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1 Introduction

An enumeration is to output all designated ob-
jects without duplication. The enumeration problem
is fundamental and important in the area of theoret-
ical computer science. In computational geometry,
the problem of enumerating triangulations has been
studied. Triangulations are appealing and important
objects, since they have a lot of applications includ-
ing mesh generation by the interpolation [1].

It is useful to enumerate all triangulations of a
given point set, because we can select the optimal
triangulation among the enumerated triangulations.
However, the computation cost for enumeration is enor-
mous when the given point set is large. In such case,
the enumeration might be inadequate. It would be
better to partly generate triangulations with desirable
conditions.

Now, what is a good triangulation? Standards of
good triangulations could be different depending on
the situation of applications. Hence, we do not have
a discussion about goodness of triangulations. How-
ever, “delaunay triangulations” are major triangula-
tions and used in various applications. Thus, we fo-
cus on delaunay triangulations as good triangulations.

In this paper, we first evaluate the practical per-
formance of the enumeration algorithm by Katoh and
Tanigawa [2]. Their algorithm can enumerate only
edge-constrained triangulations efficiently. This con-
dition extremely reduces the number of enumerated
triangulatios. However, when the number of given
points is large (for example, 100 or more), the num-
ber of triangulations is too enormous. Thus, enumer-
ation approach does not work for a large point set.

2 Definition

Let P = {p1, p2, . . . , pn} be a set of n point in Eu-
clidean plane.1 We assume that P = {p1, p2, . . . , pn}
are arranged in the increasing order of x-coordinate.
Points with the same x-coordinate are arranged in the
increasing order of y-coordinate. A triangulation of
P is a maximal planar subdivision such that point set
of the triangulation is P and every edge includes no
point except its endpoints. A triangulation T is a

1We do not assume that the points in P are in general position.

Dalaunay triangulation if the circumscribed circle of
every triangle in T includes no point inside itself. Let
F be a set of edges whose endpoints are points in P
and no two edges in F intersect. A triangulation T is
an F-constrained triangulation if T includes all the
edges in F. Let e = (x, y) be an edge of a triangu-
lation T , and let △xyz and △xyw be the two triangles
sharing e. A flip operation is to remove e and insert
the diagonal d = (w, z). See Figure 2. Applying a flip
operation to a triangulation produces another differ-
ent triangulation.
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Figure 1: Flip operation.

3 Enumeration

We implemented the enumeration algorithm by
Katoh and Tanigawa [2]. Their algorithm can enu-
merate edge-constrained triangulation in O(log n) time
for each. In this section, we describe experimental re-
sults of implemented algorithms.

First we randomly generate 100 point sets of n
points for each n = 11, 12, . . . , 16. Then, we also
randomly generate edge sets for constraints for each
point set such that p % edges are constrained for each
p = 0, 10, 20, 30. Then, we measured the running
time of the algorithm. Environment of experiment
is as follows: Programming language: Common lisp,
Compiler: SBCL, CPU: Intel R⃝CoreTMi7-4770S 3.10
GHz, and Memory: 16.0GB. The results are shown in
Table 1.

From the Table 1, edge-constraint reduces the num-
ber of triangulation. As a result, the running time is
reduced very well. On the other hand, when the num-
ber of points increases, running time increase enor-
mously. Thus, from a practical viewpoint, it is almost
impossible to apply enumeration algorithms to a large
point set (for example, 100 points to 1000 points).
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Table 1: Running time for enumeration [sec]
Ratio of edge-constraint

#vertices 0% 10% 20% 30%
11 0.7644 0.1428 0.0371 0.0105
12 3.9967 0.6373 0.0841 0.0189
13 17.1927 2.8054 0.2216 0.0343
14 80.0496 8.7050 0.6788 0.0682
15 381.2840 13.3104 0.6337 0.1061
16 1780.8712 63.8610 3.5101 0.4447

4 Generation

The previous section, we experimentally showed
that an enumeration needs too high computation cost.
However, we wish to obtain good triangulations. In
this paper, we traverse a part of the tree structure
among edge-constrained triangulations defined in [2],
then generate a part of triangulations. This method
allow us to generate a lot of triangulations similar to
a target triangulation. That is, if we have a good tri-
angulation, then we can obtain a lot of triangulations
similar to the good triangulations. Now, we describe
our generation algorithm below.

(1) We compute a “seed” triangulation Ts with desir-
able conditions and we then store it into a queue Q.
(2) Let T be a triangulation obtained by popping from
Q. We generate a triangulation by flipping every flip-
pable edge in T and store it into Q.
(3) We repeat the process (2) until a designated con-
dition is satisfied (for example, a designated number
of triangulations are generated or we repeat the pro-
cess in designated time.

The above way makes triangulations similar to Ts, as
shown in Figure 4.

In this report, we use a edge-constrained Delau-
nay triangulation as a seed triangulation Ts. It is know
that Delaunay triangulations have the property that
the interior angles and areas of triagles are as uniform
as possible. This property is suitable for surfaces of
3D objects [3]. Therefore, we adopt edge-constrained
Delaunay triangulations as seeds.

Table 4 shows our experimental results. Experi-
mental environment is the same as the previous sec-
tion. We uniformly generate 10 point sets of n points,
for each n = 100, 300, 500, 1000. Let p be a ratio of
constrained edges (p = 0, 10, 20, 30). We show the
average running time that the algorithm takes to gen-
erate 1000 triangulations. The running time includes
the time for constructing a seed triangulation (an edge-

Ts

Figure 2: Generation of triangulation from a seed tri-
angulation.

Table 2: Average running time for generating 1000
triangulations [sec]

Ratio of constrained edges
#vertices 0% 10% 20% 30%

100 1.518 1.425 1.522 2.469
300 14.988 15.417 16.667 25.086
500 45.708 47.738 63.265 79.927
1000 371.060 252.955 399.793 -.-

constrained Delaunay triangulation). We use the al-
gorithm by Ito, et al. [1] for constructing an edge-
constrained Delaunay triangulation. We allow dupli-
cations of generated triangulations. When n = 1000
and p = 30, it took much time to construct a seed tri-
angulation, and hence we cannot measure the running
time in Table 4.

Since the number of generated triangulations are
restricted, the running time is faster than the enumer-
ation before. However, when p = 30, the running
time increased, since the algorithm take much time to
generate a seed triangulation.
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