XMLEILWEHENES T LxQues) DEILVEHEEEE

Al B ARE M2 K RE

XMLT—2EWeblE 8 X7 LPEC/EDIG B THELEHON TULTENFEIN LA, TD LD
HEETERBEOXMLT —4% BENRET S, TOEHIEHAEN Y —FEHERETED
KL TERBIZRELEXMLT— DA ERBETEDLLIICTEHILE, EHOXMLT —3Y —R%
BEFIATERLSIZTHIERBETHD. CO=HITXQLEVLIXMLT —2OBWEHEEEE
1BETE, XQLIEREFE DT —ER—REE(SQLYOQL) LN B EMHEEBLTHRHIA TS, K
BCEXMLTF—40OBLEHhE EEOEHEMEEC OV THEBAL. XMLEWEHEREL R T A
xQuesDT=HDXQLDOEE(Z O TN D,

A Query Language of an XML Query Processing System (xQues)
Hiroshi Ishikawa', Kazumi Kubota’, and Yasuhiko Kanemasa'

XML data are expected to be widely used in Web information systems and EC/EDI applications.
Such applications usually use a large number of XML data. First, we must allow users to retrieve only
necessary portions of XML data by specifying search conditions to flexibly describe such applications.
Second, we must allow users to combine XML data from different sources. To this end, we provide a
query language for XML data tentatively called XQL. We have designed XQL, keeping in mind its
continuity with database standards such as SQL and OQL although we don’t stick to its strict
conformity. In this paper, we describe the requirements for a query language for XML data and explain
the functionality. We make comments on an implementation of XQL for an XML query processing

system called xQues.

1. Introduction

XML data are expected to be widely used in Web
information systems and EC/EDI applications. Such
applications usually use a large number of XML data.
First, we must allow users to retrieve only necessary
portions of XML data by specifying search
conditions to flexibly describe such applications.
Second, we must allow users to combine XML data
from different sources. To this end, we will provide
a query language for XML data tentatively -called
XOL (Xml data Query Language) [FJ XQL], which
has coincindetally the same name as a query

-l e
FUJITSU LABORATORIES LTD.

language proposed by Microsoft and et al. [MS
XQL].

A query language called XML-QL [XML-QL] has
already been proposed to W3C, which has largely
inspired the design of XQL. The first workshop on
XML query language was successfully held [QL98].
We have designed XQL, keeping in mind its

* continuity with database standards such as SQL

[ANSI X3] and OQL [ODMG] although we don’t
stick to its strict conformity. We will describe the
requirements for a query language for XML data in
Section 2 and explain the functionality of XQL by
using the example data in Section 3.

2. Requirements

We consider the following requirements as
mandatory for a query language for XML data:
- XML query languages must take XML data as input
and give XML as output.
- XML query languages must understand features of
XML data structures such as elements and tags. In
particular, the users must be able to specify
hierarchical structure of tag paths in a query.
- XML query languages must provide operations on
XML data, that is, XML versions of relational
operators such as select, join, sort, grouping.
- XML query languages must be able to combine
heterogeneous XML data from different sources
specified by different URIs.
- XML query languages must view XML data as
ordered sets of elements and must preserve the orders.
It must provide set operators over XML data such as
union, intersection.
- XML query languages must allow specification of
regular expressions on tag paths although full
capability may be unnecessary because of its
computational complexity.
- XML query languages must allow the users to
define view on XML data analogous to relational
views. That is , the users must be able to define XML
data views as functions by using XML query
languages and to specify such functions in a query.
- An XML query must be embedded-in XML data.
- XML query languages must keep syntactic and
semantic continuity with other standards such as
SQL and OQL.
- XML query languages must be processed
efficiently. The language processor must provide
query optimization. The processor must use schema
information if available although it doesn’t assume
the existence of schemas.

3. Design
3.1 Database schema

We use database schemas or DTD by slightly
changing example DTD used in XML-QL[XML-QL]
as follows:

<IELEMENT book (author+, title, publisher)>
<!ATTLIST book year CDATA>
<IELEMENT article (author, title, year?)>

<!ATTLIST article type CDATA>

<!ELEMENT publisher (name, address)>
<!ELEMENT author (firstname?, lastname, office+)>
<!ELEMENT office (CDATA | longoffice)>
<!ELEMENT longoffice (building, room)>
<!ELEMENT watch (name, brand)>

Here DTD for book elements indicates that a book
has at least one author and one mandatory title and
publisher. DTD for article elements indicates that an
article has one mandatory author and title and one
optional year. An article has a type as an attribute.
Note that an author has at least one office, which has
a variant structure of either literal data or a pair of
building and room.

3.2 Functionality

We describe the functionality of XQL by using
schemas introduced in the previous section. XQL
has a select-from-where construct as a basis, similar
to SQL and OQL. We have borrowed examples from
XML-QL [XML-QL].

