
IPSJ SIG Technical Report

A Design of a Logging System
for a Computer Security Incident Response

Motoyuki OHMORI1,a)

Abstract: Computer security has been getting more attentions because a computer security incident may cause great
damage on an organization. In order to quickly and properly detect and/or handle a computer security incident, ones
may need store logging messages of network equipment and servers as many as possible. These logging messages then
require a large size of storage while these logging messages are not so useful during daily normal operations. It is then
better to minimize sizes of logging files as much as possible. On the other hand, ones may need to retrieve a specific
logging message on a computer security incident, and its retrieval time should be shorter as much as possible. It is then
necessary to solve this dilemma between a smaller storage size and shorter retrieval time.
To this end, this paper proposes a new logging system dedicated for a computer security incident response. The pro-
posed logging system is designed based upon natures of logging messages which are required for a computer security
incident response. This paper firstly tries to find features of logging messages for a computer security incident re-
sponse. For example, newer logging messages should be retrieved shorter than older logging messages, and all logging
messages are in time series. This paper also tries to design a new logging system architecture dedicated for a com-
puter security incident response while logging messages in todays’ logging systems are stored in generic database like
RDBMS or in text files consisting of raw syslog messages.

1. Introduction
Computer security has been getting more attentions because

a computer security incident may cause great damage on an or-
ganization. In order to quickly and properly detect and/or han-
dle a computer security incident, ones may need store logging
messages of network equipment and servers as many as possible.
These logging messages then require a large size of storage while
these logging messages are not so useful during daily normal op-
erations. It is then better to minimize sizes of logging files as
much as possible. On the other hand, ones may need to retrieve
a specific logging message on a computer security incident, and
its retrieval time should be shorter as much as possible. It is then
necessary to solve this dilemma between a smaller storage size
and shorter retrieval time.

To this end, this paper proposes a new logging system dedi-
cated for a computer security incident response. The proposed
logging system is designed based upon natures of logging mes-
sages which are required for a computer security incident re-
sponse. This paper firstly tries to define requirements for log-
ging messages for a computer security incident response. For ex-
ample, newer logging messages should be retrieved shorter than
older logging messages, and all logging messages are in time se-
ries. This paper also tries to design a new logging system ar-
chitecture dedicated for a computer security incident response
while logging messages in todays’ logging systems are stored in
generic database like Relational Database Management System

1 Tottori University, Koyama-minami, Tottori Japan, 680–8550 Japan
a) ohmori@tottori-u.ac.jp

(RDBMS) or in text files consisting of raw syslog messages.
The rest of this paper is organized as follows. Sec. 2 presents

our motivations to store and compress logging messages. Sec. 3
presents required logging messages for detecting and/or handling
a computer security incident. Sec. 4 introduces features of log-
ging messages required for a computer security incident response.
Sec. 5 proposes the logging system dedicated for a computer se-
curity incident response. Sec. 6 refers to related work. Sec. 7
finally concludes this paper.

2. Background
This section introduces our motivations to design a new log-

ging system dedicated for a computer security incident response.
We, Tottori University, currently employ Network Address

Port Translation (NAPT) for almost all edge users. When an
external organization alerts a suspicious communication to us,
the external organization can provide us with the global IP ad-
dresses and port numbers of the suspicious communication. In
this situation, we must identify an associated private IP address
of the suspicious communication. In order to identify the private
IP address, we must store all traffic logging messages of NAPT
equipment. Our NAPT equipment is a next-generation firewall,
Paloalto PA-5220, that has four 10GbE links for incoming and
outgoing traffic. We have one WAN 1GbE link for SINET. In our
environment, our PA-5220 requires approximately 20GB/day for
all logging messages including threat, URL filtering and data fil-
tering. We may then need about 4TB storage for a year in order to
just store traffic logging messages. This size of 4TB is not small
for us, and it is better to make its size smaller.

1ⓒ 2019 Information Processing Society of Japan

Vol.2019-IOT-46 No.1
2019/6/14

IPSJ SIG Technical Report

In order to make file size of logging messages, we employ an
object storage called Swift that can automatically compress a log-
ging file using zip-like algorithm. Swift can reduce physical size
of a logging file. We, however, require a long delay to retrieve
a logging message of a specific traffic flow. For example, we
need 20 min. when we retrieve a specific traffic from from a traf-
fic logging file of one day. This 20 min. may be enough long
to intrude and compromise information, and this delay should be
minimized.

