
IPSJ SIG Technical Report

A Study of Real-Time Extension for
RISC-V Processors

Aye Myat Mon1,a) Thiem Van Chu1,b) Kiyofumi Tanaka1,c)

Abstract: In development of applications for real-time embedded systems, RTOS functions (system calls)
are often used for easily designing the target system. However, behavior of RTOS is one of factors of unpre-
dicted execution times, which affects the real-time processing. In this research, we investigate a possibility
of making the execution times of RTOS constant or at least limiting them to relatively low upper bounds by
introducing hardware functions. The proposed hardware is implemented as RTOS Management Unit (RMU)
with a RISC-V processor in an FPGA .

1. Introduction

In real-time systems, task execution times should be fixed

for predictability and schedulability. However, actual execu-

tion times tend to vary since they are influenced by various

factors such as unpredicted cache behavior and other distur-

bance. This makes it difficult to estimate tasks’ execution

times exactly.

Use of RTOS (Real-Time Operating System) functions

makes development of real-time applications easier. How-

ever, behavior of RTOS is one of factors of unpredicted exe-

cution times. While tasks’ functions differ from application

to application, functions of RTOS are fixed, which means

there is a possibility of making the execution times of RTOS

constant or limiting them to some upper bound.

This research aims to provide RTOS which exhibits con-

stant execution times by introducing special hardware mech-

anisms, RMU (RTOS Management Unit), and custom in-

structions for manipulating them. This makes it easy to

estimate execution times of tasks that use RTOS services.

As a base processor architecture, we adopt RISC-V [1] in-

struction set which is a relatively new ISA.

Although various RTOSs have been produced so far, al-

most all of them are supposed to run on conventional pro-

cessors/controllers. This is the case for those on RISC-V

processors, for example, embOS [2]. On the other hand,

we focus on hardware mechanisms for RTOS so that RTOS

codes spend fixed and constant execution times. There are

several hardware solutions for RTOS such as HartOS [3]

and Sierra [4] which aim to accelerate RTOS processing. By

contrast, we attempt to keep the RTOS’s execution times

1 Japan Advanced Institute of Science and Technology
JAIST, Asahidai 1-1, Nomi, Ishikawa 923–1292, Japan

a) ayemyatmon@jaist.ac.jp
b) thiem@jaist.ac.jp
c) kiyofumi@jaist.ac.jp

constant with the minimum hardware resources.

Generally, task codes and RTOS codes are executed on

the same processors. This means execution of RTOS is af-

fected by behavior of tasks’ execution and vice versa. For

example, RTOS data may be evicted by tasks’ data in cache

memory. Therefore, to keep the execution times of RTOS

constant, isolation of data storage areas is effective. In our

approach, along with the special storage area for RTOS,

new instructions are defined for managing the RTOS data

efficiently.

2. Implementation of RISC-V Processor

We are implementing an embedded processor based on

RISC-V instruction set architecture. 49 instructions in

RV64I (base integer instructions), 13 in RV64M (multiply

extension), and 6 privileged instructions for exception and

interrupts can be executed by the processor.

Figure 1 shows the processor organization which basi-

cally follows 5-stage pipeline structure in [5]. Compared to

[5], forwarding units are enhanced to solve more data de-

��

�����

�����

���	�	

	�	�
�

�

�

�

���

���

��
��������

	�����

���

����
���

����

���

���

�

�

�

�

�

�

���

	
�

�
��

�

�

� ��

�

��

��

� ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

����

	�����

�

�

�

�

�

�

������

���������

����

�

����

�

����

�

����

�!"#$%&' #'()%&�
'%&�
(%&��

�

$

Fig. 1 Pipeline structure.

c⃝ 2019 Information Processing Society of Japan 1

Vol.2019-EMB-51 No.7
2019/6/21

IPSJ SIG Technical Report

pendencies.

3. RTOS Management Unit (RMU)

Our RTOS Management Unit (RMU) consists of task con-

trol blocks (TCBs), queue data structures. and their man-

agement logic. Literature [6] proposed efficient queue man-

agement in hardware with shift registers. Instead of using

shift registers, our hardware builds various queues (such as

ready queue) by manipulating pointer values in TCBs for

simplicity.

For constructing a queue structure, each TCB includes

next pointer (NEXT), previous pointer (PREV), deadline

(DEADLINE). In addition, it takes as input a command

(task insertion/deletion), task id, and deadline values of

other tasks, and outputs its deadline value.

When a new task is inserted to the queue, a TCB which

satisfies the following conditions updates its pointer values.