(1) Data match for select

The following query retrieves authors of books
published by Addison-Wesley:

select $book.author «

from bib URI “www.a.b.c/bib.xml”,
book $bib.book

where $book.publisher.name

=“Addison-Wesley”

The basic unit of XQL is a path expression, that is,
an element variable (explained just below) followed
by a series of tag names such as “$bib.book”. The
user declares element variables in a from-clause such
as bib and book. In particular, the user can bind XML
data as input specified by URI to element variables
such as bib. References of element variables are done
by prefixing “$” to them such as $bib.book. In a
select-clause, the user specifies XML data as a result
such as $book.author. Results have a tag for author
as default in this case. The user checks data match
for select in a where-clause, such as
$book.publisher.name =“Addison-Wesley”.

We briefly describe the semantics of XQL based
on set theory. A set of XML elements is either
ordered or wunordered. XML elements have

hierarchical structures; XML elements contains other
XML elements, (i.e., sub-elements). We consider
sub-elements and attributes as semantically the same
although attributes have no hierarchical structures. In
fact, elements are restricted by conditions specified
on their sub-elements and attributes. XQL queries
produce a set of elements satisfying conditions.
Assuming that an element Ea satisfies conditions Ca
and C’a over an element variable a, we define the
semantics of XQL queries as follows:

Query: select a from a where Ca

Semantics: { Ea | Ca}

Query: select a from a where Ca and C’a
Semantics: { Ea | Ca } intersection { Ea | C’a }

Of course, if “or” is specified instead of “and” in the
second query, then “intersection” is replaced by
“union” in the semantics.

(2) Data constructor

The following query produces new results
consisting of authors and titles of books published by
Addison-Wesley:

select result <$book.author, $book.title>
from bib URI“www.a.b.c/bib.xml”,
book $bib.book
where $book.publisher.name
= “Addison-Wesley”

Here “<>”" in a select-clause creates new XML
elements of a specified construct such as author and
title tags. New elements have a name result. This
allows extraction and combination of sub-elements at
any level.

(3) Grouping

The following query groups book titles for each
book publisher:

select result <$book.publisher.name,
Sbook.title >
from bib URI “www.a.b.c/bib.xml”,
book $bib.book
where $book.author.lastmame ="Ishikawa”
groupby $book.publisher.name

A groupby-clause indicates that result elements are
grouped by book publisher name. Further, titles of
result elements are automatically nested. We don’t
use nested query for grouping unlike XML-QL
[XML-QL].

(4) Sorting

For example, an orderby-clause explicitly sorts
book publisher names and titles in an alphabetical
order by publisher name as follows:

select result <3book.publisher.name,
$book.title >
Sfrom bib URI “www.a.b.c/bib.xml”,
book $bib.book
where $book.author.lastname ="Ishikawa”
orderby $book.publisher.name

In this case, book titles of result elements are not
nested unlike groupby. Note that XQL also preserves
orders of XML data specified in a query implicitly.

(5) Join

The following query joins books published after
1995 and articles by authors as a join key within the
same XML data:

select result <$article, $book>
from bib URI “www.a.b.c/bib.xml”,
article $bib.article, book $bib.book
where $book.author firstname
= $article.author firstname and
Sbook.author.lastname
= $article.author.lasthame and
$book. @year > “1995”

In a where-clause, the user specifies join of books
and articles by authors within the same XML data.
Attributes such as year are referenced similar to tags
by prefixing “@” to them, such as $book. @year.

(6) Tag variable [XML-QL]
The following query retrieves heterogeneous

elements such as book titles published in 1995 with
either authors or editors whose name is Smith:

select result <$any.title, $AorE>
from bib URI “www.a.b.c/bib.xml”,
any $bib. %,
AorE $any.(author | editor)
where $any. @year= “1995” and
$AorE.lastname = “Smith”

We don’t use tag variables introduced by XML-
QL [XML-QL]. Instead, we allow regular
expressions as path expressions so that the user can
simulate tag variables by using element variables
declared as regular path expressions (See also (7) in
this section). For example, “$any.(author | editor) ”
matches path expressions such as “book.author”,
“pook.editor”’, “article.author”, and “article.editor”.
Multiple occurrences of “%” in a from-clause are
supposed to be bound to the same path at the same
time. The above query can be expressed alternatively
by using a set operator union as follows:

(select result <$book.title, $hook.author>

from bib URI “www.a.b.c/bib.xml”,
book $bib.book

where $book. @year= “1995” and
$book.author = “Smith”)

union

(select result <$book.title, $book.editor>

from bib URI “www.a.b.c/bib.xml”,
book $bib.book

where $book. @year= “1995” and
$book.editor =*Smith”)

union

(7) Regular path expression

The following query retrieves last name of authors
whose office is either a whole house or a room in a
building:

select result <$author.lastname>
from bib URI “www.a.b.c/bib.xml”,
author $bib.author,
office $author.(office | office.room)
where $office = “245”