We have found that almost all cirtical incidents require recent,
say a few months, logging messages because almost all critical
incidents are detected by recent logging messages only. Few inci-
dents are surely detected by very old logging messages, but these
are very rare case. We then employ MongoDB [1] for recent log-
ging messages. From the viewpoint of programmers, MongoDB
is useful and flexible. MongoDB is, however, slower than tra-
ditional RDBMSes and requires more storage. We cannot have
mongoDB store all logging messages because mongoDB requires
more storage.

3. Logging Messages for a Computer Security
Incident Handling

This section introduces required logging messages for detec-
tion and/or handling a computer security incident. This sec-
tion also introduces actual logging messages in actual environ-
ment. Note that leading date, time and host strings of syslog,
e.g., Feb 13 00:45:44 localhost, of actual logging mes-
sages here are omitted due to limited space.

3.1 Firewall
As described Sec. 2, traffic logging messages are required for a

computer security incident. In our environment, the firewall, PA-
5220, produces traffic logging messages. In addition, PA-5220
produces other logging messages. All logging messages are:
(1) traffic including not only denied traffic but also permitted

traffic,
(2) detected threat communications,
(3) accessed URLs,
(4) uploaded or downloaded file names, and
(5) system logging messages.

Fig. 1 shows examples of logging messages of PA-5200, and its
format is published in [2]. As shown in Fig. 1, Paloalto network
equipment produces logging messages in Comma Separated Val-
ues (CSV). These logging messages, therefore, may be able to be
easily converted into binary format.

Fig. 2 shows examples of logging messages of Cisco FWSM.
As shown in Fig. 2, Cisco FWSM series produces logging mes-
sages in its own original format. These logging messages, how-
ever, are in pre-fixed format, and may be able to be converted into
binary format.

Fig. 3 shows examples of logging messages of Fortigate. As
shown in Fig. 3, Fortigate series produces also logging messages
in its own original format. These logging messages, however, are
also in pre-fixed format, and may be able to be converted into
binary format.

Fig. 4 shows examples of logging messages of iNetSec by

PFU. Note that iNetSec is not actually a firewall but Intrusion De-
tection System (IDS). As shown in Fig. 4, iNetSec series produces
also logging messages in JSON format. These logging messages
may be able to be converted into binary format even though it
may require heavy processes.

3.2 ARP Table Entries of a Core Switch
For a computer security incident response, we must be able to

resolve an associated MAC address from a given IP address. To
this end, ones may usually poll ARP table entries from a core
switch. Fig. 5 shows logging messages of our own implementa-
tion of ARP table polling by SNMP. An IPv4 address and MAC
address are in fixed length, and this pair can be easily converted
into binary format.

3.3 ARP Snooping of a Core Switch
In addition to ARP table polling, we have implemented the

scalable ARP snooping using policy-based mirroring of core
switches, AXARPS [3] because ARP table polling has appeared
to be inaccurate where the suspicious host moves so fast.

Fig. 5 shows logging messages of our own implementation of
AXARPS. An IPv4 address and MAC address are in fixed length,
and this pair can be easily converted into binary format.

3.4 DNS Queries
Loggine messages of DNS queries are useful for a computer se-

curity incident handling because a infected host usually resolves
a FQDN of a malicious host. Fig. 7 shows DNS query logging
messages that bind produces. In case of DNS query logging mes-
sages, FQDN has a variable length, and it might be difficult to be
converted into binary format.

3.5 Network Authentications
Network authentication is important in order to avoid a ma-

licious access to the network, and identify a host and its user.
We implement IEEE802.3x authentication for both of wired and
wireless LAN. We then utilize freeradius, and its linelog module,
and our IEEE802.1x authentication logging messages look like
Fig. 8.

