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Abstract

GIS data sets continue to grow at a tremedous pace, NASA EOSDIS being a succint example. Processing such large data sets
requires efficient methods. In this paper we discuss issues surrounding storage and processing such data sets in a shared nothing
environment. We examine several parallel R-tree structures for indexing these large spatial data sets. We especially focus on
algorithms for employing the parallel R-trees in the filter phase of the parallel spatial R-tree -based join operation. We then
discuss the filter phase of the join operation as relates spatial data declustering strategies, static and dynamic load balancing
strategies and system scalability. We present preliminary experimental results on the join operation performed using the Digital
Chart of the World Data data set on the IBM SP2 multi-computer.

1 Introduction

Geographical Information Sytems and GIS data sets con-
tinue to rapidly grow in size and importance to business and
government. Examples of data sets include the geo-spatial
petabyte data set for NASA’s EOSDIS project which will hold
raster images arriving at the rate of 3-5Mbytes per second
for 10 years from satellites orbiting the earth. Fields using
GIS include Earth Sciences, cartography, remote sensing, car
navigation systems and land information systems. Data sets
in such areas are characterized by large size (sometimes of the
order of terabytes). Storing, managing and manipulating such
data is more expensive in comparison to ordinary business
application data, since spatial objects are typically large, with
polygons commonly consisting of thousand of points apiece.
The spatial join is the most important and is also the most
expensive[15] operation in spatial databases. The main rea-
sons are that unlike the join operation in a one-dimensional
data-set, the spatial join involves computationally demanding
geometric algorithms like plane sweep. Secondly, candidate
objects are large, sometimes of the order of thousands of
coordinate points and therefore I/O expensive.

In this paper we examine several paralle] R-tree structures
that can be used in the filter phase of the parallel spatial join
and the associated algorithms. We then discuss several data
declustering strategies and propose load balancing heuristics
for the refinement phase. Preliminary experimental results, on
real-world spatial data, The Digital Chart of the World (DCW)
data [3], on the IBM SP2 multicomputer, demonstrate the
effectiveness of parallel R-tree spatial join and the proposed
load-balancing is effective in speeding up the spatial join.

The rest of this paper is organized as follows. Section
2 gives a brief overview of related work. Several parallel
R-trees are dicussed in section 3. Data declustering strategies
are discussed in section 4. Section 5 covers refinement
phase issues including dynamic load balancing heuristics are
described in section 4. Performance evaluation is described
in section 6. Section 7 concludes the paper.

2 Related Work

One of the first attempts to apply parallel processing to the
spatial join operation was the work Hoel and Samet[6] which
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describes the use of a PMR Quadtree for join processing. It
also describe the usc of the R™ for parallel join processing.
This work focuses on a main memory database for a Thinking
Machines architecture. The data set that was usc was small
and I/O costs are ignored. Brinkhoff et. al.[2] then proposed
the usc of the R*-tree in parallel spatial join on a virtual
shared memory machine. This work discusses issucs of load
balancing and minimization of communication. This work
is similar to ours but the difference is we discuss a number
Parallel R-tree structure, use a share-nothing envrionment and
our data sets are much larger.

The R-tree, was proposed by Guttman [5]. Koudas ct.
al.[10] proposed a parallel R-tree, called the Master Parallel
R-tree to support range queries in a multi-computer. This
idea was extended in [14], which proposes a closely related
Master-Client R-trees. We discuss these two structures in
the following section. Zhou et al [15] proposed a parallel
spatial join algorithm that assumes that no spatial index
exists. Closely related to Zhou’s work, Patel [12]examines
the joining of large spatial data (DCW) but again without
indices. We limit ourselves to situations where both data sets
in a join have a spatial index.

3 Parallel R-tree Structures

There are number of possible structures for a Parallel R-trec
for a shared-nothing environment (SNE). Two extremes cxist.
On the one extreme we have the Fully Replicated Parallel R-
tree(FRP R-tree). In this Rtree the whole R-tree is replicated
at each PE in the system. The leaf nodes of each replica point
to the actual data that is declustered across the the SNE PEs.
On the other extreme we have the Single PE Paralle! R-tree
(SPP). In this tree one PE designated the master stores all the
nodes of the Rtree. The leaf nodes of this tree point to the
actual spatial objects in the tree.