Here “office” is bound to “$author.office” or
“$auther.office.room”. The above query is
alternatively expressed like this:

select result <$author.lastname>
from bib URI “www.a.b.c/bib.xml”,
author $bib.author
where $author.(office | office.room) = “245”

(8) Join of data from multiple sources

The following query produces book author name
and income by joining social security numbers of
book authors and taxpayers at different data sources
indicated by different URIs such as b and ¢.

select result <$author.lastname, $t.income>
from b URI “www.a.b.c/bib.xml”,
t URI “www.irs.gov/taxpayers.xml”,
author $b.book.author
where Sauthor.ssn=_3$t.ssn

The user can specify join of heterogeneous XML
data from different sources indicated by different
URIs such as d and 1.

(9) Embedding query

The following XML data result to sets of article
titles and book titles published after 1995:

<result>
<articles>
<XQL>
(select $article.title
from bib URI “www.a.b.c/bib.xml”, article
$bib.article
where Sarticle. @year > “1995”)
</>
</>
<books>
<XQL>
(select $book.title
from bib URI “www.a.b.c/bib.xml”, book
$bib.book
where $book. @year > “1995”)
</> ’
</>
</>

The user can embed an XQL query in XML data
although XML parsers must be extended to recognize
XQL.

(10) Function definition

The following finds declared income of
employees by joining two sets of elements passed as
parameters Taxpayers and Employees:

FUNCTION findDeclaredIncomes (Taxpayers,

Employees) as

(select result <$Employees.name,
$Taxpayers.income>

from Taxpayers, Employees

where $Employees.ssn=3Taxpayers.ssn)

The user defines a function by specifying an XQL
query in its body. The role of functions is similar to
that of relational views. See (11) in this section for
invocation of functions.

(11) Function invocation

For example, in a select-clause, the user inserts to
an attribute id values of functions such as “PersonID
($author.firstname, $author.lastname)” and
introduces “publicationtitle” as a new tag:

select result <@id =
PersonID(3author firstname,
Sauthor.lastname),
Sauthor.firstname, $author.lastname,
publicationtitle $title>
from bib URI “www.a.b.c/bib.xml”, any 3bib.%,
author $any.author, title $any.title

4., Conclusion

We have proposed XQL as a query language for
XML data of continuity with database standards. We
expect to activate emergence of an easily
understandable query language. We compare our
XQL with other proposals. XML-QL [XML-QL] has
much functionality in common with our XQL. It
makes more emphasis on join of multiple data
sources distributed over the Web. XML-QL is not
necessarily nonprocedural unlike our XQL; Its
multiple conditions are assumed to be sequentially
evaluated. Another XQL of Microsoft and et al. [MS
XQL] focuses more on filtering a single XML
document by flexible pattern match conditions; It
provides no join of multiple documents unlike our
XQL.

We conclude this paper by making comments on
the implementation. We have just started to explore
approaches to mapping DTD to databases (RDB or
ODB such as [Ishikawa96]) and to implement an
XQL processor [Ishikawa99]. We are now
developing a subset of XQL basic functions as a
query language of an XML query processing system
called xQues (XML query processing system). If any
DTD or schema information is available, we try to
map elements to tables and tags to fields,
respectively; Otherwise, we divide XML data into
nodes and edges and store them into separate tables
for nodes and edges with neighboring data physically
clustered for reducing /O cost. When the users
issue a query against global servers for XML data, if
the servers can understand XQL, the system
obtains query results as XML data; Otherwise, it
obtains whole XML data specified by URIs and
processes the query against them locally.

References

[ANSI X3] http://gatekeeper.dec.comypub/standards/sql,
1998

[FJ XQL}
hitp://www.w3.org/TandS/QL/QL98/pp/flab.doc, 1998
[Ishikawa96] Ishikawa, H., et al.: An Object-Oriented
Database System Jasmine: Implementation, Application,
and Extension., IEEE Trans. Knowledge and Data
Engineering, vol. 8, no. 2, pp.285-304 (1996)
[Ishikawa99] Ishikawa, H., et al: Document
Warehousing Based on a Multimedia Database System,
Proc. IEEE 15th Intl. Conference on Data Engineering,
pp-168-173 (1999).

[MS XQL]
http://www.w3.org/TandS/QL/QL98/pp/xql.html, 1998
[ODMG] Cattell, R.G.G. and Barry, D.K., Eds.:
Object Database Standard: ODMG 2.0, Morgan
Kaufmann Publishers, Inc., 1997

[QL98]

http://www.w3.0org/TandS/QL/QL98/Overview html,
1998

[XML-QL] http://www.w3.0org/TR/1998/NOTE-xml-gl-
19980819, 1998