3.6 IdP Authentications
We implement Shibboleth IdP in order to achieve single sign-

on. We then store IdP authentication logging messages that in-
clude user ID and IP address as shown in Fig. 9. IdP authenti-
cation logging messages are useful to identify possible users on
a computer security incident when another NAPT equipment is
introduced in a laboratory or a room.

3.7 Mail Authentications
We implement IMAP/POP authentication for a mail service us-

ing dovecot. We then store dovecot logging messages as shown
in Fig. 9. These messages are also useful when another NAPT
equipment is introduced.

3.8 Groupware Logging Messages
We implement a groupware in order to share information

2ⓒ 2019 Information Processing Society of Japan

Vol.2019-IOT-46 No.1
2019/6/14

IPSJ SIG Technical Report

1,2019/02/05 00:50:04,013201001747,TRAFFIC,end,1,2019/02/05 00:50:04,10.15.5.150,133.167.77.169,160.15.XXX.XXX,

133.167.77.169,EXT-FW_DEFAULT PERMIT,,,ntp,vsys1,kenkyu,external,ae1.3999,ae1.3010,Log-profile,2019/02/05 00:50:04,

2905472,1,123,123,31020,123,0x400053,udp,allow,188,94,94,2,2019/02/05 00:49:32,30,any,0,6598660527738326902,0x0,

10.0.0.0-10.255.255.255,Japan,0,1,1,aged-out,0,0,0,0,,imc-me1f-fw01,from-policy,,,0,,0,,N/A

1,2019/02/05 00:55:57,013201001747,TRAFFIC,end,1,2019/02/05 00:55:57,10.15.5.150,129.250.35.250,160.15.XXX.XXX,

129.250.35.250,EXT-FW_DEFAULT PERMIT,,,ntp,vsys1,kenkyu,external,ae1.3999,ae1.3010,Log-profile,2019/02/05 00:55:57,

273130,1,123,123,21997,123,0x400053,udp,allow,188,94,94,2,2019/02/05 00:55:25,30,any,0,6598660527738464346,0x0,

10.0.0.0-10.255.255.255,United States,0,1,1,aged-out,0,0,0,0,,imc-me1f-fw01,from-policy,,,0,,0,,N/A

Fig. 1 An example of firewall traffic logging messages (PA-5220).

%FWSM-5-106100: access-list internal_access_in permitted udp VRF-Kenkyu/10.15.5.150(123) ->

external/106.185.48.114(123) hit-cnt 1 (first hit) [0x1d40ffe4, 0xf7f9a091]

%FWSM-6-305011: Built dynamic udp translation from VRF-Kenkyu:10.15.5.150/123 to external:160.15.XXX.XXX/29043

%FWSM-6-302015: Built outbound UDP connection 144554821147310617 for VRF-Kenkyu:10.15.5.150/123 (160.15.XXX.XXX/29043)

to external:106.185.48.114/123 (106.185.48.114/123)

Fig. 2 An example of firewall traffic logging messages (FWSM).

among organization members. We then store the groupware log-
ging messages that include user ID and IP address as shown in
Fig. 11. We can obtain logging messages of not only authenti-
cations but also some behaviors such as an event creation in a
calendar. Groupware logging messages are also useful to iden-
tify possible users on a computer security incident when another
NAPT equipment is introduced in a laboratory or a room.

4. Features of Logging Messages Required for
a Computer Security Incident Response

Logging messages required for a computer security incident
response have been introduced in Sec. 3. Ones may be able to
find features of these logging messages as follows:
(1) all logging messages are in time series,
(2) logging messages are not strictly in ascendant or descendant

order,
(3) newer logging messages should be able to be retrieved faster

than older logging messages,
(4) older logging messages can take longer time to be retrieved

because a long time has already passed after an older secu-
rity event if the older security events caused an incident,

(5) logging messages are mainly added and rarely removed or
changed,

(6) logging messages are almost in fixed and predefined formats,
and

(7) most of values such as IP address, MAC address and user
name which are required for a computer security incident
response are in fixed lengths.

5. Logging System for Incident Response
This section proposes a new logging system. This section

firstly overview the proposed logging system. This section then
presents each features of the proposed logging system.

