in the following manner. MC performs
multiple iterations to get histograms of propagated delays in each
node. In each iteration, we evaluate nodes in the topological or-
der like DDP. However, unlike DDP, MC regards source delays
di, j as not random variables but deterministic values. As a result,
all the propagated delays (Xjs) are also deterministic variables.
Thus, each node’s process with Eq. (3) is simpler in MC than in
DDP since MC only needs to generate di, j from Pi, j and to per-
form scalar operations after that.

The bottle neck of each node’s process in MC is the procedure
that generates source delays from the negative binomial distribu-
tion. We utilize binary search in the range 0 to M to find out
the point where CDF of the binomial distribution exceeds a value
generated from the uniform distribution in (0, 1). Thus, the com-
plexity of each node process is O(log(M)).

MC repeats this iteration S times to get histograms of bins
1, 2, . . .M corresponding to the range of discrete variables in

DDP. Then we obtain the propagated delay distribution by di-
viding frequencies in each bin by S .

Thus, the total complexity of MC is O(S log(M)). Therefore,
though calculation time of each iteration in MC is shorter than
DDP, the total time of MC may be longer for large S . We set
S = 10,000 based on preliminary test results.

Note that MC does not assume P Independence, so that MC
can evaluate propagated delays under more natural assumptions.
However, as S tends to infinity, MC results converge to the dis-
tribution which is different from DDP’s.

5.2 Evaluation Using Small Network
For evaluating proposed method, we first used an small artifi-

cial three-train-five-station network.
5.2.1 Experimental Setting

The network consists of 22 nodes as shown in Fig. 3. Then we
set M = 720 (= 60 × 60/5), under assumption that we evaluate
delays at most 60 minutes with accuracy of five seconds. On the
network, we evaluate the influence of a trigger delay on the initial
node to the final nodes. Then we consider four scenarios. We set
trigger delays and buffer times bi, j for each scenario as follows:
• Scenario 1 (SN1): We set no delay on the initial node. Then

buffer times for all the headway arcs are from one to three
minutes as shown in Fig. 3, while those for residual arcs are
0.5 minute.

• Scenario 2 (SN2): We set no delay on the initial node. Then
buffer times for headway arcs are the values obtained by
adding 3 minutes to those for SN1, while those for residual
arcs are the same as those for SN1. That is, we assume the
situation where we move back the whole sequence of train 2
and 3 by 3 and 6 (= 3 + 3) minutes for SN1, respectively.

• Scenario 3 (SN3): We set 10-minute delay on the initial
node, and buffer times are same as SN1.

• Scenario 4 (SN4): We set 10-minute delay on the initial
node, and buffer times are same as SN2.

We set source delays in the initial node occur at k = 0(in SN1
and SN2) or k = 120 (in SN3 and SN4) with a probability of 1.0.
Then we assume source delays on each arc follow the negative bi-
nominal distribution (r = 2) with average μi, j. Here, to make 100
instances for each scenario, we generate μi, j from independent
discrete uniform distributions in the range from 1 to 24, meaning
the range from 5 to 120 seconds.

The experiments were all performed on a computer with an
Intel Xeon E5-2697v3 2.60 GHz Processor and 264 GB RAM.
5.2.2 Computational Results

Table 1 shows the comparative results of DDP and MC from
SN1 to SN4 by evaluating the propagated delay distribution of the
final node. The third to sixth columns of the table corresponds to
the average of mean delay time in minutes (m) and the probabil-
ity that delays are k minutes or over (qk : k = 5, 10, 15) of the
distribution in 100 instances.

Results show that the delay times in SN1 and SN3 are longer
than those in SN2 and SN4 due to the shorter buffer times in SN1
and SN3, while delay times in SN3 and SN4 are shorter than those
in SN1 and SN2 due to trigger delays in SN3 and SN4.

Moreover, in the cases where buffer times between trains are
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Fig. 3 An example of the network that we use in the evaluation. The number in each node shows sched-
uled time of the node, while the number on each arc shows the buffer time of the arc in SN1.

Table 1 Comparative results in DDP and MC from SN1 to SN4. We show
mean delays in minutes (m) and the probability that delays are k
minutes or over (qk : k = 5, 10, 15). All results are the average of
100 instances.