The other parallel R-tree structures fall between these two
extremes. In the Replicated Inner-node Parallel Riree(RIP
R-tree), only the inner nodes arc replicated at every PE. The
leaf nodes are partitioned across the system PEs, according to
some partitioning strategy. The fourth rtrec structure is called
a Single-PE-Inner-Node Parallel R-tree (SPIP R-tree). Here
the inner nodes of the Ruree are stored at one PE called the
rnaster and the rest are partitioned to all PEs. This tree is the
same as the Master tree proposed by Koudas et. al[10] In the
fifth structure, the Two-tier Parallel Rtree (TTP R-tree), cach
PE builds an R-tree, the second-tier rtree for the data stored
in its local disks. The master node then builds the first-tier
Rtree whose leaf nodes point to the PE storing data contained
under the leaf element MBR. This is closely related to the
Master-Client Rtree proposed in [ 14}, but the main difference
is that the leaf nodes of the second-tire trees point to actual
data. '

Due to the large size of spatial objects and hence high /O
cost, and the CPU intensive nature of their corresponding
operations, processing such entities is commonly done in two
phases , the filter phase and the refinement phase[13]. In
an Riree spatial join algorithm, the Riree is uses as a Spatial
Access method for the filter phase to produce candidates.
The candidates are then refined in the refinement phase to
remove false hits and produce join results. In the following
we dicuss the merits and demerits of each of the above R-tree

and their application to the filter phase of the spatial join.
algorithm. In the following discussion we assume a low-
update environment, of which geographical data is a very
good cxample. In this kind of environment, data is bulk
loaded into the Rirce at creation tinie and rarely changes and
also assume the intersection join without loss of generality.

3.1 SPP R-tree

The Single PE Parallel Rtree is shown in fig. [. The
advantage of the SPP Ruree is that synchronous R-tree traversal
is done at one node without communication overhead, since
only one node is involved. However during access the master
node becomes a bottleneck.

To join two spatial data sets Rd and Sd with parallel R-tree
called R and S, the filter phase can be performed as follows:

SPP Retreo
Storage
Location (PE0) g™

SPP R-tree

Inner Nodes.

Leaf Nodes
R-tree
Leaf Node
Links

MASTER PE1 PE2 PE3
PEO

sl RAAres location

————= Leaf Node Links

Figure 1. A Single PE Parallel (SPP) R-iree

1. At PEO:Perform SRT for R and $ from Root to the leaves

2. At PEO:Produce candidate spatial object pairs {(r;, s;) } where
the MBR of r; intersects the MBR of s;

In the above algorithm the there is no parallelism in the
filter phase, which is performed entirey by the master, PEO.
The candidates can then be distributed across the other PEs
including PEO for the execution of the refinement phase.

3.2 FRP-R-tree

The FRP-Rtree is shown in fig. 2. In this structure the
whole R-tree is replicated at each PE including the master,
PEO. The algorithm to perform the filter phase of the spatial
join using the FRP-Rtree is shown below:

At The MASTER(PEQ):
TaskCreate(Rtree R, Rtree S)
ReadNode(Rroot, Sroot)
FOR(all Ep € Ryoot)
FOR(@ll E5 € Sroot)
IF(Ivp € Eg)
add (Fg, Eg) as (T_-R,T.S) to TaskList
Descend R-tree until (NumTask > Threshold)
FOR all (TR, T_5);, € T'askList
calculate Typse
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Figure 2. A Fully Replicated Parallel (FRP) R-tree

assign (T'-R, T'_S)}, - best-fit decreasing strategy
all PEs have approximately equal total cost
SEND task setstoall JOIN — PE; 0 <i< N —1
Ateach JOIN — PE; 1<i< N
ReceiveFrom MASTER {(T.R,T_S);: 1 <k <P
is a pair of intersecting Rtree nodes}
Perform SRT on received subtrees
Produce candidate set {(r;, s;)}:

The join query is initiated at the master PE which intersects
the root level of the the two R-trees. Overlapping elements are
combined into pairs (TR, T_S), called tasks. A refinement
cost function is applied to determine the estimate the cost
of filterin the subtree pairs. If the number of tasks is lower
than the threshold, the subtrees of the task with the heaviest
cost is descended further and more tasks are created. If the
number of taks is still less than the threshold, the next heaviest
pair is descended continuing until the threshold is reached.
Note that if the subtrees are traversed in this manner it is
conceivable that the leaf nodes are reached and these are
output as candidate results. The setting of the value of the
threshold is tradeof between appropriate granularity of tasks
(good load balancing) and the need to avoid unnecessary
parallel processing for small joins. The cost function used is
shown below:

TravCost = (1)
NumPnt * area(Rgyp N Ssup)
J(Area(Rqup) + Area(Ssys))

The tasks are then distributed to all PEs in a best fit
decreasing strategy. In addition the master is assigned only
tasks at half the cost of the other PEs taking into account its
synchronisation responsibilities.

3.3 RIP R-tree

In the Replicated Inner-nodes Parallel R-tree the inner nodes
of the Ritree are replicated at cach PE. However the leaf nodes
are declustered across all the PEs using some declustering
algorithm.

RIP R-tree

torage RIP R-tree
Location (all PEs }

~~

Inner Nodes

R-treo
Inner Node

[ \ANE

B0 B [Bg B

MASTER PE1 PE2 PE3
PEO

ez tree location

———— Leaf Noda Links

Figure 3. A Replicated Inner-nodes Parallel (RiP)
R-tree

3.3.1 RIP R-tree node declustering

The aim of the declustering operation is to ensure that nodes
that similar are stored in different PEs to facilitate parallelism.
The nodes are sorted using the hilbert function and then are
allocated in a round robin fashion. Since the number of
elements in cach node is approximately equal, this strategy
ensures that the number of objects reference by each PE is
approximately the same. However two other attributes on an
Rtree node affect the probability of access. These are the
coverage and the weight. We define the coverage of a node
as the area of it MBR and the weight of a node as the total
number of coordinate points of the objects it references. The
larger the coverage the higher the probability of access. The
heavier the node the more likely it is to be accessed.

To take the three factors, number of nodes, coverage,
and weight into account when distributing the nodes we use
50/25/25 strategy, i.e allocate the 50% of the nodes using the
round-robin. The next 25 % are allocated as follows: Allocate
a node to the PE with the the lowest coverage. The last 25%
are allocated using the weight criteria.

3.3.2 RIP Join

The join algorithm for the Replicated Inner Nodes Parallel
R-tree is very similar to that of the FRP R-tree. Basicaly
the master allocates tasks to each PE. Each PE then traverses
the allocated subtrees until they reach the botton of the inner
node trees: Here the results will not be candidate result pairs,
but rather candidate leaf nodes, ie those nodes whose MBR
intersect, in the form {(Rn;, k), (Sn;,1)} where Rn;, Sn;
are are intersecting Rtree nodes and k, [ are the PEs at which
the nodes are stored. The next issue becomes which PE should
filter this leaf node pair, PE k or PE {. Assume that PE m
produced the pair. Several alternatives exist:

1. Both nodes {(Rni, k), (Sn;,!)} are on the same PE ic k = [ and PE
m = k produced the pair. PE m refines the leaf node pair

2. Both nodes {(Rn;,k),(Sn;,1)} are on the same PE ie k = [
However PE m # k, m 3 [ produced the pair. Two alternatives exist.

(a) PEm sends the leaf node pair {(Rn;, k), (Sn;, 1)} o PEk
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(b) PEm requests PE k for the actual nodes and refines them
3. k # land !, k # m ie all the concerned nodes are different.
(a) PE m requests node Rn; from PE k and node Sn; from node [
and filters them

(b) PEm sends leaf node pair {{Rni, k), (Snj, 1)} to either PE k
or PE [ which will in turn request the correspoding other node
in the pair and filters the pair.