5.1 Overview of the Proposed Logging System
Fig. 12 depicts the overview of the proposed logging system.

The logging system consists of multiple database servers. All
multiple database servers have the same IP address for IP anycast-
ing. Network equipment or other servers (e.g., Web server, mail
server and so on) send logging messages to the database using

The Logging SystemThe Logging System

CSIRT member
(searching logging

messages)

CSIRT member
(searching logging

messages)

syslog

Servers
network switches

Servers
network switches

SearchSearch

Fig. 12 Overview of the proposed logging system.

syslog protocol. The logging messages are then stored into one of
database servers. When one, say a CSIRT member, searches for
logging messages, one sends a search request to one of database
servers. The database server receiving a request forward the re-
quest to the other database servers. All database servers then send
responses back to one who sends a search request.

5.2 Binary Based Key Value Store
Existing logging systems are basically based upon text mes-

sages while logging messages of network or security equipment
usually are in pre-defined text format. Existing logging systems,
therefore, have overhead to handle text messages. The proposed
logging system then stores binary values only in a record in a ta-
ble, and text messages are indexed in another table. Because a
logging message is usually output using printf functions, the log-
ging system indexes a message format. A Logging message is
then stored as a tuple of a message format index and variable val-
ues, i.e., variable arguments of printf. This section proposes how
to convert logging messages in text format into ones in binary
format. As described in Sec. 3, almost all logging messages are
in fixed format. All logging messages then can be converted into
binary format as follows:
(1) timestamp: can be represented as 128-bit number, which are

usually stored in struct timeval.
(2) IPv4 address: can be represented as 32-bit number.
(3) IPv6 address: can be represented as 128-bit number.
(4) MAC address: can be represented as 48-bit number.
(5) port number: can be represented as 16-bit number.
(6) username: can be represented as 32-bit number by indices.
(7) string (fixed text): can be represented as 32-bit number by

indices.

3ⓒ 2019 Information Processing Society of Japan

Vol.2019-IOT-46 No.1
2019/6/14

IPSJ SIG Technical Report

date=2019-02-05 time=00:48:04 devname="FG5H1E5818903568" devid="FG5H1E5818903568" logid="0004000021" type="traffic"

subtype="sniffer" level="notice" vd="root" eventtime=1549295284 srcip=10.15.5.150 srcport=65213 srcintf="x1"

srcintfrole="undefined" dstip=182.163.86.41 dstport=22 dstintf="x1" dstintfrole="undefined" sessionid=1024791349

proto=6 action="accept" policyid=3 policytype="sniffer" service="SSH" dstcountry="Japan" srccountry="Reserved"

trandisp="snat" transip=0.0.0.0 transport=0 duration=375584 sentbyte=33163251 rcvdbyte=2044 sentpkt=0 rcvdpkt=0

appid=16060 app="SSH" appcat="Network.Service" apprisk="elevated" applist="sniffer-profile" sentdelta=2668 rcvddelta=0

date=2019-02-05 time=00:48:07 devname="FG5H1E5818903568" devid="FG5H1E5818903568" logid="0004000017" type="traffic"

subtype="sniffer" level="notice" vd="root" eventtime=1549295287 srcip=10.15.5.150 srcport=123 srcintf="x1"

srcintfrole="undefined" dstip=160.15.14.54 dstport=123 dstintf="x1" dstintfrole="undefined" sessionid=1048076579

proto=17 action="accept" policyid=3 policytype="sniffer" service="NTP" dstcountry="Japan" srccountry="Reserved"

trandisp="snat" transip=0.0.0.0 transport=0 duration=180 sentbyte=48 rcvdbyte=48 sentpkt=0 rcvdpkt=0 appid=16270

app="NTP" appcat="Network.Service" apprisk="elevated" applist="sniffer-profile" utmaction="allow" countapp=1

sentdelta=48 rcvddelta=48

Fig. 3 An example of firewall traffic logging messages (Fortigate).