SN Method m q5 q10 q15

SN1 DDP 6.0 61.0 8.0 0.4
MC 5.3 49.3 6.2 0.4

SN2 DDP 4.1 32.3 3.0 0.1
MC 4.0 31.3 3.0 0.1

SN3 DDP 15.0 100.0 98.7 46.8
MC 13.9 100.0 93.1 32.9

SN4 DDP 9.5 97.9 39.4 3.9
MC 8.8 93.8 30.7 3.1

relatively large as in SN2, the result values are almost same in
both DDP and MC. On the other hand, when buffer times are
relatively small as in SN1, SN3, or SN4, there are gaps between
DDP and MC. This is because DDP assume P Independence
while MC does not. In case where buffer times are small,
P Independence usually does not hold since the correlation in
delays from different arcs gets larger. Though we have not proven
yet, mean delays of DDP tends to be slightly larger than those of
MC in many cases as shown in the difference of m in Table 1.

Then Fig. 4 shows both linear and log-scale plots of the final
nodes’ distributions from SN1 to SN4 in DDP and MC.

As shown in the results in Fig. 4, we confirm the curve of DDP
roughly agrees with that of MC, where the probability mass is
over 10−4.

However, MC cannot calculate the values under 10−4 since
the number of iterations in MC is 104, while DDP can provide
smooth curves when the probability mass is under 10−4. More-
over, results of MC seem to be unstable even in the region where
the probability mass is slightly larger than 10−4. When we ana-
lyze propagated delays, we usually focus on rare events. There-
fore, we believe that DDP which can evaluate rare events has the
advantage over MC.

5.3 Evaluation using real network model
Then we perform additional experiments on real network data

in a UK Train Operation Company on May 2018.
5.3.1 Experimental Setting

First we can configure node set V from the departure, arrival,
and passing events based on the morning rush hour timetable.
As a result, the number of nodes is 1,472. Then, we span arcs
between nodes where minimum times are set for security rea-
sons. For example, in addition to the cases we have shown in
Section 3.1, we span headway arcs between nodes where a train
uses the different platform from the preceding train for connect-
ing or overtaking. Thus, the number of incoming arcs is at most
three.

For each headway arc between different trains, we use the min-
imum time defined on the timetable for security reasons for hi, j.
On the other hand, for each run and dwell arc, we use the min-
imum time calculated from run curves on the timetable for hi, j.
Note that the hi, j of arcs differs depending on whether the types
of nodes on both sides of the arc are departure, arrival, or passing
nodes. We can calculate the buffer time bi, j by taking the differ-
ence between hi, j and the time difference in a timetable as shown
in Section 3.2.

Moreover, we obtain the average time of source delay in each
run or dwell arc from the historic records of train lateness avail-
able in Ref. [14]. In the following experiment, this value was
multiplied by α (α = 0.125, 0.25, 0.5 and 1.0) to evaluate various
delay patterns. We express the source delay distribution as a neg-
ative binomial distribution (r = 2) with this value as the average.

Finally we set M = 1,500 (= (120+ 5)× 60/5), under assump-
tion that we evaluate propagated delays from −5 minutes to 120
minutes with accuracy of five seconds. Note that propagated de-
lays in real network may take negative values on the event where
arriving or passing earlier than scheduled time is permitted.
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Fig. 4 Examples of final node’s propagated delay distributions in DDP and MC in (a) SN1, (b) SN2,
(c) SN3 and (d) SN4. The horizontal axis in each plot represents the delay time in minutes. The
vertical axis is linear in the top figure, while log-scale in the bottom figure for each scenario.

Table 2 Comparison of mean delays of the final node (m) and computation
time for DDP and MC for α = 0.125, 0.25, 0.5, and 1.0.

α method m conputation time
(minute) (s)

1.0 DDP 50.7 0.021
MC 43.7 4.139

0.5 DDP 31.8 0.022
MC 29.1 3.282

0.25 DDP 23.8 0.021
MC 22.5 2.544

0.125 DDP 19.9 0.021
MC 19.2 1.922

5.3.2 Computational Results
Table 2 shows the comparative results of DDP and MC for

α = 0.125, 0.25, 0.5, 1.0 by evaluating mean delays of the final
node and the computation times. This result shows that computa-
tion time in DDP is over 90 times faster than that in MC. How-
ever, there are gaps between the mean delays in DDP and MC.
Especially in the case where the amount of delays is larger (e.g.,
in α = 1.0), the gaps get larger.

In order to investigate the cause of gaps, we examine the acu-
mulation degree of propagated delays in each case. Figure 2
shows the average of propagated delays in each nodes in all eight
cases shown above. In this figure, the nodes in horizontal axis are
sorted by propagated delay time in DDP (α = 1.0) case. In fact,
this is roughly the topological order.

