
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

Using Algebraic Properties and Function Fusion
to Evaluate Tree Accumulations in Parallel

AkimasaMorihata1,a)

Received: September 28, 2018, Accepted: December 25, 2018

Abstract: Parallel evaluation of tree processing using accumulation parameters tends to be difficult because the ac-
cumulation parameters may introduce data dependencies between computations for subtrees. Some proposals have
broken these data dependencies by using algebraic properties such as associativity and commutativity, but, none has
achieved both the capability of complex tree traversals like attribute grammars and a theoretical guarantee of parallel
speedup. This paper proposes a tree processing language based on macro tree transducers and provides a parallel eval-
uation algorithm for programs written in the language. The language can express complex accumulations like attribute
grammars, and moreover, the number of parallel computational steps for evaluation is proportional to the height of the
input tree. This paper also shows that combining the proposed approach with function fusion for macro tree transducers
leads to improvement in the parallel computational complexity. Although comparable complexity improvement can be
obtained from known parallel algorithms, the proof and parallel evaluation algorithm here are remarkably simpler.

Keywords: parallel evaluation, accumulation parameters, macro tree transducers, function fusion, semiring, attribute
evaluation

1. Introduction

Parallel computing has become popular because even com-
modity computers contain multicore CPUs. Purely functional
programming is commonly regarded as a promising approach for
parallel computing. Because of the absence of side effects, inde-
pendent subexpressions can be evaluated in parallel. For exam-
ple, the following function sum can naturally calculate the sum-
mations of values in subtrees in parallel. (The notation below is
similar to that of Haskell [27].)

sum (Tip n) = n

sum (Fork l r) = sum l + sum r
Nevertheless, purely functional programs often contain an in-

sufficient quantity of independent subexpressions. Even huge
data processing, which requires parallel computing, may involve
only a few independent subexpressions if accumulation param-

eters are used. For example, consider the following function
sumacc.

sumacc (Tip n) y = n + y

sumacc (Fork l r) y = sumacc l (sumacc r y)
This function calculates the summation by using an accumula-

tion parameter, y. The computations for the left and the right sub-
trees are not independent, because the computation for the left
uses the result of the computation for the right. Therefore, the
function appears unsuitable for parallel computing in this case.

The objective of this paper is to provide a method of paral-
lel evaluation for tree processing using accumulation parameters,
such as sumacc. The work especially focuses on algebraic prop-
erties such as associativity and commutativity. For instance, sum,

1 The University of Tokyo, Bunkyo, Tokyo 113–8654, Japan
a) morihata@graco.c.u-tokyo.ac.jp

which is more suitable for parallel computing, can be used in-
stead of sumacc: the order of summing up values does not matter
because of the associativity and commutativity of addition.

There have been several proposals for parallel tree processing
using algebraic properties [1], [12], [21], [22], [30], [32]. To the
best of the author’s knowledge, however, none satisfies the fol-
lowing three requirements.
Flexible Tree Traversal

Some proposals focus on a few tree traversal patterns, such as
bottom-up, top-down, or depth-first traversal. This approach is
suitable for (nearly) linear data structures, such as lists or XML
data that represent sets of items. Trees, however, may not be
nearly linear. They may be used as intermediate data structures,
and then their shapes (e.g., the height, width, degree of balance,
etc.) depend on the application. As a result, the traversal patterns
can be complicated — possibly, some subtrees are neglected or
processed in the reverse order, and so on. Flexibility of traversal
is essential for tree processing and thus cannot be disregarded.
Summary for Every Substructure

Because trees are often intermediate data structures, we would
often like to calculate a summary for every substructure rather
than a summary for the whole tree. For example, in the variable
live range analysis (on abstract syntax trees), each variable should
be associated with its live range. In theory, it is usually not diffi-
cult to extend parallel algorithms for summarization to those that
calculate a summary for every substructure (see Remark 3.1 in
Abrahamson et al. [1], for instance). Yet, for the case of complex
accumulative tree processing, no such algorithms have explicitly
been shown.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Guarantee of Parallel Speedup
The naive approach that parallelizes apparently parallelizable

parts is not acceptable. As accumulative tree processing is gen-
erally not suitable for parallel evaluation, such a naive approach
would probably result in poor parallel speedup. As Amdahl’s law
explains, to achieve significant parallel speedup, most computa-
tions should be parallelized. In other words, the parallelization
should improve the asymptotic computational complexity. Some
existing approaches provide a guarantee of parallel speedup, but
the guarantee tends to make the parallel algorithm more complex
and less expressive.

To satisfy these requirements, this paper focuses on macro tree

transducers (MTTs) [5], [9]. MTTs are simple but more expres-
sive than attributed tree transducers (ATTs), which are tree trans-
formations modeled by attribute grammars. Therefore, MTTs can
express complex tree traversals like attribute grammars.

MTTs do not allow arbitrary accumulative computations. In
MTTs, values bound to accumulation parameters can be used
but cannot be examined by, for example, conditionals or pattern
matching. This restriction seems suitable for parallel computing.
Roughly speaking, while accumulation parameters are computed
by other threads, the succeeding computation, which will not be
seriously affected by the accumulation parameters, may be able to
speculatively processed. For this reason, it is expected that MTTs
would be good candidates for resolving the trade-off between ex-
pressiveness and suitability for parallel computing.

Nevertheless, MTTs are tree-to-tree transformations and can-
not be used for usual computations such as additions and mul-
tiplications. In addition, MTTs cannot naturally express sum-
marization for substructures. To resolve these issues, while the
approach here follows the syntactic restriction of MTTs, it se-
mantically uses semiring operators and also provides a support
for summarization of substructures.

Several properties of MTTs are known. This paper especially
focuses on fusion transformations [5], [9], [11], [13] and uses
them to improve the complexity of parallel tree processing. The
paper first provides a parallel evaluation algorithm and shows
that its number of parallel evaluation steps is proportional to the
height of the input tree. Then, Shunt trees [25] is applied for im-
proving the complexity. The shunt tree representation of a tree
t contains the same information as t, and yet its height is loga-
rithmic in the height of t. Let g be a transformation that restores
the original tree from its shunt tree representation. For tree pro-
cessing f , the fusion transformation for MTTs derives an MTT
equivalent to the composition of f and g, f ◦ g. The complexity
of the obtained MTT is proportional to the height of the shunt
tree representation, making it logarithmic in the size of the orig-
inal input. This approach avoids dealing with complex parallel
algorithms and thereby leads to a significantly simpler correct-
ness proof and complexity analysis as compared to using known
parallel algorithms.

The three major contributions are the following:
• A programming language for parallel tree processing: MTTs

are applied to provide a programming language suitable
for parallel evaluation. The language can naturally express
attribute-grammar-like complex accumulations, as well as

summarization for substructures.
• A parallel evaluation algorithm with a complexity guarantee:

The paper provides a simple parallel evaluation algorithm,
whose number of parallel evaluation steps is proportional to
the height of the input tree.

• Complexity improvement through fusion transformation:
The paper shows that a combination of the proposed parallel
algorithm and fusion transformation significantly improves
computational complexity.

The paper is organized as follows. Section 2 reviews basic no-
tations about semirings and MTTs. The programming language
for parallel evaluation is defined in Section 3. The parallel eval-
uation algorithm is provided in Section 4. Section 5 discusses
the improvements brought by the fusion transformation. Finally
the paper discusses related work in Section 6 and concludes in
Section 7.