In the situation | there is only one PE m and this filters
the nodes and produces the pairs. In the second situation
the first option reduces communication by a significant factor
since the size of a leaf node pair might be of size 48 bytes
whereas a node has size one page say 4kbytes. However if
load balancing is taken into account, there might be a situation
where to shed filtering load from PE k, PE m requests the
nodes in the leaf node pair. In this case information extra
information needs to be collected from all PEs regarding the
load status.

In the third situation PE m might choose the first option if
it can determine that it is less lightly loaded than either PE {
of k. Option 2 might be chosen if PE m is heavily loaded.
Which of node & or [ to use will depend of the load situation
of both.

3.4 SPIP R-tree

SPIP R-treo

Storage SPIP Retree
Locatlon ( PEO
Inner Nodos

/o

—Ee @Y (B0 =Y

MASTER PET PE2 PE3
PEO

umzmmgpe Retroe logation

————» Leat Nodo Links

Figure 4. A Single PE Inner-node Parallel (SPIP)
R-tree

In the Single-PE-Inner-Node Parallel R-tree, shown in fig.
4 the inner nodes of the Riree at stored at PE0O. The leaf nodes
are then distributed accross all PEs. The distribution is the
same as that of the RIP R-tree. The join algorithm is virtually
the same with the exception that the traversal of the inner
nodes is done exclusively by PEO. Once the candidate leaf
node pairs are produced, PEO begins distributing to all the
nodes as follows. The cost function is shown as well. £,,¢qc
is the cost of requesting and receiving a node, or the cost of
receiving a reqeuest for a node and responding to it.

LeafNodeFilterCost = 03]
area(Rn; NS
(Area(Rgup) + Area(Ssus))

teom =0 if k =1
where teom = tnrege if k #1

+ teom

. if both nodes {(Rni, k), (Sn;, 1)} arc on the same PE ie k = [ send
the candidate leaf node pair to PE . Increment load measurement '
accordingly.

2. if k # [ then send the candidate to either & or | depending on which
has the lower load so far.

3. filter the receved node and produce candidate pairs.

3.5 TTP R-tree

e T TP I
Rteco. Rtroo Rimoa Rtsoo
20d Tior 2nd Tier 2nd Ther prere

Firet For

MASTER PET PE2 PES
PEO

wowml> Rrtreo location

————+ 2nd Tier-Trea
Loaf Noda Linke

........ » FlstTlorto
PElinks.

Figure 5. A Two Tier Parallel (TTP) R-tree

In the Two-tier Parallel Rtree (TTP R-tree), which is very
much like the SPIP R-tree, PEQ stores the first tier Riree
whose leaf nodes identify the PEs storing the corresponding
data. However each of these PEs builds its own tree, the
second tier, for its own local data.

The algorithm to join two of such trees is a little com-
plex. As before PEO will synchronously traverse the the
first-tier. The out put of this step are called candidate pair
PEs {(k, MBR;), (I, M BR;)} where the root node element
M BR; of the second tier tree in PE k overlaps the root node
element M BR; of the second tier tree at PE [. PEO the
allocates the candidates pairs as follows:

1. Assign a cost to each candidate pair PE.

2. Assign the pair to both PEs [ and k but designate the PE with the
smaller load the receiver and the PE with the larger load the sender.

3. At cach PE that receives a pair, it uses the intersection area as a range
query window to produce target leaf nodes.

4. Each sender PE then send the nodes generated for each candidate PE
pair it receives, to the correspoding receiver PE.

5. Each receiving PE then intersects these candidate nodes to produce
refinement phase candidate pairs.

The rational for setting one PE the receiver and the other
one the sender is that lower load PEs have more computing
power to spare to filter the received nodes. Here the main
problem may be the communication cost of sending nodes
between receiver PEs and sender PEs.

4 Spatial Data Declustering Strategies

Partitioned Parallelism is the main source of parallelism
in shared nothing system. There are two main requirements
for achicving this kind of parallelism effectively. Firstly, the
declustering technique applied must evenly distribute data
across all PEs. Secondly, most of the data that an operator
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running at a particular PE accesses must exist locally at
that node to minimise inter-node communication overhead.
To achieve these goals it is important to select a suitable
granularity for partioning and then a scheme for allocating
these granules.