{"Release":"V20L10NF0301B15", "ID":"5C5862AF04188100", "Occurred":"2019-02-05T01:05:03.237+09:00",

"Location":"1f-node-room", "MessageID":"00730003", "IP":"160.15.XXX.XXX", "MAC":"00:12:XX:XX:XX:00",

"RiskLevel":"Low", "Suspiciousness":30, "RelatedNode":[{"Type":"C&C Activity", "SrcIP":"160.15.xxx.xxx",

"DstIP":"XXX.XXX.XXX.XXX", "SrcPort":53, "DstPort":59225, "Protocol":"UKT",

"Domain":null, "URL":null}], "Message":"Suspicious Traffic: C&C Activity"}

{"Release":"V20L10NF0301B15", "ID":"5C5862B104188110", "Occurred":"2019-02-05T01:05:05.216+09:00",

"Location":"1f-node-room", "MessageID":"00730003", "IP":"10.xxx.xxx.xxx" , "MAC":"00:12:XX:XX:XX:00",

"RiskLevel":"Low", "Suspiciousness":60, "RelatedNode":[{"Type":"C&C Activity", "SrcIP":"10.XXX.XXX.XXX",

"DstIP":"XXX.XXX.XXX.XXX", "SrcPort":65297, "DstPort":80, "Protocol":"HTTP",

"Domain":"www.msftncsi.com", "URL":"http://www.msftncsi.com/ncsi.txt"}],

"Message":"Suspicious Traffic: C&C Activity"}

Fig. 4 An example of firewall traffic logging messages (iNetSec).

(8) URL (variable text): can be represented as 128-bit number
by indices.

Ones may be worried that variable texts can not be converted
into binary format if the number of unique variable texts are larger
than 2128. Almost all logging messages are, however, in fixed for-
mat as described in Sec. 3, and the number of unique variable
texts except for URL or FQDN may be small. Conclusive repre-
sentations of URL and FQDN are future work. Excepf ro URL
and FQDN, almost all logging messages can be converted into bi-
nary format. These conversions may reduce sizes of logging files.
For example, an IPv4 address is represented as X.X.X.X, which
requires at least 7 bytes in text format. On the other hand, an IPv4
address represented as 32-bit number, and more than 40% of the
size in text format is reduced. These conversion may also reduce
the retrieving time because the size of a logging file is reduced.

5.3 Time Series Database (TSDB)
Since each logging message must have a timestamp, the pro-

posed logging database always stores the timestamp as a primary
key. All records are basically stored in ascending order of times-
tamps. Some records are, however, not strictly in ascending order
for lock-free operation described later. That is, a little bit old
logging messages can be recorded after a newer messages. On a
computer security incident response, we usually retrieve logging
messages by specifying the timestamp. The timestamp of logging
messages, however, can be different from the actual time due to
time synchronization deviations among servers. To be more spe-
cific, time of a suspicious traffic reported by an external orga-
nization may be slightly different from the time in the logging
message. Ones may, thus, retrieve logging messages by allowing
timestamps deviations on a computer security incident response.

5.4 Timestamp Index
Regarding searching a record, a timestamp is usually specified

for a computer security incident. In order to improve searching
speed, a location of a record at a timestamp is indexed. Since
the number of logging messages may depend upon daytime or
night, timestamp index improves searching a record of a speci-
fied timestamp.

5.5 Fixed Record Length
In order to improve search and insertion performance, the pro-

posed logging system has the same record length for a table as
same as recent RDBMSes. To this end, a logging message is
classified by a kind of equipment, e.g., network switches, access
points, servers and so on. Each table is then created for each kind
of logging messages. This feature of fixed record length may en-
ables a lock-free addition.

5.6 Lock-Free Insertion and Search
Let us assume that multiple threads are running on the pro-

posed logging server and each thread is indexed. A thread is in
charge of receiving syslog messages and inserting them to the
database. When a thread inserts a new logging messages, the
thread inserts the messages into the next space in a memory or a
disk which is indexed by the index of the tread. That is, storage to
store logging messages is separated by each index of each thread.

On the other hand, a query to search for a logging message is
broadcast to all threads. All thread then searches a logging mes-
sage and return results. In this manner, there is no need to obtain
a lock on an insertion and a search.