2. Semiring and Macro Tree Transducer

2.1 Semirings and Linear Polynomials
A semiring abstracts the cooperation of two related operations

such as addition and multiplication.
Definition 1 A semiring (S ,⊕,⊗, 0, 1) is a five-tuple, where

S is a set of values, ⊕ and ⊗ are binary operators over S , 0 and 1
are elements of S , and the following properties hold.

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c { associativity of ⊕ }
a ⊕ b = b ⊕ a { commutativity of ⊕ }
a ⊕ 0 = 0 ⊕ a = a { unit of ⊕ }
a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c { associativity of ⊗ }
a ⊗ 1 = 1 ⊗ a = a { unit of ⊗ }
a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) { distributivity }
a ⊗ 0 = 0 ⊗ a = 0 { zero }
Examples of semirings include the following: addition and

multiplication of integers, (Z,+,×, 0, 1); addition with the bi-
nary maximum operator ↑, (Z ∪ {−∞}, ↑,+,−∞, 0); and com-
putations over languages (i.e., sets of strings), (2Σ

∗
, •,∪, {ε}, ∅)

where Σ∗ is a set of strings using alphabet Σ, ε is the empty
string, and • is the language concatenation operator defined by
S 1 • S 2 = {w1w2 | w1 ∈ S 1, w2 ∈ S 2}.

For a semiring R = (S ,⊕,⊗, 0, 1), R and S may be used in-
terchangeably if the meaning is apparent from the context. For
example, we may write s ∈ R, i.e., “s is an element of R,” instead
of s ∈ S .

Given a set of variables, Y = {y1, y2, . . . , ym}, polynomials over
R = (S ,⊕,⊗, 0, 1) are naturally defined. In particular, a polyno-
mial of the following form, where s0, s1, . . . , sm ∈ S ,

s0 ⊕ (s1 ⊗ y1) ⊕ · · · ⊕ (sm ⊗ ym),

is called a left-linear polynomial over (R, Y) *1. We need not men-
tion R and Y if they are clear from the context. Note also the
potential confusion between the linearity of a polynomial and the
linearity of a variable. To avoid the confusion, the latter type of
linearity is called single-use in this paper.

*1 While only left-linear polynomials are considered in this paper, the same
discussion can be applied to the dual, namely right linear polynomials.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

2.2 Macro Tree Transducers
A macro tree transducer (MTT) models a tree transformation

by recursive functions. This paper considers total deterministic
MTTs, which can be understood as a subset of first-order func-
tional programs.

The syntax of MTTs is defined below, where f , each vi (v ∈
{x, y, z}, i ∈ N), σ, and δ are metavariables that respectively de-
note the name of a recursive function, a variable, an input tree
constructor, and an output tree constructor. Each function, as well
as each constructor, takes a certain number of arguments, called
the arity.

prog ::= e where decl · · · decl

decl ::= f (σ x1 · · · xn) y1 · · · ym = e

e ::= yi | f xi e · · · e | δ e · · · e
| let zi = e in e | zi

A program consists of an initial expression and a set of recur-
sive function definitions. The initial expression contains a special
variable x1 that binds the input tree. Functions are defined by mu-
tual recursion and traverse the input tree structural-recursively.
Each function definition consists of 〈 f , σ〉-rules, which are the
equations of the form f (σ x1 · · · xn) y1 · · · ym = e. Note that only
the first argument, which binds a subtree of the input, is the sub-
ject of pattern matching. To syntactically clarify this restriction,
we use different names for the variables binding subtrees of the
inputs from the others. This naming convention may be violated
for better readability of some examples.

MTTs in this paper can introduce local variables through let
bindings, but recursive bindings, i.e., letrec, are not allowed. The
let bindings may appear to be syntactic sugar. Later, special se-
mantics are provided to support easy expression of substructure
summarization. Each variable name introduced by a let binding
is assumed unique.

The semantics of MTTs is defined by reduction, as usual. We
only deal with type-correct, error-free MTTs. Every used variable
should be defined, and the 〈 f , σ〉-rules should be exhaustive and
non-overlapping. Note that the evaluation of an MTT terminates
because the size of the first argument decreases.

An MTT is said to be single-use restricted [20] if (i) each vari-
able yi or zi is used at most once in each 〈 f , σ〉-rule, and (ii) for
each σ, each f , and each xi, at most one 〈 f ′, σ〉-rule contains a
recursive call of the form of f xi e · · · e, and the recursive call
cannot appear more than once in the rule. In evaluating a single-
use restricted MTT, each recursive function visits each subtree
at most once, and the result of the recursive call is used at most
once. Note, however, that different recursive functions may visit
the same subtree.

In the following, if an MTT contains only one recursive func-
tion, it is denoted by the name of the recursive function.
Examples

The following MTT toBin outputs a complete binary tree of a
given height. Each leaf stores the path from the root.

toBin x1 Nil

where
toBin Z y1 = Tip y1

toBin (S x1) y1 = Fork (toBin x1 (L y1))
(toBin x1 (R y1))

This MTT is not single-use restricted: y1 is used twice in the
〈toBin,S〉-rule, and toBin visits x1 twice.

The next MTT finds redexes, i.e., immediately reducible appli-
cations, in a lambda expression. Var, Abs, App, and App respec-
tively denote a variable, a lambda abstraction, a function applica-
tion, and a redex.

redex x1

where
redex (Var v) = Var v

redex (Abs v e) = Abs v (redex e)
redex (App e1 e2) = check e1 (redex e2)
check (Var v) y1 = App (Var v) y1

check (Abs v e) y1 = App (Abs v (redex e)) y1

check (App e1 e2) y1 = App (check e1 (redex e2)) y1

Because check e1 occurs in both the 〈redex,App〉-rule and the
〈check,App〉-rule, this MTT also is not single-use restricted.

The following MTT calculates 2n for a given natural number n.
Both the input and the output are represented by Peano numbers
denoted as S and Z.

exp x1 Z

where exp Z y1 = S y1

exp (S x1) y1 = exp x1 (exp x1 y1)
Again, this MTT is not single-use restricted, because exp visits x1

twice.
As the final example, the following MTT constructs a list from

a binary tree by gathering leaves.
flat x1 []

where flat (Tip a) y1 = a : y1

flat (Fork x1 x2) y1 = flat x1 (flat x2 y1)
This MTT is single-use restricted.

2.3 Attributed Tree Transducers
An attributed tree transducer (ATT) transforms trees according

to an attribute grammar [18]. Although the computational mod-
els of MTTs and ATTs are different, the following two aspects of
correspondence are known.
• Any tree transformation definable by an ATT are definable

by an MTT; moreover, the corresponding MTT can be con-
structed from the ATT [9].

• It is computable whether a tree transformation described by
an MTT is definable by an ATT, and if being definable, the
corresponding ATT can be constructed [10].

This correspondence indicates that MTTs can express complex
tree traversals as attribute grammars.

It is beyond the scope of this paper to explain the correspon-
dence between MTTs and ATTs in detail. The following rough
correspondence may be informative for understanding the paper.

