FeHNR—Z L AT L
(2001. 1.

17“17b%@m&%ki%i-ﬂtﬁﬂ?myﬁﬁiﬁvz%A@

BESXY NT—20F— I R 2 DEA

FE@E, KR, BHiEE
TF790-8577 AALLUFISCHHT 3 BHERAE T2ER
TEL 089-927-9970 FAX 089-927-9852
E-mail murata@cs.ehime-u.ac.jp

Software design via object-oriented methodology

and network database for solar-terrestrial observation data

Takeshi MURATA, Hiromasa Yahara, and Kohei Toyota
Department of Computer Science, Ehime University
3 Bunkyo-cho Matsuyama 790-8577 Ehime
TEL 089-927-9970 FAX 089-927-9852
E-mail murata@cs.ehime-u.ac,jp

~ In collaboration with the NASA, the ESA and the ISAS, an international project has started,

which is called “the ISTP project”. In the project, many satellites are launched and observe the
geo-space and the interplanetary region. The more scientific satellites are launched, with
higher quality and quantity the data provided by the satellites are. The programs to analyze
and plot the data become complex as more data are included into the programs. A new
breakthrough software system is required that refers to and analyzes such a variety type of
data. In the present paper, we propose a system that is named “Solar-Terrestrial Analysis and
Reference System (STARS)“. It works with a variety type of spacecraft data and ground-based
observation data. In construction of the STARS, we apply an object-oriented software
methodology that is called “Object Modeling Technique (OMT)“. How and for what purpose we
apply the OMT to the system is discussed.

Key words : satellite data, OMT, object-oriented methodology, network database

1. INTRODUCTION

To obtain global understanding of the interactions and energy transfer between the sun, solar
wind, and the magnetosphere of the Earth, multi-point observations are crucial. A lot of
scientific satellites have been launched for the purpose of observations in the geo-space and
interplanetary regions. Through the analysis of the simultaneously observed data, we
investigate physical processes in the regions.

This type of “big project” is hard to be conducted by only one or few countries: it requires
collaborations between many countries for the financial, technological, and physical reasons.
Each institute launches its own satellites, then observed data are gathered, assembled, and
compared. The ISTP (International Solar Terrestrial Physics) project started for the purpose of
such multi-point observations. The NASA, the ESA, and the ISAS collaborate in a set of solar-
terrestrial missions to be carried out during the 1990s and into the next century 1.

The satellites of the ISTP project bring us a large amount of significant data. It would
progress our understandings of space and terrestrial phenomena. However, this large amount

123— 5
22)

has, on the other hand, become a barrier in the researches. Researchers tend to take long time
to construct their programs to analyze the data and make plots. This inconvenience is not
negligible now. We need to achieve a new methodology that can provide us with easier
programmings.

The present paper proposes a software system for multi-point observation data. The system 1is
named “Solar-Terrestrial data Analysis and Reference System (STARS)“. It works with data
provided by the ISTP satellites; e.g, GEOTAIL [2], WIND and POLAR. It also works with
ground-based observation data; e.g. magnetograms, aurora images, and geomagnetic indices. It
is crucial to combine these different type of data in a single software for integrated studies. In
the construction of the STARS, we apply an object-oriented methodology called Objected
Modeling Technique (OMT) proposed by James Raumbaugh and his co-workers.

2. DATASET AVAILABLE IN THE STARS

The STARS is a system that refers to and analyzes a variety of data. In this section, before
description of the STARS, we start with an introduction of the data used in the STARS. In the
STARS, various data are included. From the viewpoint of dataplot, most of the data are
categorized into the following types: color dot plots, line plots, in numbers, and graphics data.

Color dot plots are used for data observed by multi-channel detectors. The intensity is
represented by a color dot at each time and at each channel. For example, GEOTAIL PWI/SFA
and GEOTAIL. PWI/MCA are in this format. Both data provide us with a dynamic spectrum of
plasma waves.