4ⓒ 2019 Information Processing Society of Japan

Vol.2019-IOT-46 No.1
2019/6/14

IPSJ SIG Technical Report

2019/02/05 06:10:13 srv_ip 10.ZZZ.ZZZ.ZZZ vlan 2005 user_ip 10.XXX.XXX.XXX

user_mac 00:50:YY:YY:YY:YY time 2019-02-04 21:10:01.789416

2019/02/05 06:15:12 srv_ip 10.ZZZ.ZZZ.ZZZ vlan 2005 user_ip 10.XXX.XXX.XXX

user_mac 00:50:YY:YY:YY:YY time 2019-02-04 21:15:01.467962

Fig. 5 An example of ARP table polling logging messages.

Feb 12 00:17:46 localhost arp_sniffer.py: 00:aa:XX:XX:XX:XX 10.XXX.XXX.XXX

Feb 12 00:17:46 localhost arp_sniffer.py: 00:aa:XX:XX:XX:XX 10.XXX.XXX.XXX

Fig. 6 An example of ARP snooping logging messages.

5.7 Lock-Free Clustering Support
The proposed logging database does not strictly consider an or-

der of a logging message. Timestamps in records are, therefore,
not always in ascending order. This nature may delay finishing all
search in order to make sure that the all log messages in specified
timestamp in search are examined. This nature, however, makes
insertion and lookup operations lock-free. Lock-free clustering
can be then archived.

5.8 Recent in Memory and Old in Disk
When a computer security incident happens and quick re-

sponse is necessary, recent logging messages are searched in most
cases. Older messages are not required to be fast to be searched
because its search itself is enough delayed already. The proposed
logging system then always keeps recent logging messages in
memory as much as possible, and write the messages to a disk if
possible or all memory is consumed. Even after older messages
are searched once, these older messages are not in memory in
order to prioritize quick response for a recent computer security
incident.

6. Related Work
Elasticsearch [4] is very famous frame work for storing and

visualizing logging messages. Elasticsearch stores logging mes-
sages by employing Fluentd [5]. Elasticsearch, however, consid-
ers logging messages only in text format, and requires a large size
of storage and memory.

MongoDB [1] is a document database, and all data is usually
represented in a JSON format. From the viewpoint of the pro-
gramming, a JSON format is flexible, but requires more memory
and storage sizes. In addition, a retrieval is slower than RDBMS.

Splunk [6] is also very famous frame work for collecting log-
ging messages. Splunk can provide strong expressions to search
for a specific logging message. Splunk, however, considers log-
ging messages only in text format, and also requires a large size
of storage and memory.

Abe H. et al. proposes Hayabusa [7] that considers logging
messages in time series and can scale out. Hayabusa utilizes
SQLite. Hayabusa, however, considers logging messages only
in text format, and does not consider binary format.

Gnocchi [8] is one of time series database. Gnocchi employs
PostgreSQL for indices. Gnocchi considers logging messages
only in text format, and then requires a large size of storage and
memory.

7. Concluding Remarks
This paper has introduced logging messages that are required

for detecting and/or handling a computer security incident. This
paper has proposed a new logging system dedicated for a com-
puter security incident response. This paper has also shown that
these logging messages are in text format and can be converted
into binary format. These simple conversion can reduce not only
a size of a storage for logging messages but also reduce retrieving
time from a large amount of logging messages. Implementation
and evaluation are our future work.

References
[1] MongoDB, Inc.: mongoDB, https://www.mongodb.com/ (2018).

Accessed: 2018/10/07.
[2] Paloalto Networks, Inc.: Traffic Log Fields, https:

//docs.paloaltonetworks.com/pan-os/8-0/
pan-os-admin/monitoring/use-syslog-for-monitoring/
syslog-field-descriptions/traffic-log-fields.html#
(2019). Accessed on 2019/4/15.

[3] Ohmori, M., Miyatal, N. and Suzuta, I.: AXARPS: Scalable ARP
Snooping Using Policy-Based Mirroring of Core Switches, Proc. the
33rd International Conference on Advanced Information Networking
and Applications (AINA-2019), pp. 667–676 (2019).

[4] Elasticsearch B.V.: Elasticsearch, https://www.elastic.co/jp/
products/elasticsearch (2019). Accessd: 2019/4/16.

[5] Fluentd Project: fluentd, https://www.fluentd.org/ (2010). Ac-
cessed: 2018/10/07.