Most ATTs correspond to well-presented MTTs [9] *2.
Roughly speaking, in a well-presented MTT, if a function visits
a subtree more than once, then the sets of values passed as accu-
mulation parameters should be identical. For example, the above
MTT example consisting of redex and check is well-presented:
although both the 〈redex,App〉-rule and the 〈check,App〉-rule

*2 Consistent MTTs [10], a superclass of well-presented MTTs, more
closely correspond to ATTs. They are based on a more careful analy-
sis on the uniqueness of accumulation parameters than the case of well-
presented MTTs.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

contain calls of check e1, the accumulation parameter is the
same, redex e2. In contrast, the MTT example toBin is not
well-presented because subtree x1 is visited with two different
accumulation parameters, L y1 and R y1. Similarly the MTT
exp is not well-presented because subtree x1 is visited with two
different accumulation parameters, exp x1 y1 and y1. In fact,
neither toBin nor exp is definable by an ATT.

Note that any single-use restricted MTT is well-presented by
definition, and therefore definable by an ATT. In fact, single-use
restricted MTTs exactly correspond to single-use restricted ATTs.

From the above-mentioned correspondence, ATTs are regarded
as a subclass of MTTs. Moreover, we can implicitly translate
MTTs to ATTs and vice versa. Hence, the rest of this paper uses
the following conventions:
• “ATTs” is abused to mean MTTs definable by ATTs.
• Single-use restricted MTTs and single-use restricted ATTs

are referred to interchangeably.

3. Language for Parallel Tree Processing

3.1 Language Design
The objective is to provide a parallel evaluation algorithm for

tree processing specified by MTTs. It is not ideal, however, to
consider MTTs themselves as seen from the following MTT *3.
It models an intra-procedural reachable definition analysis on an
abstract syntax tree.

dfa x1 ∅
where

dfa (Assign v e) y1 = (remove v y1) ∪ {(v, e)}
dfa (Seq s1 s2) y1 = dfa s2 (dfa s1 y1)
dfa (If e s1 s2) y1 = dfa s1 y1 ∪ dfa s2 y1

dfa (While e s1) y1 = dfa s1 y1

In the program, Assign v e, Seq s1 s2, If e s1 s2, and while e s1

respectively denote an assignment statement like v := e, a se-
quential statement like s1; s2, a conditional statement like
if (e) s1 else s2, and a loop like while (e) s1. Function
remove v y1 removes definitions of variable v from the set of def-
initions y1.

This MTT is not a reachable definition analysis for the fol-
lowing two reasons. First, an MTT expresses a pure tree-to-tree
transformation and therefore cannot express usual computations
such as numerical computations. Even though ∪ and ∩ might ap-
pear to be set operations, they are in fact constructors. Although
there are practically important pure tree transformations such as
XML transformations, most practical tree processing contains
usual computations. Therefore, the proposed language should be
able to deal with tree processing containing usual computations.

Second, while dfa computes the definitions available after ex-
ecuting all statements, the objective of the usual reachable defi-
nition analysis is to determine the definitions available for each

statement or expression. This is not specific to reachable defini-

*3 This program does not perfectly fit the MTT syntax shown in Section 2.2,
because the right-hand-side expressions contain subtrees of the input
tree, such as v and e. To bridge this gap, we interpret Assign v e as a
constructor of arity 0 instead of interpreting Assign as a constructor of
arity 2. Similarly, for the outputs, we interpret remove v as a constructor
of arity 1. This interpretation does not affect the discussion in this paper
even though it introduces infinitely many kinds of constructors.

tion analysis. Balanced trees or heaps should satisfy their own
shape requirement for efficiency. To check these requirements,
we must calculate metrics for each subtree, such as the height
and the size. Queries (using an XPath expression, for example)
should check every node for whether it can be matched with the
query formula. It is difficult to express these cases with existing
MTT generalizations, such as modular tree transducers [7] and
tree transducers with external functions [8], whose syntaxes are
similar to that of MTTs but allow operators other than tree con-
structors.

In summary, a language for parallel tree processing are re-
quired to satisfy the following two properties.
• Usual operators such as addition and multiplication are avail-

able in it.
• It supports calculating summaries for substructures.

3.2 Language Definition
According to the discussion in the previous subsection, the fol-

lowing design policy is adopted for the proposed parallel tree pro-
cessing language.
• Compute an interpretation of the output tree by using semir-

ing operators.
• Specify values that should be remembered during recursive

calls, and return all such values.
The language assigns an interpretation using semiring oper-

ators to each output constructor of an MTT. For example, for
reachable definition analysis, we consider bit vectors each of
whose bits corresponds to a variable in the program, and interpret
the output tree by using a semiring consisting of the bitwise logi-
cal OR operator ∨ and the bitwise logical AND operator ∧. Here,
the output constructors ∪, ∩, and remove v y1 are interpreted as ∨,
∧, and ¬v∧y1, respectively, where ¬v is a bit vector with each bit
is set to 1 except for the bit corresponding to v. This approach en-
ables the language to express a variety of tree processing without
negating the simplicity and theoretical results of MTTs.

The semantics of the language is to gather values assigned at
let bindings. For example, the following modification for dfa en-
ables obtaining the definitions reachable for each assignment.

dfa (Assign v e) y1= let z1=y1 in (remove v y1)∪{(v, e)}
Although the inserted let binding appears useless, in this lan-
guage it is interpreted as a command to store the values assigned
to y1 for each Assign.

This approach is influenced by attribute grammars. While the
final outcome of an attribute grammar is usually a value assigned
to a synthesized attribute of the root node, the evaluation of an at-
tribute grammar is commonly understood as a value assignment
to every attribute of every node. Because MTTs do not have at-
tribute names, the language instead uses let bindings to introduce
such names.

The language for parallel tree processing is now defined. To
formalize its semantics, we assume that each subtree t of the input
tree has a unique ID (such as its address on the heap) ID(t) ∈ I.
The set of IDs, I, contains a special ID, �, that corresponds to the
initial expression. In the following, Z denotes the set of variables
introduced at let bindings.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 1 Semantics of (M,R, [[·]]).

Definition 2 Given a set of constructors Δ and a semiring
R = (S ,⊕,⊗, 0, 1), an interpretation, [[·]], of Δ using R is said
to be left linear if [[·]] interprets each constructor δ ∈ Δ of arity k

as the following left-linear polynomial with k variables and k + 1
coefficients, s0, s1, . . . , sk ∈ S .

[[δ]] = λx1 x2 · · · xk. s0 ⊕ (s1 ⊗ x1) ⊕ · · · ⊕ (sk ⊗ xk)
For MTTM and semiring R, [[·]] is called a left-linear interpreta-
tion ofM using R if [[·]] is a left-linear interpretation using R for
each output constructor ofM.

The functions sumacc, discussed in Section 1, and dfa can be
understood as left-linear interpretations.

Definition 3 Let M be an MTT whose initial expression is
e0, R be a semiring, and [[·]] be a left-linear interpretation ofM
using R. The semantics of triple (M,R, [[·]]) for input tree t0 is
to calculate a value v∗ ∈ R and mapping Δ ⊆ ((I × Z) → R)
satisfying

{x1 �→ t0} �� e0 → v∗,Δ
according to the evaluation rules shown in Fig. 1.

Evaluation results in a value v∗ and a set Δ of the stored bind-
ings. Δ is a mapping to a value from an input tree ID and a vari-
able name introduced at a let binding, so that we can see how the
value is calculated and stored.