Line plots are used for the data that has one value at each time. In the STARS, many data
are shown in this format: GEOTAIL/MGE, GEOTAIL Orbit, AE, Dst and Ground-Based
observation data. GEOTAIL. PWI/WFC is an instrument that observes a raw plasma wave
forms. GEOTAIL MGF provides three components of magnetic fields. GEOTAIL Orbit is shown
in the three-dimensional orthogonal coordinates. AE is an index of magnetic activity in the
auroral region. Dst is an index to represent an energy of the ring current around the Earth.
Ground-Based observation data correspounds to magnetograms which are the geomagnetic
data observed at each ground-based station. Some indices are given in form of number. The Kp
index gives 8 hour value of the global geomagnetic activities of the Earth.

Graphics data are the data provided in form of graphic files. In the STARS, POLAR/PWUSFR,
POLAR/VIS and WIND/RAD1 are given in graphic file format, not in raw data format.

3. OBJECT MODELING TECHNIQUE

In the construction of the STARS, we adopt a software development methodology that is called
Object Modeling Technique (OMT) [3]. The OMT has advantages to the other software
methodologies (e.g., [4]) due to its simplicity of maintenance and improvement, reuse, and long
time development [5]. The OMT makes developers and researchers easy to communicate each
other. This development method consists of the following four steps: (1) Analysis, (2) Object
Design, (3) System Design, and (4) Implementation. Before implementation of a program, we
start with analysis and design of the system. In this chapter, we describe the process of the
STARS construction along with each step shown above.

3.1 Analysis

3.1.1 Request
First of all, developer must obtain users' requests. Herein, the “users corresponds to
“researchers”. The researchers make their own request sheets so that the developers can
understand what to construct. Next, the developers construct a real-world model from the
request sheets. This model is significant to create a system since the real-world model shows
what the system is. In the STARS, we make a request sheets as shown in Fig3. Here, we have
described, for example, how to get data, plot data, and use various devices.
3.1.2 Object model form request sheet
In the OMT, the developers make three models, which are called an object model, a dynamic
model, and a functional model. The object model shows what the system is. The dynamic model
shows when the system works. The functional model shows how the system works. We describe
these models in the STARS in the following sections respectively.
3.1.2.1 Three models
The object model is the most important model in the three models. It is because this model
shows what the system is. The object model shows a static structure of the system. One object
model is composed of several classes. Each class is consists of a class name, attributes and
methods. An object figure is usually used to show relationships between classes in the object
model.

GEQTAILObit Filo
SFA Fasm +FileName ; String

[ile : File GEOATIL [~aumber : int *OriveName : String
[ree TS traphuize int +StartDateTime
[tmdata : fong, L TR e +EndDateTime
[~centrol i : tong ize0 - int N “void
-pass_number : fong AN

e):int) : vaid]

“time : long [Reack) : bosl
- float
b : foat
eth : Boat | 1
efl: float Satelite GroundBateObservation]
~ampstat : long. - "+ Strit
|-antstat : long. + Satellite : Striny -GroundBazeType : String|
|~format : flong. MCA
| ~numbers, fata : long T
umbers.of rames - ane st ematy it [AY —
"""r‘;’:‘ e -mca.e_data : flost I [
:'":'“('"f' ng Lmca.b_data : float POLARObit POLAR WINDOrbit WIND [Ausy [Magnetogram|
st fomt [fle - File -gm iString [-esm : String]
-Plasmafraquency : ot oot [number - int umber ot [Resd0:booi | [Read) boct
Ceiorotaron float [Mmdata : fong -graphsiza : int -eaphsice : int

: - [~cantrot id : tang o IR reT E—
[CreatePlasmaFreausncyFienams0 : vord | oyuy mumbes - ong ‘:g:m.::)sn 0o :g:: QOM;'SERU o
+CreatePissmaFroquancyDirname(): int | |_tir o 1ong HetNobor®: nt . GelNu::be 0 it Index
[+Get E FreqQ) : faat ¢ - float I+Rend0: boot +Readd) - bool RAIDY -IndexName ; String|
[+Get 8 Fread) - float Lo - foat
+Get, Sicrotaron() : flost v - float SR