[6] Splunk Inc.: splunk, https://www.splunk.com/ (2019). Accessed
on 2018/1/11.

[7] Abe, H., Shima, K., Miyamoto, D., Sekiya, Y., Ishihara, T., Okada, K.,
Nakamura, R., Matsuura, S. and Shinoda, Y.: Design and Evaluation
of Scalable Syslog Search Engine Optimized for Time Dimensional
Search Operation, Journal of Information Processing, Vol. 60, No. 3,
pp. 728–737 (2016).

[8] the gnocchi developers: Gnocchi Metric as a Service, https://
gnocchi.xyz/ (2019). Accessed on 2019/4/15.

5ⓒ 2019 Information Processing Society of Japan

Vol.2019-IOT-46 No.1
2019/6/14

IPSJ SIG Technical Report

client 10.XXX.XXX.XXX#44650 (buffalo.jp): query: buffalo.jp IN A + (160.15.XXX.XXX)

client 10.XXX.XXX.XXX#51449 (tumail.center.tottori-u.ac.jp): query: tumail.center.tottori-u.ac.jp IN A + (160.15.XXX.XXX)

Fig. 7 An example of DNS query logging messages

Accept: [XXXXX@tottori-u.ac.jp] MAC: a4:34:XX:XX:XX:XX (Win 10), SSID: eduroam, AP: 00:1a:XX:XX:XX:XX (gen-ee3f-ap03),

NAS: imc-me1f-wc01, VLAN: none from 172.16.XX.XXX

Accept: [69854274] MAC: 5c:f9:XX:XX:XX:XX (OS X), SSID: imcwlan, AP: 00:1a:XX:XX:XX:XX (imc-me2f-ap01),

NAS: imc-me1f-wc01, VLAN: none from 172.16.XX.XXX

Fig. 8 An example of IEEE802.1x authentication logging messages.

[Shibboleth-Audit.SSO: 241] 20190416T004831Z|urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect|

_ff9ed1b088d2490bb6865994cc0cd69d|https://moodle.center.tottori-u.ac.jp/shibboleth-sp|

http://shibboleth.net/ns/profiles/saml2/sso/browser|https://idp.tottori-u.ac.jp/idp/shibboleth|

urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST|_a73feaeb92602087da1818947f2a90da|USERNAME|

urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport|uid,jasn,transientId,jaGivenName|

AAdzZWNyZXQxgw2rWdcD0EYwZ3OVve1pqiqC1j5PDpnFmYxduiuPWiAmVhRn3S7U7jvNJH0GtB0gBX2ZIZb7vH0JZYj+qoRQ4nG

EngnSHyZeksQfVDFE+pr//xCMcuqFtV8oNCbJwqDRR2oCvOJptBqsGZ9WJpcFeFEkwShFVltNJPY=|

_dcdbd24b69e6d852ed150f79077e4d2b|IPADDRESS|080142769A319D4AB74714CABBD6A70B|

Fig. 9 An example of Shibboleth IdP logging messages.

dovecot: imap-login: Login: user=<XXXXX>, method=PLAIN, rip=10.XXX.XXX.XXX, lip=10.XXX.XXX.XXX,

mpid=23239, secured, session=<cpI61JqGNuAKDwgq>

dovecot: imap(XXXXX): Logged out in=436 out=9434

dovecot: imap-login: Login: user=<YYYYY>, method=PLAIN, rip=10.XXX.XXX.XXX, lip=10.XXX.XXX.XXX,

mpid=23240, secured, session=<Na8+1JqG0sMKDwgp>

dovecot: imap(YYYYY): Logged out in=123 out=1091

Fig. 10 An example of mail authentication logging messages (dovecot).

10.XXX.XXX.XXX:Motoyuki OHMORI(username):grn.common:notice:[login] system (id:XXX, name:’Motoyuki OHMORI’, account:username)

10.XXX.XXX.XXX:Motoyuki OHMORI(username):grn.schedule:notice:[create] event (eid:343XXX, event_title:’title’)

Fig. 11 An example of groupware logging messages.

6ⓒ 2019 Information Processing Society of Japan

Vol.2019-IOT-46 No.1
2019/6/14