The evaluation rules are ordinary. The differences from those
for MTTs are the use of the interpretation instead of the output
constructor and the calculation of the mapping.

Note that all arguments should be evaluated before a recursive
function call. Therefore, if a result from a subtree is used as an ac-
cumulation parameter for processing another subtree, these sub-
trees cannot be processed in parallel.

3.3 Well-definedness
The semantics defined above calculates a mapping from a sub-

tree ID and a variable name to a value. There exist MTTs, how-
ever, for which the mapping is not well defined.

For instance, consider the following MTT, where the output
constructors are interpreted as [[Z]] = 0 and [[S]] = λx. x + 1.

exp x1 Z

where
exp Z y1 = S y1

exp (S x1) y1 = let z1 = y1 in exp x1 (exp x1 y1)
Let the input tree be t0 = S t1, where t1 = S Z. Function

exp is invoked twice for t1, and the accumulation parameters
of the two invocations are respectively Z and S Z. Then, from
the semantics shown in Fig. 1, the resulting mapping should be
{(ID(t1), z1) �→ 0} ∪ {(ID(t1), z1) �→ 1}. This mapping is non-
sense, however, because two different values are associated with
the same key.

For a program written in the proposed language, we assume
that a unique value is associated with each key, consisting of sub-
tree and a variable name. For instance, the above-mentioned exp

is invalid.
There are a few reasons for this assumption. First, as seen

in MTT dfa, a common application of the language is to calcu-
late summaries for subtrees of the input. In such an application,
it would be strange that two different values are assigned to the
same subtree. Second, it is not straightforward to refine the se-
mantics to deal with problematic cases. Because possibly very
many values can be associated with a key, as in the case of exp,
it does not seem useful to calculate all associated values unless
we can know how each value is obtained. Using output tree IDs
instead of input tree IDs is also not useful, because a let binding
may have no corresponding output constructors, as in the case
of exp. Third, a large class of MTTs satisfies the assumption.
Note that, in an MTT, an expression results in multiple, differ-
ent values only if multiple, different accumulation parameters are
passed. Therefore, any well-presented MTT (more precisely, any
ATT) satisfies the assumption. Moreover, even MTTs that are not
ATTs can satisfy the assumption. A typical case is the following,
in which only the initial expression contains a let binding.

let z1 = exp x1 Z in z1

where exp Z y1 = S y1

exp (S x1) y1 = exp x1 (exp x1 y1)
Clearly, variable z1 binds only one value. In general, the assump-
tion is fulfilled if each variable stores the final outcome, rather
than the trace, of a recursive function call.

Whether an MTT satisfies the assumption would be algorith-
mically checkable by a method similar to that of checking well-
presentedness. Further study is left for a future work.

4. Parallel Evaluation Algorithm

4.1 Overview of Algorithm
This section introduces a parallel evaluation algorithm for the

triple (M,R, [[·]]) and shows that the number of parallel compu-
tation steps necessary for evaluation is proportional to the height
of the input tree. Achieving this computational cost requires pro-
cessing independent subtrees in parallel even if a computation
of one subtree depends on a result of another subtree via an ac-
cumulation parameter. To achieve this, the parallel evaluation
algorithm uses two phases, summarization and dependency reso-

lution.
The objective of the summarization phase is to process inde-

pendent subtrees as much as possible. For example, suppose that
the computation of a subtree essentially corresponds to

λy1, y2. 3 × (5 + y2 + 4 × (y1 + 2 × y2 − 3)),

where y1 and y2 are variables (i.e., accumulation parameters) that
will be bound with results of other subtrees. Then, regardless

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

of the values of y1 and y2, we can simplify the computation and
obtain the following summary.

λy1, y2. 12 × y1 + 27 × y2 − 21

In general, such simplification is possible if the computation cor-
responds to a left-linear polynomial of the semiring. A left-linear
polynomial with n variables can be characterized as n + 1 coef-
ficients. Therefore, any complex expression can be reduced to a
simple linear polynomial if the number of variables is small. The
summarization phase performs this simplification.

Next, the dependency resolution phase calculates the final re-
sult from the summarizes calculated in the summarization phase.
The process is similar to usual evaluation. The difference is
that the dependency resolution phase avoids recursive calls and
instead uses the summaries from the summarization phase to
quickly finish the computation on each node.

4.2 Summarization Phase
The kernel of the summarization phase is simplification of left-

linear polynomials. In the following definition of the simplifi-
cation, we assume that every left-linear polynomial contains the
same set of variables. Because we can introduce a variable to
a polynomial by associating it with the zero coefficient, this as-
sumption is not a restriction.

Definition 4 Consider expressions defined using a semiring
(S ,⊕,⊗, 0, 1) and a set of variables {y1, . . . , ym}. A binary rela-
tion⇒, which simplifies such expressions, is defined as follows,
where P = s0 ⊕ (s1 ⊗ y1) ⊕ · · · ⊕ (sm ⊗ ym), P′ = s′0 ⊕ (s′1 ⊗ y1) ⊕
· · · ⊕ (s′m ⊗ ym)(s j, s′j ∈ S), and s ∈ S :

P ⊕ P′ ⇒ (s0 ⊕ s′0) ⊕
⎛⎜⎜⎜⎜⎜⎜⎝
⊕

1≤ j≤m

(s j ⊕ s′j) ⊗ y j

⎞⎟⎟⎟⎟⎟⎟⎠

s ⊗ P⇒ (s ⊗ s0) ⊕
⎛⎜⎜⎜⎜⎜⎜⎝
⊕

1≤ j≤m

(s ⊗ s j) ⊗ y j

⎞⎟⎟⎟⎟⎟⎟⎠ .

The summarization phase can be naturally defined using the
simplification relation. In the following, e0[e1/w1, . . . , em/wm]
denotes the expression obtained by substituting every variable wi

in e0 with an expression ei, respectively.
Definition 5 Let M be an MTT whose initial expression is

e0, R be a semiring, and [[·]] be a left-linear interpretation ofM
using R. The summary of triple (M,R, [[·]]) for input tree t0 is a
left-linear polynomial v∗ that satisfies

{x1 �→ t0} � e0 � v∗

according to the rules shown in Fig. 2.
The summarization phase has three characteristics. First, it re-

sults in a left-linear polynomial, in which each accumulation pa-
rameter yi becomes a variable. Second, as the interpretation of
each output constructor is left-linear, the simplification always
results in a left-linear polynomial. Note that an expression ob-
tained by substituting left-linear polynomials for another left-
linear polynomial can be simplified to a left-linear polynomial.
Third, all subexpressions, especially recursive function calls and
their accumulation parameters, can be evaluated in parallel. For

Fig. 2 Summarization phase.

example, even for the expression f1 x1 (f2 x2), the recursive calls
of f1 to subtree x1 and f2 to subtree x2 are simultaneously evalu-
ated.

The summarization phase is characterized by the following
theorem. In the following, let vars(p) = {y1, . . . , ym}, where
p = s0 ⊕ (s1 ⊗ y1) ⊕ · · · ⊕ (sm ⊗ ym), and inputs(Γ) = {t1, . . . , tk},
where Γ = {x1 �→ t1, . . . , xk �→ tk, y1 �→ v1, . . . , ym �→ vm, z1 �→
v′1, . . . , zn �→ v′n}.