4.1 Allocation Units

The goal of a declustering unit is to ensure that data within
a unit spatially close and therefor likely to be accessed in
the same the same time frame thus reducing page faults. At
the same time, the size of a unit is such that it divides the
universe into a large number of units that facilitate skewless
declustering. There are several declustering unit schems that
can be used:

1. R-tree node clusters
2. Region Tiling - tile unit
3. Irregular region tile size

e Quad-tree grid tile (size depend of region data density but each
contains NumObs < Threshold this is the bucket size

An R-tree node cluster is the set of all objects reference
from the same R-tree leaf node. The R-tree node cluster
as an allocation ties the data distibution to the structure of
the R-tree. This may actually be advantageous because the
probablity of all those objects referenced from one R-tree
node being accessed together is high. In this case clusters can
serve as I/O transfer units as well. The size of these clusters
varies and in our experiments on DCW data, we discovered a
size of 13-26 kbytes for a packed R-tree structure.

| R
the 3 [ ; : N
VONE | SRR

4tile-partitions

Aliocatlon of spatial
Objects Into tiles. {b)

for 4 nodes (a)

~Object 1 totile 6
-Object 4 to tilo 12

quad 1 quad 2
IS

quad 3 quad 4

L, k\\, 1\
Py

Quad-iree
partitions
Threshold =2

A Tile surface with
‘The Hilbert space-filling
curve for 4 node machine

[&] @

Figure 6. Tiling scheme and quadtree scheme

The use of regular tiling is another possible declustering
scheme and is illustrated in fig 6. A parameter of this scheme
is the tiling factor p, i.e divide the the area into a region of
w* s tiles. The factor 4 affects the granularity of the partition
scheme. A too small p results in skew partion as shown in

fig. 6 ¢. A too large p creates tiles that compromise spatial
proximity. In fig. 6 tile 4 has more objects than other tiles.
A question that arises again in this scheme is what to do
with objects that span tile boundaries. The simplest strategy
is to allocate the object to the tile which contains the center
of its MBR. Another alternative is to allocate the object to
the tile which contains the largest portion of the MBR. Ties
can be resolved by choosing the tile which contaisn the most
coordinate points of that object. A third stategy is to partition
the object at the tile boundaries. However with large values
of 1 and large objects, excessive fragmentation may occur.

In quad tree tiling, the universe is first divided into 4 quads.
If the number of objects in any quad is greater that a preset
threshold, the quad is further divided into four quads. The
process continues until each quad has less than threshold
number of objects. Each quad then becomes an aliocation
unit.

4.2 Declustering Schemes

The goal of a saptial allocation scheme is to evenly balance
the units allocated to all PEs according to some criteria. For
spatial data it is also important to ensure that that spatially
close units are declustered.

1. Hilbert sort/round robin - assign unit ¢ to PE k = 7 mod N where 4 is

the hilbert value of the center of that tile.

2. Hilbert sort/size balance allocation

e Balance number of coordinates at PE (i : 0 <4 < N —1). The
number of co-ordinates at a PE is called its weight.
e Balance number of objects at PE (1 : 0 < i < N — 1)

3. Hashing: assign unit 7 to PE k = h(z), where h is the hash function.

4. Coordinate Modulo method: (applies only for Region tiling) Each tile
is assigned an (x, y) value ( array index) when the region is represented
by an array. Tile (z, y) is assigned to PEk = (x + y) mod N.

5. Linear Allocation Method: (for Region tiling): Tile (, y) is assigned to
PFEk = (azx + by + c) where a, b, ¢ are parameters which determine
the line characteristic. If (b = ¢ = 0) then assigment is in row major
order. When a = b = 1 and ¢ = 0 it becomes the Co-ordinate
Modulo. This method assigns neighbour tiles in the direction # to the
same PE.