/* Task insertion to a queue */

Input: TSKID_IN; /* task id of a new task */

DEADLINE[N]; /* Deadlines of all tasks */

/* Updating NEXT */

if ((DEADLINE[TSKID] <= DEADLINE[TSKID_IN]) &&

(NEXT == -1 or

DEADLINE[NEXT] > DEADLINE[TSKID_IN]))

Write TSKID_IN in NEXT;

/* Updating PREV */

if ((DEADLINE > DEADLINE of new task) &&

(PREV == -1 or

PREV.DEADLINE <= DEADLINE of new task))

Write TSKID_IN in PREV;

Conditions for task deletion is given as follows.

/* Task deletion from a queue */

Input: TSKID_IN; /* task id of a deleted task */

NEXT_IN[N]; /* next pointers of all tasks */

PREV_IN[N]; /* prev pointers of all tasks */

if (NEXT == TSKID_IN)

Write NEXT_IN[TSKID_IN] in NEXT;

if (PREV == TSKID_IN)

Write PREV_IN[TSKID_IN] in PREV;

An example of manipulating an EDF-based ready queue is

shown in Fig. 2. The top figure depicts three tasks (task 5,

task 2, and task 3) connected in ascending order of deadline

values. “Queue top” data structure consists of two pointers:

task id of the head task (NEXT) and that of the tail task

(PREV). This data structure is regarded as a TCB with

TSKID = -1 and a target of the above conditions’ evalua-

tion. Insertion of a new task (task 7) is shown in the bottom

figure. Relevant pointer values are updated according to the

deadline values.

All information in TCB is stored in dedicated registers.

They are memory-mapped, that is, each register is given its

own address. TCB information can be referenced by issu-

ing conventional load and store instructions with the ad-

dresses. The reason why we select memory mapping tech-

niques rather than implementing special instructions by the

RISC-V implementation-dependent extension is that mem-

���������	
���

�
�������

��������

���������

�

�

�

�
�������

��������

��������

�

�

�

�
�������

���������

��������

�

�

�

���������	
��� ���������	
���

���������	
���

�
�������

��������

���������

�

�

�

�
�������

��������

��������

�

�

�

�
�������

��������

��������

�

�

�

���������	
��� ���������	
���

�
�������

���������

��������

�

�

�

���������	
���

�����������	
 ������������
 ������������

�����������	
 ������������
 �����������

������������

����������	
�
�����
����������
�

����������	
�
���������������
�

��������

��������

�� � ���!

��������

��������

�� � ���!

Fig. 2 Structure of ready queue.

ory mapping makes it possible to easily use the existing com-

piler tool chain.

In addition to referencing the registers, RMU operations

(queue insertion and deletion) are invoked by issuing mem-

ory reference instructions with special addresses.

4. Conclusion

In this research, we propose techniques which make the

execution times of RTOS constant by introducing hardware

functions as RTOS Management Unit (RMU). The proposed

hardware is planned to be implemented on an FPGA along

with a RISC-V pipelined processor. All the logic circuits

are described in VHDL. It is planned to evaluate execution

times of RTOS as well as improved efficiency in the use of

cache memories from reducing conflicts between RTOS and

application data.

Acknowledgments This work was supported partly

by JSPS KAKENHI Grant Number JP 19K11873 for de-

signing RMU, and partly by SHIBUYA Science Culture and

Sports Foundation for designing a RISC-V processor.

References

[1] https://riscv.org

[2] https://www.segger.com/risc-v/

[3] A.B.Lange, et al., “HartOS – a Hardware Imple-
mented RTOS for Hard Real-time Applications,” Proc. of
IFAC/IEEE Intl. Conf. on Programmable Devices and Em-
bedded Systems, Vol 45, No. 7, pp.207–213, 2012.

[4] N. Forsberg, “Analysis of a Hardware-Based Real-
Time Kernel,” Thesis in MALARDALEN Univ.
2014. https://www.diva-portal.org/smash/get/diva2:
730890/FULLTEXT01.pdf

[5] D. A. Patterson, J. L. Hennessy, “Computer Organization
and Design RISC-V Edition,” Morgan Kaufmann, 2017.

[6] Y. Tang, N .W. Bergmann, “A Hardware Scheduler Based
on Task Queues for FPGA-Based Embedded Real-Time Sys-
tems,” IEEE Trans. on Computers, Vol. 64, No. 5, pp.1254–
1267, 2015.

c⃝ 2019 Information Processing Society of Japan 2

Vol.2019-EMB-51 No.7
2019/6/21