This result shows that delays are accumulated constantly and
the amount of the propagated delay increases almost monotoni-
cally, representing the tendency that the propagated delay accu-
mulates in the rush hour. Moreover, results show that while dif-

Fig. 5 Plots of propagated delay time in DDP and MC for α = 0.125,
0.25, 0.5, 1.0. The vertical axis shows the mean propagated delays
in minutes. The horizontal axis represents the nodes, and the order
of the nodes are sorted by the delay in DDP(α = 1.0) case.

ferences between the mean delay time in DDP and that in MC
are also small when N is small, the difference gradually expands
as N becomes larger. In other words, the slight difference seen
in small problems as shown in Section 5.2.2 gets larger as N be-
comes larger, since delays are propagated without interruption in
the rush hour.

6. Conclusion

In this paper, we have proposed a novel discrete distribution
propagation method (DDP) to evaluate delay distributions on rail-
way timetables. We have shown the way of calculating the prop-
agated delay distribution on each event analytically under the as-
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sumption of independence of source and propagated delays. Then
we have shown the complexity of DDP is O(M log MN) in the
general case and O(MN) in the special cases where source distri-
butions are the negative binominal distributions, where M denotes
the number of quantization levels in discretization and N denotes
the total number of events. Finally, computational experiments
show that the proposed method is much faster than Monte Carlo
simulations (MC), and provides almost the same results as MC
when N is small. Moreover, DDP also has the advantage that it
can be executed only by easily-accessible operation records such
as the average of run and dwell time in each node, unlike conven-
tional detailed simulation-based approaches.

However, DDP requires the unnatural assumption of the prop-
agated delay independence. As a result, there is a gap between
the result of DDP and that of MC in cases where N is large or the
amount of propagated delays is large. At this moment, we need
further analysis regarding the level of error arising from this as-
sumption. Thus, evaluating the effect of the error and improving
DDP to cope with the problem need to be performed in the future
work.
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Appendix

A.1 Proof of Eq. (9)

Initially in the case of k = 1, when we consider the fact that
Zr[1] = X[1] · Dr[0] = X[1] · (1 − p)r,

Zr[1] =

⎧⎪⎪⎨⎪⎪⎩
(1 − p) · X[1] (k = 1, r = 1)
(1 − p) · Zr−1[1] (k = 1, r ≥ 2)

(A.1)

holds, so that we have shown Eq. (9) in the case of k = 1.
Secondly in the case of k ≥ 2, r = 1,

Z1[k] =
k∑

i=1

X[i] · D1[k − i]

=

{ k−1∑
i=1

X[i] · pk−i · (1 − p)

}
+ X[k] · (1 − p)

= p ·
{ k−1∑

i=1

X[i] · pk−i−1 · (1 − p)

}
+ (1 − p) · X[k]

= p · Z1[k − 1] + (1 − p) · X[k] (A.2)

holds, so that we have shown Eq. (9) in the case of k ≥ 2, r = 1.
Finally, in the case of k ≥ 2, r ≥ 2, consider the following two

recurrences. First, when k ≥ 1, r ≥ 2, the following recurrence

Dr[k] =

⎛⎜⎜⎜⎜⎝ k + r − 1
k

⎞⎟⎟⎟⎟⎠ pk(1 − p)r

=

{⎛⎜⎜⎜⎜⎝ k + r − 2
k − 1

⎞⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎝ k + r − 2

k

⎞⎟⎟⎟⎟⎠
}

pk(1 − p)r

= p ·
⎛⎜⎜⎜⎜⎝ (k − 1) + r − 1

k − 1

⎞⎟⎟⎟⎟⎠ pk−1(1 − p)r

+(1 − p) ·
⎛⎜⎜⎜⎜⎝ k + (r − 1) − 1

k

⎞⎟⎟⎟⎟⎠ pk(1 − p)r−1

= p · Dr[k − 1] + (1 − p) · Dr−1[k] (A.3)

holds. Then in the case of k = 0, r ≥ 2, the following recurrence

Dr[0] = (1 − p) · Dr−1[0] (A.4)

holds. Defining Dr[−1] = 0 for convenience, we summarize
Eqs. (A.3) and (A.4) to have

Dr[k] = p · Dr[k − 1] + (1 − p) · Dr−1[k], (A.5)

when k ≥ 0 and r ≥ 2. Using this Equation, we obtain

Zr[k] =
k∑

i=1

X[i] · Dr[k − i]

=

k∑
i=1

X[i] ·
{

p · Dr[k − i − 1] + (1 − p) · Dr−1[k − i]}
}

=

k−1∑
i=1

X[i] · p · Dr[k − i − 1]

+

k∑
i=1

X[i] · (1 − p) · Dr−1[k − i]}

= p · Zr[k − 1] + (1 − p) · Zr−1[k], (A.6)

so that we have shown Eq. (9) in the case of k ≥ 2, r ≥ 2.
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Under the discussion above, we have proven Eq. (9) in all the
cases.
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