Theorem 6 For any expression e and environment Γ that
does not contain any yi (i ∈ N), the following holds. Given
ΓY = {y1 �→ s1, . . . , ym �→ sm} and a left-linear polynomial w,
define ΓY (w) as follows:
ΓY (w) = s ⇐⇒ w[ΓY (yi1)/yi1 , . . . , ΓY (yim)/yim]⇒ s

where {yi1 , . . . , yim } = vars(w).
Then, Γ�e� v implies Γ′∪ΓY �e→ ΓY (v), where Γ′ is an environ-
ment obtained by substituting every zi �→ vi in Γ with zi �→ ΓY (vi).

Proof Sketch The proof uses induction on the structures
of e and inputs(Γ). The most nontrivial case is e =

f xi e1 · · · em. Following the rules in Fig. 2, let e0 be the
right-hand-side expression of the function definition used for
the recursive call of f xi. Because the induction hypothe-
sis can be applied to every ei (0 ≤ i ≤ m), it is suffi-
cient to show that v0[v1/y1, . . . , vm/ym] ⇒ v∗ implies ΓY (v∗) =
ΓY (v0[v1/y1, . . . , vm/ym]) = v0[ΓY (v1)/y1, . . . , ΓY (vm)/ym], where
each vi is the summary obtained from ei. This holds because
vars(v0) = {y1, . . . , ym}, which can easily be shown by a sim-
ilar induction, and because the binary relation ⇒ preserves the
semantics of left-linear polynomials, owing to the properties of
semirings. The other cases are similar or trivial. �

As a result of the summarization phase, the summary obtained
from sumacc discussed in Section 1 is a left-linear polynomial of
the form n + 1 × y, where n is the summation of the tree and y
is a variable of the polynomial. The summary obtained from dfa

is a left-linear polynomial of the form v ∨ (v ∧ y1), where v is the
bit vector corresponding to variables introduced or updated in the
tree.

4.3 Dependency Resolution Phase
The dependency resolution phase uses the result of the summa-

rization phase as follows.
Definition 7 Let M be an MTT whose initial expression is

e0, R be a semiring, and [[·]] be a left-linear interpretation ofM

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 3 Dependency resolution phase.

usingR. The dependency resolution of triple (M,R, [[·]]) for input
tree t0 consists of a value v∗ ∈ R and mapping Δ ⊆ ((I × Z)→ R)
that satisfy

{x1 �→ t0} �� e0 ↪→ v∗,Δ
according to the rules shown in Fig. 3, in which denotes a value
unnecessary to compute.

The dependency resolution phase is the same as the usual eval-
uation except for the case of a recursive call. In this phase, a
recursive call calculates not the value but the mapping. The value
is instead calculated using the summary, i.e., a left-linear polyno-
mial, obtained by the summarization phase. Therefore, even if a
recursive call depends on a value calculated by another recursive
call, the two recursive calls can be evaluated in parallel. For ex-
ample, consider evaluating f1 x1 (f2 x2). In the usual evaluation,
the evaluation of f1 starts after that of f2 x2. In the dependency
resolution phase, however, the evaluations of f1 x1 and f2 x2 can
be performed simultaneously because the accumulation parame-
ter of f1 x1 can be obtained from the summary for f2 x2.

The correctness of the dependency resolution phase follows
from Theorem 6.

Theorem 8 For any environment Γ, expression e, and subtree
ID η, Γ �η e ↪→ v,Δ implies Γ �η e→ v,Δ.

Proof Sketch As similar to Theorem 6, the proof uses induc-
tion on the structures of e and inputs(Γ). The case of a recursive
function call is the most nontrivial, but it is immediately justified
from Theorem 6. The other cases are trivial. �

4.4 Computational Complexity
The computational complexity of the parallel evaluation algo-

rithm is now examined. Let n, h, and p be the size of the input,
the height of the input, and the number of processors, respec-
tively. The size of the MTT is regarded as a constant. Note that
not only the number of the recursive functions but also the num-
ber of variables is constant, because only those defined in the
program will appear during the evaluation.

As explained here, the time complexity of the parallel evalua-
tion algorithm is O(n/p + h). In the summarization phase, each
recursive function visits each subtree at most once. Multiple vis-
its that may result from a naive use of the rules shown in Fig. 2
can be avoided by memoization because every visit yields the

same result. In addition to the recursive call, for each node, each
function performs computations at most proportional to the right-
hand-side expression of the function. Note that the computations
consist of simplifications and substitutions to left-linear polyno-
mials having a constant number of variables. In summary, then,
the work of the summarization phase is at most proportional to
the size of the input tree. Because function calls to independent
subtrees can be computed in parallel, the cost of the summariza-
tion phase is O(n/p + h). Next, for the dependency resolution
phase, assume that the summarization phase is complete and its
results for each subtree have been memoized. Then, the amount
of computation necessary for each node and each function is also
at most proportional to the size of the right-hand-side expression
of the function. Moreover, after calculations of accumulation pa-
rameters, which are done in constant time, independent subtrees
can be processed in parallel. Therefore, the cost of the depen-
dency resolution phase is also O(n/p + h).

The discussion so far can be formalized via the following lem-
mas and theorem. Let size(t) and height(t) be the size and
height of tree t, respectively. Furthermore, let these definitions
extend to environments, i.e., size(Γ) =

∑
t∈inputs(Γ) size(t) and

height(Γ) = maxt∈inputs(Γ) height(t).
Lemma 9 For any environment Γ and expression e, a value v

satisfying

Γ � e� v

can be calculated in O(size(Γ)) work and O(height(Γ)) parallel
computational steps.

Proof Sketch The proof uses induction on the structure of
inputs(Γ). Because recursive calls to independent subtrees can
be done in parallel, it is sufficient to show that Γ�e� v can be cal-
culated in O(1) works and O(1) parallel computational steps if ev-
ery result (i.e., summary) of a recursive call to any of inputs(Γ)
is known. This can be straightforwardly proved by induction on
the structure of expression e. Note that the costs of simplify-
ing and substituting left-linear polynomials are O(1) because each
left-linear polynomial contains O(1) variables. �

Lemma 10 For any environment Γ and expression e, a value
v and mapping Δ satisfying

Γ � e ↪→ v,Δ

can be calculated in O(size(Γ)) work and O(height(Γ)) parallel
computational steps if every summary of a function for a subtree
of inputs(Γ) is known.

Proof Sketch The proof begins by showing that the eval-
uation costs O(1) work and O(1) parallel computation steps if
the costs of recursive calls are ignored. Similarly to Lemma 9,
this can easily be shown by induction on the structure of expres-
sion e. Then, the cost of calculating the mappings by recursive
calls is estimated. Recursive calls to independent subtrees can
be performed in parallel; moreover, because of the assumption
discussed in Section 3.3, it is sufficient for each function to visit
each subtree at most once. Finally, induction on the structure of
inputs(Γ) proves this lemma. �

Theorem 11 Let M be an MTT whose initial expression is

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

e0, R be a semiring, and [[·]] be a left-linear interpretation ofM
using R. The semantics of triple (M,R, [[·]]) for input tree t0,
namely,

{x1 �→ t0} �� e0 → v∗,Δ,
can be calculated on an exclusive-read exclusive-write paral-
lel random-access machine consisting of p processors in time
O(n/p + h), where n and h are respectively the size and height
of t0.