Four schemes are described above. The hilbert method
achieves this well as shown in fig. 6 b. Hilbert sorting with
size balance allocates 75% of the units using round-robin. The
remaining 25% are used to try to balance out the number of
co-ordinates accross all PEs. The number of co-ordinates is a
measure of the I/O load at a particular PE. Another balancing
indicator is the number of objects at a particular PE. Hashing
randomizes and can eliminate size skew. However it fails
to preserve spatial locality. The Coordinate Modulo method
and the linear allocation method are likely to have allocation
problems if the data is skewed in the direction of the §.

5 Refinement Phase

Our discussion on the refinement will focus on the FRP
R-tree since we actually implemented and produced exper-
imental results using these structure. In the discussion we
define the home PE of an object as the PE on which it is
stored. This location is pointed to by object’s entry in the
Rtree leaf node.

There are two options when implementing refinement in
the parallel join algorithm:

—491 —




1. Refine candidates where they are produced.

2. Execute a load balancing phase to equalize the refinement workload.

In the first option, each PE will refine the candidates as it
produces them. Since some objects may be remotely located,
PEs may need to send object requests to the objects’ home
PEs. It is unlikely that the number of candidates produced at
each PE is equal. This coupled with the significant cost of
refinement, can and, in experiments, did result in severe load
imbalance. Therefore dynamic load balancing is essential in
the refinement phase.

5.1 Dynamic Load Balancing

First we define a cost function for estimating the cost of
refining a candidate pair. If the number of coordinate points
in object R; is m, the number of points in object .S; is n and
the cost of transmitting a point across the network is ¢., the
I/0 cost per point is t;,, the actual join cost per point is ¢; ,
then Re fine.,s,(:5) for candidate is given as follows:

Refinecost, (i5) = 3)
M (Lio + tnj + 1 te) +n - (bio+t; + k- te)

her l=0,k=0 if R; and S; is local resp.
Where 1y = 1,k =1 otherwise

Note that the actual join operation is done as a nested
loop operation. In dynamic load balancing the master
PE and the slaves cooperate in producing a new redis-
tribution of the produced candidates. For each candidate
{{MBR;,td;); (MBRj,id;)}, that it receives, the master
uses one the following two heuristics.

Assignment 1 Assign a candidate (R, S) to the PE k if both ob-
jects in {(MBR;,id;),(MBR;,id;)} point to that PE. If
not then assign {(MBR;,id;);(MBRj,id;)} to the PE with
the smallest load so far. Increment the load of the PE to
joincost((MBR;,id;); (M BR;,id;)). if at the end of assign-
ment any PEs are outside +10% of average load, move candidates to
lightly load PEs from heavily loaded PEs, to bring the load cost at each
PE within that range.

Assignment 2 Always send a pair to the home PE of the the entry from the
biggest data set. If at the end of assignment any PEs arc outside the
+10% of average move candidates to lightly load PEs from heavily
loaded PEs, to bring the load cost at each PE within that range.

In generating the whole candidate distribution plan we identify
the following 6 heuristics. We assume that the data set R is
the larger of the two data sets participating in the join.

Heuristic I Each slave send 100% of the candidates it produces to the
master PE. The master PE uses heuristic assignment I, to determine
where to allocate each received candidate.

Heuristic 2 Each slave send 100% of the candidates it produces to the
master PE. The master PE uses heuristic assignment 2, to determine
where to allocate each received candidate. In this case R is the larger
data set.

Heuristic 3 Each slave sends 50% of the candidates it produces to PE &
where if the home PE of the object from set 2 is PE k. The rest are
sent to the master. In addition each PE calculate the refinement cost of
those 50% sent to slave PEs and send this to the master. The master
uses assignment I to determine plan.

Heuristic4 Same as Heuristic 3 but uses assignment 2 to determine plan.

Heuristic 5 Same as Heuristic 3 but send 75% to slave and 25% to master.
The master uses assignment I to determine plan.

Heuristic 6 Same as Heuristic 5 but the master uses assignment 2 10
determine plan.

