IEMMIBFSHYEFE 7075324 Vol.12 No.2 18 (May 2019)

RRBE

B AT Y ETFIILERIEIZEKEIT 5
Java volatile f 5 b F- 74 D Gl

5 —HIb) YRR L I fRRY
2018%11A1 A%

Java @ volatile %3/ > 70y ¥ v 7% 7}1/3 1) X 4% ConcurrentHashMap 72 & D F 4 75 1) &5
BT LI E M ENS. Java SibALTIE, 1 DD volatile ZHA~D T 7 v 3B R—BMWE O L
%bfwé.Lt#of,%wx%U%TW%%TiJWMW?HTE&3*F¢hﬁw&X%UNUT
EHATHLEDND Y, A#EIUH S AUTHHEOR N T 25| SR T2 L1205, —), A€
N TIEF =Ny EPEVDT, TOF ="~y 25T L Java T v ¥ 4 A@ﬁ%f‘ﬂil_ﬂ:ﬂ':(f

D12TH%. POWER 7—F 77 F ¥ &0 70ty ¥ Tld, HED AT) FMa4 % #MuIflasb
HTRAEYN) THRERET L. AE)AHGTOMEGEIE, FEARMIEAE)VHOXAE)T 72 -
NG =Ko TELLEEND Y, 2N L TH— NNy FbZEbb. KifsE T, POWER 7 —%
77 F x H® OpenJDK & Open J9 128V volatile BT 7 £ AD X E)N TEEOREEILTH: % It
L, Java 717 T L DFATHEEENDRE R Gl L 72,

Presentation Abstract

Evaluating Optimization Techniques for Java Volatile Variables on
Weak Memory Model Platforms

KazuNORI OcaTAY® HirosHI HORIT! MICHIHIRO HORIE!

Presented: November 1, 2018

Java volatile variables are commonly used to implement non-blocking algorithms and libraries, such as
ConcurrentHashMap. Java language specification requires all accesses to a volatile variable need to be se-
quentially consistent. This means Java VM and JIT compiled code need to put memory fences appropriately
on the weak memory model platforms, otherwise Java programs cause hard-to-reproduce intermittent prob-
lems. However, memory fences often cause large overhead, so reducing the fence overhead is one of effective
optimization techniques for Java. Some processor architectures, such as the POWER architecture, provide
multiple memory synchronization instructions. An appropriate combination of those instructions for imple-
menting a memory fence depends on how threads access memory, and the overhead can vary accordingly. In
this research, we investigated how memory fence for volatile variables are efficiently implemented in Open-
JDK and Open J9 for the POWER platform and evaluated how the difference of implementation affects
performance of Java programs.

This is the abstract of an unrefereed presentation, and it
should not preclude subsequent publication.
b HA IBM MRS s R R e

IBM Research, Chuo, Tokyo 103-8510, Japan
2) ogatak@jp.ibm.com

© 2019 Information Processing Society of Japan

18