Proof Sketch From Theorem 8, {x1 �→ t0} �� e0 ↪→ v∗,Δ.
The amount of work and the number of parallel computational
steps are given by Lemmas 9 and 10. Then, the computational
complexity follows from Brent’s scheduling principle [4]. �

Note that, in general, the evaluation of an MTT cannot be fin-
ished in a time proportional to the size of input tree. For instance,
the computational cost of MTT exp, discussed in Section 2.2, is
exponential, because the size of the output is exponential to that
of the input. The proposed algorithm avoids this inefficiency for
the following two reasons. First, a program written in the pro-
posed language calculates not the output tree but its interpreta-
tion; thus, it is unnecessary to calculate huge outputs. Second,
when an MTT outputs a tree significantly larger than the input,
it does the same computations more than once by visiting the
same subtree several times or duplicating computed trees. In con-
trast, the proposed algorithm avoids this inefficiency: the summa-
rization phase uses memoization, and the dependency resolution
phase never visits the same subtree by virtue of the assumption
discussed in Section 3.3. In other words, the assumption enables
efficient parallel tree processing.

5. Improving Computational Complexity
through Fusion Transformation

The computational complexity, O(n/p+h), given by Theorem
11 is ideal if the input tree is balanced, i.e., if h ∈ O(log n). If
the input is a list-like structure whose height is proportional to
its size, however, then the complexity is O(n) regardless of the
number of processors, showing little parallel speedup. Lists are
the most widely used data structures in functional programming,
and practical tree structures, such as XML data and syntax trees,
are very often list-like. Thus, this is a serious shortcoming.

A divide-and-conquer approach is typical for parallel process-
ing of list-like structures. The input is split at the middle, and
then, each part is processed in parallel. A recursive divide-and-
conquer approach for a list can be understood as transforming the
list to a complete binary tree. Now recall the MTT flat discussed
in Section 2.2 and let F x = flat x []. Then, a recursive divide-
and-conquer approach can be regarded as the following strategy:

Instead of calculating function f for list x, prepare a
complete binary tree t such that F t = x and do parallel
evaluation of f ◦ F.

This strategy has the following two requirements.
• The complete binary tree t such that F t = x must be effi-

ciently calculated.
• Efficient parallel evaluation of f ◦ F must be possible.
Several approaches can be used to fulfill the first requirement.

For example, if the list is implemented as an array, as usual in

the context of parallel computing, then the transformation to a
complete binary tree is unnecessary.

The major requirement is the second one. The discussion to
this point implies the following.

A list processing function f has an efficient parallel
implementation if f ◦ F can be specified by a triple
(M,R, [[·]]).

Fusion transformations for MTTs are useful for understanding
when f ◦ F can be specified by a triple (M,R, [[·]]). In particular,
the following fact about ATTs and single-use restricted MTTs is
significant *4.

Theorem 12 [Refs. [11], [13]] Given an ATTA and a single-
use restricted MTTM, there is ATT A′ that is equivalent to the
composition A ◦ M. Moreover, A′ can be constructed from A
andM.
This theorem describes a fusion transformation, because it ob-
tains a single MTT from a composition of two MTTs.

Because flat is single-use restricted, Theorem 12 immediately
leads to the following theorem.

Theorem 13 For a list processing function expressed by a
triple (M,R, [[·]]), ifM is an ATT, it can be evaluated in O(n/p+
log n) time on an exclusive-read exclusive-write parallel random-
access machine, where n is the length of the input list and p is the
number of processors.

Proof Sketch This theorem is a special case of Theorem 14,
which will be proved later. �

For example, consider the following list processing function
sumlist.

sumlist (a : x) = a + sumlist x

sumlist [] = 0
This function can be expressed by an ATT. The result of fusing it
with flat is exactly sumacc.

As a more complex example, consider a tail-recursive summa-
tion function, sumtr.

sumtr (a : x) y = sumtr x (y + a)
sumtr [] y = y

This function can also be expressed by an ATT. Fusion with flat

results in the following. It is fairly complex but indeed an MTT,
and therefore, efficient parallel evaluation is possible.

sum2
acc x1 (sum1 x1 0)

where
sum1

acc (Tip n) y = y + n

sum1
acc (Fork l r) y = sum1

acc r (sum1
acc l y)

sum2
acc (Tip n) y = y

sum2
acc (Fork l r) y = sum2

acc l (sum2
acc r y)

Shunt trees [25] enable generalizing this approach for list pro-
cessing to tree processing. A shunt tree remembers the process of
applying parallel tree contraction algorithms [29] to an input tree.
Given a tree of size n, the size and height of the corresponding
shunt tree are O(n) and O(log n), respectively. In addition, the
original tree can be recovered from the shunt tree by a single-use
restricted MTT. This leads to the following theorem, which is a
generalization of Theorem 13 because shunt trees corresponding
to lists are in fact complete binary trees.

*4 The focus here is not on MTTs but on triples. This difference does not
affect Theorems 13 and 14 at all.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Theorem 14 For tree processing specified by a triple
(M,R, [[·]]), ifM is an ATT, it can be evaluated in O(n/p+ log n)
time on an exclusive-read exclusive-write parallel random-access
machine, where n is the size of the input tree and p is the number
of processors.

Proof Sketch First, construct the shunt tree corresponding
to the input tree. A parallel tree contraction algorithm achieves
this in time O(n/p + log n) [25]. Second, by Theorem 12, obtain
an ATT equivalent to the composition of the triple and the single-
use restricted MTT that restores the original input from the shunt
tree. Finally, evaluate the obtained ATT according to Theorem
11. The computational complexity follows from the fact that the
size and height of the shunt tree are O(n) and O(log n), respec-
tively. �
Limitation

Theorem 14 enables efficient parallel evaluation for tree pro-
cessing specified by an ATT. It is natural to also consider tree
processing specified by an MTT; however, efficient parallel eval-
uation seems difficult for that case.

In general, a composition of an MTT and a single-use restricted
MTT cannot be expressed by an MTT. For instance, consider a
composition of the MTT exp discussed in Section 2.2 and the fol-
lowing single-use restricted MTT count.
count x1 Z

where count (Tip a) y1 = S y1

count (Fork x1 x2) y1 = count x1 (count x2 y1)
If the input is a complete binary tree that has height n and there-
fore 2n−1 leaves, count results in a sequence of length 2n−1; hence,
applying exp to the sequence results in a sequence of length 22n−1

.
Because an MTT cannot produce a tree whose height is doubly-
exponential to the height of the input [9], the composition cannot
be expressed by an MTT. In short, it is not straightforward to gen-
eralize Theorem 14 to all tree transformations specified by MTTs.

Another approach would be to generalize the parallel algorithm
to a class of tree transformations that is more general than MTTs.
One such class is high-level tree transducers [6]. It is difficult,
however, to provide efficiency-guaranteed parallel evaluation of
high-level tree transducers because they are too expressive: they
can express computations similar to those of the simply-typed
lambda calculus.