Table 1. DCW Data Characteristics

[ DataSet ] Size (MB) | Object Cnt. | No. of Points ]

Rivers 94.3MB 964,533 11,405,491
Roads 41.7MB 557.907 4,908,784
Railroads 7.1MB 111,674 815,939

Table 2. Fully Replicated Parallel Rtree Character-
istics (8kbyte page - 255 eniries)

[ | Rivers | Roads | Railroads |
Number of 3783 2185 438
Leaf Nodes
Number of 31 19 4
Inner Nodes
Avg Cluster 26159.1 20012.0 169427
Size (bytes)

No of Levels 3 3 3

[DSttic BHeuristic 7 Heanstic 4 Heustic 6|

Figure 7. Execution Time versus the Number of
processors: Rivers/Roads

After calculating the load balancing plan, the Master then
transmits the candidate pairs to their respective PEs where
refinement is performed. Simultaneously the slaves begin
refining candidates that they receive from other slave. One of
the disadvantages of the Heuristics 1 and 2 is the centralization
of the balancing plan generation. This can limit the scalability
of the algorithm in a massively parallel machine with for
example 100 PEs [9]. Heuristics 3-6 decentralize the load
balancing plan generation by ensuring a certain percentage
are sent directly from slave PE to another slave PE, whilst
the rest are sent to the master to allow the master to perform
global load balancing The rational behind keeping the larger
data set stationary is that this helps to reduce communication
overhead.

& Experimental Evaluation
6.1 Experiment Data Sets

We conducted experiments using our FRP R-tree. We used
the IBM SP2 machine with each machine accessing its own
disk and memory and connecting via a high speed switch.

One of the characteristics of spatial data is large size. We
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Figure 8. Execution Time versus the Number of
processors: Rivers/Rails

S —

B B T B B

Figure 9. Execution Time versus the Number of
processors: Roads/Rails

felt it is important for us to use the largest data set we could
found. Large data sets has received little attention in the
literature so far. This turned out to to be the Digital Chart of
the World, provide by the US Defense Mapping Agency. This
data was available in ARC/INFO format but we ungenerated
it using the ungenerate function, into text data and then loaded
into our system. We selected the rivers, railroads and roads
data and the sizes are shown in tables 1. The rivers data is
the largest at 94.3MB, with nearly 1M lines. The sizes of the
R-trees are shown in table 2.

6.2 Join Performance Evaluation
6.3 Performance Overview

We conducted experiments for static load balancing and
dynamic load balancing using the heuristics described in
section 4.1.2. We performed the join operation for the
rivers/roads, rivers/rails and the roads/rails combinations.
Figures 7, 8 and 9 show the execution times for some of
the heuristics. For all data sets, static load balancing results
in reasonable execution time but the application of dynamic
load balancing heuristics improves performance by about 10 -
25%. In all the data sets the heuristics which used assignment

Table 3. Detailed Time Analysis for Static Load Bal-
ancing :Rivers/Roads

48 4F 8S 8F | 12S | I2F
CPU 464 | 236 | 316 | 112 | 190 | 55
Rtree 59 46 36 18 27 15

Disk /O | 18 17 8 9 5 5

Comm 20 | 182 16 167 10 110
Ld/Bal 0 0 0 0 0 0

Table 4. Detailed Time Analysis Load Balancing
with Heuristic 6:Rivers/Roads

48 4F 8S 8F | 128 | 12F
CPU 359 | 350 | 190 | 175 | 122 | 112
Riree 62 43 35 18 22 6

Disk VO | 23 24 12 12 8 8

Comm 7 31 2 29 6 26
Ld/Bal 5 2 5 1 2 1

I in generating the plan resulted in worse performance that
their counterpart using assignment 2. This can be explained by
the fact assignment 1 moves the large data set and this results
in large communication overhead. In addition we proved that
heuristic 6 performs the best for all the data sets except for-
the Roads/Rails set.