: R
[+Get PusmaFroat0): Roat o s Boat ,a:m{e‘;“’_‘:m o
I+GetMemory) : void |-vet : foat
MamoryFrae) : void ampstat long T [Red - baol
I*Lapdata_canread(X) : bool antstat :fong Temi ——
I*Myfdata_canread®X) : bool format : long EPIMOM vis e Dst AE Ll
[*SetPlotinfomation(} : vaid -numbers of data : tlong] | |29 _____ | “hairetu : int “haireta < int ~KeOats
*Getunder band(X) :int -mef_cot : long +GetLEPIMOM() “gem Inoutrument : String) ~Dstdats : int -AEdata -pos int.
[#Getover band(X) - nt record ength :fong +Read) - bool | [Rewd boat romber : int [irst ot cchor | [TReagn Thear] |-miLastElement ; int
+GetFieldType(X) : int Hast. time : int —) [+ SetextFileName(:int} | g apigize - i [*Readh ool | |+Gethairetu(): int| |-8ctuaidate
*Getig-w':‘uwhvf();zyf\\ I-candition : long WFC 2 i *Gethairetul) : int| |+GetAS0 |Vaiue : char
'g“ imeNumbey S ~head A ey [+ QotGraphSize0 : int +GetDSTO : int o Fite
+GetPiotureTimeSizal): int hesdp GetNombert it s Read bosl
AcnvlcufaFre.awaeO:mt -PWl ress A |*GetWFC() +Read() : bool [*GetValussinDay() : voi
+Getlogliner):int PV rest8 [+Read) : boot [~pwsdata : float |+ GetFiret() : int
:3::5:,'::;?;1:‘52,‘: ::t Tt T 1 *Readd) - int +Gethiext() : int
 GatSrmatasthost it :g::‘sr:;n-:‘)“ !:n: AKRindon WGF +ReturnData() : float] [+GetDatel) : char
joRead() :int l+GatBO : Roat ~akrindaxdata -mefdata
e it ropensfmca: voig | [count:int [LEGRD
" o |*close) : void +GetAKRindex()| |+Read) : boal : : :

o e kol i Figure 1: Domain object model
ot ot [+xetstadatal) : vaid [*Readl) : boat
[+GetB0 foa :

- +get32irames() : void
Fepemincad- v Ftevesity oo for the STARS.
closef): voi (-uotdidata() : void
rgetsfal) : void eNext) : vors
getsfadata() : void +Reac) it
(facal)ivoid [+GatMemary() : void
[+get32rames() : void s FrecMement) - void
[*getreatdatal) : void +Get E_Frea() : flost
*getdldatal) : void et B N
LiNextO : void Get.B_Freq() : flast

i T I I I 1

[
[sFaPIotSetect Diatol MCAPiot Dialod {SFAPIot Dialo [SFRPIot Dialog [SFAGHPlot Dialog || Ko Display RAID1PIot Diclor e Data Paze

— r

|SFAAnalysis Dialo SFALinePlot Dialo [SFATwoColor Dialo ize Dialog

i

Dialo; [I
AE Graph | | MGF Graph | | [LEPIMOM Grap!

{SFAMouse Dialo; " { - l
Dialo, Diatog [visPiot Diatog] [RAID! LinePlot Diale: Orbit Gragh Dst Graph

SFACutGraph SFRLinePlot Dialo

VISPlotResize Dialog

Figure 2
Application object model for the
STARS.

An object model usually consists of multiple models depending on the roles of the object. In
the STARS, we create three types of object models; a domain object model (Fig.1), an application
object model (Fig.2) and utility object model (not shown herein). The domain object model is the
most essential model among three models since it shows a static real-world. The application
object model is a software model. The utility object model is a model that contains utilities
available over the system such as an FFT transform. The three object models are not depicted
in the form of UML [6] since they are rather simple in their structures.

3.1.2.2 Dynamic Model
In the object model, the developers have shown static relationships in the system. They next
make a dynamic model which shows dynamic relationships in the system. The dynamic model
is described by ’events’ and ‘states.’ In the dynamic model, two models are used; a state figure
and an event trace figure. The state figure represents state transitions. The event trace figure is

a table which has time axis. Each event between different objects is put in time order.