On the other hand, even for a tree processing that cannot be
specified by an ATT, the proposed approach may be applicable.
For example, consider macro forest transducers [26], which gen-
eralize MTTs because they can yield a sequence of trees, i.e., a
forest, by using a forest concatenation operator. In most semiring-
based interpretations of macro forest transducers, it is not harm-
ful to regard the forest concatenation operator as a constructor:
the forest concatenation corresponds merely to an addition or a
binary maximum if the objective is a kind of summation (e.g.,
counting) or maximization (e.g., height calculation), respectively.
In such a case, the proposed method is straightforwardly applica-
ble to the tree processing specified by a macro forest transducer,
obtaining good parallel speedup.

6. Related Work

This paper has proposed a parallel evaluation method for tree

processing. The method was built on a combination of two pre-
ceding proposals [24], [25] by the author, together with a col-
league in one case.

First, Morihata and Matsuzaki [25] proposed shunt trees to en-
capsulate parallel tree contraction algorithms in data structures.
Shunt trees represent the tree processing patterns of parallel tree
contraction algorithms. For any tree, the height of its shunt tree
representation is logarithmic in its size. Therefore, tree process-
ing can show ideal parallel speedup if it can be specified as a
series consisting of top-down or bottom-up processing over the
shunt tree representation corresponding to the input tree. In ad-
dition, that study discussed the usefulness of fusion transforma-
tions for systematically deriving parallel processing over shunt
trees. The limitation was that the derivations of parallel process-
ing were rather complicated and done by hand. In contrast, the
current paper has observed that the derivation can be automatic
for tree processing specified by ATTs, which covers all examples
discussed by that study.

Second, Morihata [24] showed that a single-use restricted MTT
can be efficiently evaluated using a parallel tree contraction al-
gorithm, but that result has the following two major limitations.
First, the single-use restriction is a strong requirement. For a pure
tree transformation, theoretically the restriction is not severe. Un-
less the transformation can cause an unlimited amount of copy-
ing, we can avoid copying of calculated trees by constructing the
same tree more than once. For tree processing concerning usual
value computations, however, it is not practical to do the same
computation more than once. Therefore, the single-use restric-
tion makes it difficult to deal with tree processing beyond pure
tree transformations. In contrast, the current paper has eliminated
that restriction and showed a parallel evaluation algorithm for any
MTT or ATT. Second, the method in Ref. [24] relies on a parallel
tree contraction algorithm, which is fairly complex. The com-
plexity makes it difficult for those unfamiliar with parallel tree
contraction algorithms to understand the method; moreover, be-
cause of the complexity, it was unclear whether the method could
be generalized to MTTs or ATTs that are not single-use restricted.
The current paper has simplified the algorithm as well as the cor-
rectness proof by using shunt trees and fusion transformations,
thereby showing the possibility of generalization. The simplifi-
cation also enables dealing with summarization for substructures.
Note that the method of Morihata [24] is immediately obtained by
the use of shunt trees and Theorem 12, which yields a single-use
restricted MTT from a composition of two single-use restricted
MTTs.

Apart from the theoretical simplicity, the approach of using
shunt trees and fusion transformations has a practical benefit. Par-
allel tree contraction algorithms intricately process input trees ac-
cording to careful scheduling. In contrast, the proposed algorithm
simply processes an input tree in nearly top-down and bottom-up
manners. Therefore, existing optimization for parallel tree pro-
cessing, such as flattening trees to nested arrays [2], [15], [28],
can be naturally applied.

The proposed approach allows complex tree accumulations and
yet guarantees ideal parallel speedups. To the best of the author’s
knowledge, no existing approach provides both of these charac-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

teristics, except for the one described above [24] for single-use
restricted MTTs. Other works [1], [12], [21], [22], [30], [32] stud-
ied when certain tree processing patterns, especially top-down
and bottom-up processing, can be efficiently evaluated on par-
allel computers. None of them considered complex tree traver-
sals as attribute grammars. On the other hand, there have been
many studies on parallel evaluation of attribute grammars [3],
[14], [16], [17], [19], [23], [30], [31], but most of them do not
guarantee parallel speedups. A notable exception is Reps’ scan
grammars [30], which provided an efficiency-guaranteed parallel
implementation for an attribution that scans leaves by using an
associative operator. The current approach can be regarded as a
generalization of scan grammars: it can perform arbitrary traver-
sals by using semiring operators, and moreover, it can deal with
MTTs rather than attribute grammars.

7. Conclusion and Future Work

This paper has examined tree processing defined by MTTs and
semirings. A parallel evaluation algorithm was proposed for this
parallel tree processing approach, and the condition for the al-
gorithm to guarantee ideal asymptotic parallel speedup was dis-
cussed. It was shown that the number of parallel evaluation steps
is proportional to the height of the input tree if the tree processing
is specified by an MTT, and logarithmic in the size if specified by
an ATT. These results were easily obtained through careful de-
sign of the language for describing parallel tree processing and
the use of fusion transformations to improve parallel speedup.

Several issues remain.
First, this paper considered not tree transformations but tree

processing using semirings. Parallel evaluation of tree trans-
formations has important applications including queries to tree-
structured databases. We might expect that the result of this paper
would also be applicable to tree transformations. A tree is identi-
fied by a set of paths from the root to the leaves, and the paths can
be calculated by using a semiring for languages. In practice, how-
ever, substitutions and simplifications of left-linear polynomials
may require duplication of strings, thereby making the compu-
tational complexity worse. Morihata [24] considered single-use
restricted MTTs so as to avoid this difficulty concerning tree du-
plication. It is unclear whether the use of directed acyclic graphs
or similar structures could resolve the issue. Further study is left
for future work.

Section 5 discussed the difficulty of extending the result of this
paper to deal with more general classes of tree transformations
such as high-level tree transducers. There may exist cases of tree
processing that are not definable by an MTT but have the pos-
sibility of efficient parallel evaluation. It might be interesting to
look for such cases of tree processing.

Fusion transformations were used to improve parallel compu-
tational complexity. This approach of considering an intermedi-
ate structure suitable for the objective and then applying a fusion
transformation to derive a function on the intermediate structure,
is not specific to parallelization. Potential applications include
computations for compressed data without decompression, com-
putations for indexed data, and incremental computation of re-
sults according to the modification of inputs.

Acknowledgments I am grateful to the reviewers for their
valuable comments helping to improve this paper. The work
is supported by JSPS Grant-in-Aid for Young Researchers (B),
24700019.

References

[1] Abrahamson, K.R., Dadoun, N., Kirkpatrick, D.G. and Przytycka,
T.M.: A Simple Parallel Tree Contraction Algorithm, J. Algorithms,
Vol.10, No.2, pp.287–302 (1989).

[2] Blelloch, G.E., Hardwick, J.C., Sipelstein, J., Zagha, M. and
Chatterjee, S.: Implementation of a Portable Nested Data-Parallel
Language, J. Parallel Distrib. Comput., Vol.21, No.1, pp.4–14 (1994).

[3] Boehm, H.-J. and Zwaenepoel, W.: Parallel Attribute Grammar Eval-
uation, Proc. 7th International Conference on Distributed Computing
Systems, Berlin, Germany, September 1987, IEEE Computer Society
Press, pp.347–355 (1987).

[4] Brent, R.P.: The Parallel Evaluation of General Arithmetic Expres-
sions, J. ACM, Vol.21, No.2, pp.201–206 (1974).