Tables 3 and 4 give a comparison of the different time
components for the static case and the case for heuristic 6
for rivers/roads join. The static case gives wide difference in
time between the slowest node (S) and the fastest node (F).
The slowest node also has a lot of communication overhead.
With heuristic 6 the time difference between (S) and (S)
is drastically reduced and communication time is reduced
equalized between the nodes (F) and (S). We also plotted the
speedup for static, heuristic 2, 4 and 6 load balancing in fig.
10. There is progressive increase in speedup characteristics
from the static to heuristic 6. The can be explained from the
fact that parallelism is facilitated if the slave nodes can begin
to process refine operations immediately rather that waiting
for the Master.
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Figure 10. Speed Up versus the Number of pro-
cessors:Rivers/Rivers

6.3.1 Synchronous R-tree Traversal Load

One of the advantages of the FRP R-tree is the ability
to partition the R-tree synchronous traversal load. Scction
5.1 gives the load estimate function used in determining the
traversal static load balancing plan. For 4 nodes the traversal
load varies from about 43 seconds to 62 seconds for the
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rivers/roads join; for 22 seconds to 32 seconds for roads/rails
join; and 17 seconds to 32 seconds. This is fairly balanced
across all the nodes. However the load function produces
an unbalanced distribution as the number of nodes increases.
At 14 nodes the traversal time varies from 7.6 seconds to 1
seconds for roads/rails. Similar results are obtained for the
other data sets. The reason for this that we used only the tasks
produced at the root level for all the nodes. This means that
as the number of nodes increases the load balancing leeway
becomes smaller and smaller. A solution for this situation is
to increase the threshold for the number of tasks the master
uses for filter task creation.

6.3.2 Communication Overhead

Communication overhead is dominant for the case that re-
fines objects where they are produced. The communication
load between the master and the slaves in filter task creation
and distribution is very minor. The greatest communication
overhead comes from the requests for objects from home
nodes and also the answers to those requests. Another com-
munication component comes from the candidates sent to
other nodes for refining during dynamic load balancing but
this is a much smaller component. Referring to tables 3 and
4, we notice that when only static load balancing is used, the
fast nodes have a huge communication component. This is
due to the fact that once a node has finished processing its
candidates, its sits idly waiting for home node object requests.
When we use dynamic load balancing, this time is drasti-
cally reduced. Even though dynamic load balancing increases
communication overhead from exchange of candidates, this
is offset by the reduction in the amount of actual objects ex-
changed between nodes which results in an effective decrease
in communication overhead.

6.3.3 Dynamic Load Balancing Performance

Our experimental results show that the spatial join algorithm
is a CPU bound operation. We use the nested join for
finding the intersection points betweer spatial objects and this
operation is CPU intensive. Whilst dynamic load balancing
also leads to the reduction of communication overhead, its
main aim is to reduce the CPU load imbalance across the
slave nodes. Static load balancing alone produces a CPU time
difference of the order of the ratiol to 2. Therefore even,
heuristic 1 which sends all candidates to the master, will still
result in a decrease in join execution time because it evenly
distributes CPU load. Heuristics 3 to 6 which send only a part
of the candidates to the master manage to gain by the reducing
the communication time and also by allowing the slave nodes
to begin processing as soon as the candidates begin to be
produced without waiting for the master. Heuristics 3 and
5 do a random allocation of the candidates paying attention
only to the load estimation function. This results in extra
communication as shown in equation 2, which shows that
when the number of objects moved is high the communication
overhead is also high. Heuristics 4 and 6 keep the largest data
set stationary thereby reducing communication overhead, thus
generally performing better than 3 and 5.

7 Conclusion and Further Work

We have discussed a number of parallel R-tree structures
and how they can be used in the filtering phase of the R-tree

based parallel spatial join. We also introduced variety of
spatial data declustering schemes. We then described the re-
finementment phase of the join scheme from using assuming
a filter phase based on the FRP R-tree, including a host of
dynamic load balancing hueristics. We conducted preliminary
experiments on the IBM SP2 machien using DCW data Ex-
periments show that the parallel R-tree join is viable and that
the proposed dynamic load balancing heuristics are effective
in reducing execution time. For further work we are planning
to implement all the parallel R-tree structures given in this
paper and comapre their performance. We are also planning
to compare the performance of the various data declustering
methods, and also plan to move our implementation to a large
PC cluster to further evaluate performance[9].
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