3.1.2.3 Functional Model
Finally the developers make a functional model. The functional model shows an internal
activity in the system. This model describes how to analyze input data without time chart. In
the implementation of system, all function are not to be modeled as functional models. Since the
function model is close to the program itself, we don’t show our function models in the present

paper.

3.2 System Design, Object Design, and Implementation

The developers perform high-level determination of the system on the stage of system design.
They divide a system into subsystems. Here, they fix resources to be used in the system;
hardwares and softwares. Fig.3 is the software resource in the STARS. In the STARS, we
adopted a graphic library named Quinn-Curtis [7] because of its flexibility.

On the stage of the object design the developers need to complete more detailed determination
about the analysis models discussed above. They must decide data structure and algorithm in
the system. This design strongly depends on the developers themselves. In the present paper,
therefore, the object design in the STARS is not to be shown.

After all of the modelings and designs, the developers start implementing the software. In the

OMT, the implementation is considered to be simply a translation of a model into a real
program. Since the program is automatically done along with the designs discussed above, new
developers can easily understand the program codes.

Figure 3: STARS hardware
resources. The STARS software

4«- works on the PC, which is
=i

connected with networks.

S -
WORKSTATION PERSONAL COMPUTER
i
i

4. DISCUSSIONS

In the present study, we design a system that is named “STARS (Solar-Terrestrial data
Analysis and Reference System)”. The STARS provides a research environment that
researchers can refer to and analyze a variety of data with single software. This software design
is based on the OMT (Object Modeling Technique). The OMT is one of the object-oriented
techniques, which has an advantage in maintenance improvement, reuse and long time
development of a system. '

In our laboratory (Faculty of Engineering, Ehime University), after our designing of the
STARS, we have already started implementing the STARS. A demonstration version (version
1.0) is released in 2000. Any user can download the system from our WWW site (http://
sp.cs.ehime-u.ac.jp).

The present paper is mainly devoted to the design of a data analysis software system.
Through our designing, we paid attention so that the design is flexible and applicable when
other developers design a software for the similar purpose. If our model is so particular only for
our own purpose, it would be useless for other developers.

Through our design of the domain object model, we carefully removed the parts which depend
on the system resources, e.g. hardware and software. We put the dependent parts into the
application object model. In the present design, therefore, the domain object model and the
utility object model are independent of computer resource. This helps anther developer to
construct their own system based the present design. They simply modify their own application
object models according to their system resource. This division of the design between dependent
and independent part into three object models is one of the advantages in the OMT.

If the design of software is completely done along with the OMT, implementation is rather
simple and automatic: developers simply map their designs on our programs. If one creates
“another STARS" with other programming language such as Java, the programmer simply
follows the present system as long as the language is object-oriented language.

Researchers would want to add their data into the STARS. In this case, they simply add their
own data class in the domain object model. It is because any satellite data has properties such
as time or date, which are inherited from the upper class (see File class in Fig.1). In this way,
their effort is less than in other old methodologies.

In the OMT, description format of the system is rather strictly standardized. When new
developers take part in STARS project, they have only to understand each model to obtain the
overview of the STARS. Then they follow this designs and documents to implement the system.

The OMT makes a new comer easy to join into the project already running.

References:

(1) http:/iwww-istp.gsfe.nasa.gov/

(2) http://lwww.isas.ac.jp/jlenterp/missions/geotail/index.html

(3) J.Rambaugh, M.Blaha, W.Premerlani, FEddy, and W.Lorensen, “Object-Oriented Modeling
and Design", Prentice Hall, 1991.

(4) EYourdon, “Object-Oriented Systems Design An Integrated Approach“, A Simon &
Schuster Company, 1994.

(5) J.Rambaugh, “OMT Insights", Sigs Refernce Library, 1996.

(6) G.Booch, J Rumbaugh, and I.Jacobson, “The Unified Modeling Language User Guide",
Addison Wesley, 1999.

(7) http//www.quinn-curtis.co

