5H-06

ドローン空撮画像から植生・非植生を識別する手法

尾崎敬二†

国際基督教大学 アーツ・サイエンス学科†

1. はじめに

近年のドローン搭載カメラによる膨大な量の空撮画 像の利活用は多方面にわたっている。特に、環境、農 業分野では取得画像中の植生か非植生かの識別は重要 な解析出発点となる。植生活性度を最も顕著に示す特 徴は、可視光の範囲外にある近赤外領域の反射特性に 出現するが、様々な点で高コストとなる。可視光画像 のみで近似的に植生領域の識別を行うために、特徴識 別空間として均等色表現空間を選んで対応づけし、自 然の植物葉、人工芝、緑色パッチなどの特性を比較し た。可視光画像中のさまざまな対象物体領域の中から 自然植物葉の領域の識別が、ある程度可能であるかを 検討した結果を報告する。

2. ドローン空撮画像と標準色票

図1に空撮画像取得に使用したドローンと標準色票 を示す。ドローンは DJI 製の Mavic Pro で搭載カメラ は水平正面から、ほぼ真下までの撮影俯角を有する。 また、重量が 750 グラムあるので、瞬間風速 10m/s ま で安定した飛行による画像を取得可能である。デジタ ルカメラ画像の露出補正の基準を得るためにグレー

図1 空撮に使用したドローン(DJI Mavic Pro), Macbeth 標準24 色票とグレーカード 撮影日時: 2018 年 12 月 1 日 14:22, 高度約 15m

Methods for identifying vegetation/non-vegetation areas of drone aerial images †Keiji OSAKI

† International Christian University, Arts & Sciences

Macbeth の標準24 色票には、デジタルカメラの色空間での測定 sRGB 値と均等色空間の CIE(国際照明委員会)規定のL*a*b*測定値の対応を示した結果が公開してある。図2に Macbeth 標準24 色票を示す。今回の対象物体領域のひとつとして選択した緑色カラーパッチは図2の左から2列目、下から2段目である。実際に高度10m以上から空撮した図1に示す画像中の緑色パッチは、図3のxy 色度図中では、黄緑色(Yellow

図3 CIE(国際照明委員会)による xy 色度図:おおよその 色名の区分がされている。Macbeth 色票の緑色カラー パッチの空撮画像では、この図中、Yellow green の色 区分に該当している

Green)に該当した。カメラ特性、周辺光、露出、シャ ッター速度などにより画像中の物体色の見え方に違い が現れ図1に空撮画像取得に使用したドローンと標準 色票を示す。ドローンは DJI 製の Mavic Pro で搭載カ メラは水平正面から、ほぼ真下までの撮影俯角を有す る。デジタルカメラ画像の露出補正の基準を得るため にグレーカードを用いるだけなく、画像の色被りなど、 光源の色から受ける影響を見積もるために、Macbeth

の24 色票を使 用した。 Macbeth の標 準24 色票には、 デジタルカメラ の色空間での 定 sRGB 値と均 等色空間の CIE(国際照明 委員会)測定値 の対応をを開して 結果が公開して ある。図2に

Macbeth 標準24 色票を示す。実際に高度10m以上から空撮した図1に示す画像中の緑色パッチは、図3の xy 色度図中では、黄緑色(Yellow Green)に該当した。 カメラ特性、周辺光、露出、シャッター速度などによ り画像中の物体色の見え方に違いが現れる。図3のxy 色度図の馬蹄形の曲線部分にある主波長が、最も彩度 の高い色を示している。xy 色度図では、色の見え方の 差(色差)が距離に比例して示されていない。そこで、 できるだけ均等色空間に近づけた CIEL*a*b*上で、色 の比較から、対象物体の特徴を識別できないかを試み た。る。図3のxy 色度図の馬蹄形の曲線部分にある主 波長が、最も彩度の高い色を示している。xy 色度図で は、色の見え方の差(色差)が距離に比例して示され

図 5 Macbeth24 色票の空撮画像から空 撮画像から緑色パッチを切り取った 画像の a*b*平面における分布状況.

いかを試みた。

3. 均等色空間 L*a*b*での色度分布

分布と比べ ていない。 そこで、 できるだ け均等色 の分布 空間に近 状況か づけた CIEL*a ら、人工 芝と自 *b* 上で、 色の比較 然苴地 から、対 の識別 象物体の がある 程度可 特徴を識 別できな 能と結 論づけ られた。

Macbeth24 色票のグレーカード部分 が含まれている。

ぼすが、ここでは、対象物体の特徴抽出を,明度を除い た色度の範囲で識別しようと試みている。図4に Macbeth24 色票の a*b*色度分布を示す。この結果と公 開されている色票の L*a*b*値の一致を確認した上で、 今回作成した L*a*b*計算プログラムの適用を行った。 図5 に示す緑色パッチ画像の色度分布は、48x47 画素 に切り取った画像の左隅に赤色パッチが含まれている ので、a*軸の正の領域に分布が広がっている。図6は、 無彩色グレーに近いコンクリート部分のため、原点付 近に分布し

る色味に

影響を及

図7 人工芝の空撮画像一部の a*b*平面にお ける分布状況

て、原点から細く左上に伸びている。図8では、原点 から離れた位置から分布が始まり、広がりのある分布 となっている。以上から、均等色空間L*a*b*の色度図

Copyright © 2019 Information Processing Society of Japan. All Rights Reserved.