
Time Series Database Dedicated

for a Computer Security Incident Response

Motoyuki OHMORI

Center for Information Infrastructure and Multimedia, Tottori University

1. Introduction
In order to avoid data breach, it is

important to quickly and accurately

identify and confine a suspicious host when

a computer security incident happens. When

an external organization alerts a

suspicious host, an IP address of the host

is given. In order to identify the

suspicious host, ones may then search for

the IP address in related logs. Searching

time of logs is then important to shorten a

delay to identify a host. To this end,

there have been already several logging

systems such as fluentd[1][2], kibana[3],

and splunk[4] that are based upon text

messages of syslog. These existing logging

systems are, however, not so efficient. For

example, we have experienced that fluentd

caused high CPU usages and lost log

messages. In addition, these existing

logging systems are not dedicated for a

computer security incident. They,

therefore, need more time to search for

required logging messages for an incident.

This paper presents an idea of the

novel fast logging database which is

dedicated for a computer security incident

response. The fast logging system tries

to:

1. Scalable logging database with smaller

storage

2. Fast search especially for recent

logging messages

This rest of this paper is organized as

follows. Section 2 presents an overview of

the proposed fast logging database.

Section 3 then presents basic key ideas of

the fast logging database. Section 4

finally concludes this paper.

2. Overview of Fast Logging Database
Figure 1 depicts the overview of the

proposed fast logging database. The fast

logging database consists of multiple

database servers. All multiple database

servers have the same IP address for IP

anycasting. Network equipment or other

servers (e.g., Web server, mail server and

so on) send logging messages to the fast

logging database using syslog protocol.

The logging messages are then stored into

one of database servers.

When one, say a CSIRT member, searches

for logging messages, one sends a search

request to one of database servers. The

database server receiving a request forward

the request to the other database servers.

All database servers then send responses

back to one who sends a search request.

Figure 1 The Fast Logging Database

3. Fast Logging Database
The key ideas of the fast logging

database can be summarized as follows:

1. Binary Based Key Value Store

Existing logging systems are

basically based upon text messages

while logging messages of network or

security equipment usually are in pre-

defined text format. Existing logging

systems, therefore, have overhead to

handle text messages. The fast logging

database then stores binary values only

in a record in a table, and text

messages are indexed in another table.

The Fast Logging

Database

CSIRT member

syslog

syslog

syslog

Search

Copyright 2019 Information Processing Society of Japan.
All Rights Reserved.3-35

6E-05

情報処理学会第81回全国大会

2. Time Series Database (TSDB)

Since each logging message must

have a timestamp, the fast logging

database always stores the timestamp as

a primary key. All records are

basically stored in ascending order of

timestamps. Some records are, however,

not strictly in ascending order for

lock-free operation described later.

3. Fixed Record Length

In order to improve search

performance, the fast logging database

has the same record length for a table

as same as recent Relational Database

Management System (RDBMS).

4. Timestamp Index

Regarding searching a record, a

timestamp is usually specified for a

computer security incident. In order

to improve searching speed, a location

of a record at a timestamp is indexed.

Since the number of logging messages

may depend upon daytime or night,

timestamp index improves searching a

record of a specified timestamp.

5. Logging Message Normalization

Logging message format in the fast

logging database are automatically

normalized.

Because a logging message is

usually output using printf functions,
the fast logging database indexes a

message format. A Logging message is

then stored as a tuple of a message

format index and variable values, i.e.,

variable arguments of printf.
6. Lock-Free Clustering Support

The fast logging database does not

strictly consider an order of a logging

message. Timestamps in records are,

therefore, not always in ascending

order. This nature may delay finishing

all search in order to make sure that

the all log messages in specified

timestamp in search are examined. This

nature, however, makes insertion and

lookup operations lock-free. Lock-free

clustering can be then archived.

7. Recent in Memory and Old in Disk

When a computer security incident

happens and quick response is necessary,

recent logging messages are searched in

most cases. Older messages are not

required to be fast to be searched

because its search itself is enough

delayed already. The fast logging

database then always keeps recent

logging messages in memory as much as

possible, and write the messages to a

disk if possible or all memory is

consumed. Even after older messages

are searched once, these older messages

are not in memory in order to

prioritize quick response for a recent

computer security incident.

4. Concluding Remarks
This paper has presented the novel fast

logging database that is dedicated for a

computer security incident response. We

have been implementing key ideas presented

in this paper, and the evaluation in

comparison with existing database

systems[1][2][3][4][5] and other researches

is future work.

5. References
[1] fluentd Project, “fluentd, available

online at https:///www.fluentd.org/

(accessed on 2018/10/7).

[2] mongoDB, Inc., “mongoDB,” available

online at https://www.mongodb.com/

(accessed on 2018/10/7).

[3] Elasticsearch B.V., “Kibana,” available

online at

https://www.elastic.co/jp/products/kiba

na (accessed on 2018/1/11).

[4] Splunk Inc., “splunk,” available online

at https://www.splunk.com/ (accessed on

2018/1/11).

[5] Y. Tubouchi, A. Wakisaka, K. Hamada, M.

Matsuki, H. Abe and R. Matsumoto,

“HeteroTSDB: A Time Series Database

Architecture for Automatically Tiering

on Heterogeneous Key-Value Stores,”

Proc. Internet and Operation Technology

Symposium (IOTS) 2018, pp.7-15,

December 2018, Tottori, Japan.

Copyright 2019 Information Processing Society of Japan.
All Rights Reserved.3-36

情報処理学会第81回全国大会