[5] Engelfriet, J. and Vogler, H.: Macro Tree Transducers, J. Comput.
Syst. Sci., Vol.31, No.1, pp.71–146 (1985).

[6] Engelfriet, J. and Vogler, H.: High Level Tree Transducers and Iter-
ated Pushdown Tree Transducers, Acta Inf., Vol.26, No.1/2, pp.131–
192 (1988).

[7] Engelfriet, J. and Vogler, H.: Modular Tree Transducers, Theor. Com-
put. Sci., Vol.78, No.2, pp.267–303 (1991).

[8] Fülöp, Z., Herrmann, F., Vágvölgyi, S. and Vogler, H.: Tree Trans-
ducers with External Functions, Theor. Comput. Sci., Vol.108, No.2,
pp.185–236 (1993).

[9] Fülöp, Z. and Vogler, H.: Syntax-Directed Semantics: Formal Models
Based on Tree Transducers, Springer-Verlag New York, Inc., Secau-
cus, NJ, USA (1998).

[10] Fülöp, Z. and Vogler, H.: A Characterization of Attributed Tree Trans-
formations by a Subclass of Macro Tree Transducers, Theory of Com-
puting Systems, Vol.32, No.6, pp.649–676 (1999).

[11] Ganzinger, H. and Giegerich, R.: Attribute coupled grammars, Proc.
1984 SIGPLAN Symposium on Compiler Construction, pp.157–170,
ACM (1984).

[12] Gibbons, J., Cai, W. and Skillicorn, D.B.: Efficient Parallel Algo-
rithms for Tree Accumulations, Sci. Comput. Program., Vol.23, No.1,
pp.1–18 (1994).

[13] Giegerich, R.: Composition and evaluation of attribute coupled gram-
mars, Acta Inf., Vol.25, No.4, pp.335–423 (1988).

[14] Jourdan, M.: A Survey of Parallel Attribute Evaluation Methods,
Attribute Grammars, Applications and Systems, International Sum-
mer School SAGA, Prague, Czechoslovakia, June 4–13, 1991, Proc.,
Lecture Notes in Computer Science, Vol.545, pp.234–255, Springer
(1991).

[15] Keller, G. and Chakravarty, M.M.T.: Flattening Trees, Euro-Par
’98 Parallel Processing, 4th International Euro-Par Conference,
Southampton, UK, September 1–4, 1998, Proc., Lecture Notes in
Computer Science, Vol.1470, pp.709–719, Springer (1998).

[16] Klaiber, A.C. and Gokhale, M.: Parallel Evaluation of Attribute Gram-
mars, IEEE Trans. Parallel Distrib. Syst., Vol.3, No.2, pp.206–220
(1992).

[17] Klein, E.: Parallel ordered attribute grammars, Proc. 1992 Inter-
national Conference on Computer Languages, Oakland, California,
USA, 20–23 Apr. 1992, pp.106–116, IEEE (1992).

[18] Knuth, D.E.: Semantics of Context-Free Languages., Mathematical
Systems Theory, Vol.2, No.2, pp.127–145 (1968).

[19] Kuiper, M.F. and Swierstra, S.D.: Parallel Attribute Evaluation: Struc-
ture of Evaluators and Detection of Parallelism, Attribute Grammars
and their Applications, International Conference WAGA, Paris, Fance,
September 19–21, 1990, Proc., Lecture Notes in Computer Science,
Vol.461, pp.61–75, Springer (1990).

[20] Maneth, S.: The Macro Tree Transducer Hierarchy Collapses for
Functions of Linear Size Increase, FST&TCS 2003: Foundations of
Software Technology and Theoretical Computer Science, 23rd Con-
ference, Mumbai, India, December 15–17, 2003, Proc., Lecture Notes
in Computer Science, Vol.2914, pp.326–337, Springer (2003).

[21] Matsuzaki, K., Hu, Z. and Takeichi, M.: Parallelization with Tree
Skeletons, Euro-Par 2003: Parallel Processing, 9th International
Euro-Par Conference, Klagenfurt, Austria, August 26–29, 2003, Proc.,
Lecture Notes in Computer Science, Vol.2790, pp.789–798, Springer
(2003).

[22] Matsuzaki, K., Hu, Z. and Takeichi, M.: Parallel skeletons for manip-
ulating general trees, Parallel Comput., Vol.32, No.7-8, pp.590–603
(2006).

[23] Meyerovich, L.A., Torok, M.E., Atkinson, E. and Bodı́k, R.: Parallel

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

schedule synthesis for attribute grammars, Proc. ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP
’13, Shenzhen, China, February 23–27, pp.187–196, ACM (2013).

[24] Morihata, A.: Macro Tree Transformations of Linear Size Increase
Achieve Cost-Optimal Parallelism, Programming Languages and Sys-
tems - 9th Asian Symposium, APLAS 2011, Kenting, Taiwan, Decem-
ber 5–7, 2011, Proc., Lecture Notes in Computer Science, Vol.7078,
pp.204–219, Springer (2011).

[25] Morihata, A. and Matsuzaki, K.: Balanced trees inhabiting func-
tional parallel programming, Proc. 16th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2011, Tokyo, Japan,
September 19-21, 2011, pp.117–128, ACM (2011).

[26] Perst, T. and Seidl, H.: Macro forest transducers, Inf. Proc. Lett.,
Vol.89, No.3, pp.141–149 (2004).

[27] Peyton Jones, S. (Ed.): Haskell 98 Language and Libraries: The Re-
vised Report, Cambridge University Press, Cambridge, UK (2003).

[28] Peyton Jones, S.L., Leshchinskiy, R., Keller, G. and Chakravarty,
M.M.T.: Harnessing the Multicores: Nested Data Parallelism in
Haskell, IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2008, Decem-
ber 9-11, 2008, Bangalore, India, Dagstuhl Seminar Proceedings,
Vol.08004, Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFI), Schloss Dagstuhl, Germany (2008).

[29] Reif, J.H. (Ed.): Synthesis of Parallel Algorithms, Morgan Kaufmann
Publishers (1993).

[30] Reps, T.W.: Scan Grammars: Parallel Attribute Evaluation via Data-
Parallelism, Proc. 5th Annual ACM Symposium on Parallel Algorithms
and Architectures, June 30 - July 2, 1993, Velen, Germany, pp.367–
376 (1993).

[31] Saraiva, J. and Henriques, P.: Concurrent attribute evaluation, Com-
puting Systems in Engineering, Vol.6, No.4–5, pp.451–457 (1995).

[32] Skillicorn, D.B.: Structured Parallel Computation in Structured Doc-
uments, J. Univ. Comput. Sci., Vol.3, No.1, pp.42–68 (1997).

Akimasa Morihata was born in 1981.
He received a Ph.D. from Graduate
School of Information Science and Tech-
nology, the University of Tokyo, in 2009.
He entered a JSPS research fellowship for
young scientists in 2009, then became a
research associate at Research Institute of
Electrical Communication, Tohoku Uni-

versity, in 2010. Later, he became a lecturer at Graduate School
of Arts and Sciences, the University of Tokyo, in 2014, and then
an associate professor in 2017. His research interests include pro-
gram transformation, functional programming, parallel program-
ming, and systematic development of efficient algorithms. He is
a member of the Japan Society for Software Science and Tech-
nology and Information Processing Society of Japan.

c© 2019 Information Processing Society of Japan

