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Abstract: In the present paper, we propose a deep network architecture in order to improve the accuracy of general
object detection. The proposed method contains a proposal network and a classification network, which are trained
separately. The proposal network is trained to extract a set of object candidates. These object candidates cover not
only most object ground truths but also a number of false positives. In order to make the detector more robust, we train
these object candidates using a secondary classifier. We propose combination methods and prove that a combination of
two networks is more accurate than a single network. Moreover, we determine a new method by which to optimize the
final combination results. We evaluate the proposed model using several object detection datasets (Caltech pedestrian,
Pascal VOC, and COCO) and present results for comparison.
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1. Introduction

Object detection is a key problem in computer vision, and the
performance of detectors has rapidly improved recently. Given
an input image, these methods output a set of detections, where
each detection includes an object label, an object location, and
a score indicating the confidence of the detection. Most conven-
tional object detection methods use deep learning based on strong
baseline architectures, such as Fast/Faster R-CNN [11], [26] and
a single-shot detector (SSD) [22].

However, the detection results usually contain numerous false
positive detections. There are two kinds of false positive er-
rors: poor localization and misclassification. For instance, in the
SSD [22] method, more than half of false positive detections are
due to misclassification. Figure 1 shows examples of misclassi-
fication detection because of ambiguity with background objects,
similar objects, or dissimilar objects. This issue motivates the use
of an additional classifier to reduce the number of misclassifica-
tion detections.

The idea of using two stages to detect objects has been con-
sidered in numerous studies [11], [18], [26]. These models rely
on an external or an internal region proposal generator (as the
first stage) to predict class independent box proposals. Thus, the
box proposals can be separated into objects and non-objects (the
background). The second stage is used to predict the class and
offset the shifting proposal location to fit the ground-truth bound-
ing box.

In the proposed approach, we also use an object detector as a
proposal generator. However, the proposals extracted using this
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detector contain not only box locations but also class labels and
scores, we refer to this detector as the proposal network. Follow-
ing this proposal network, we add another convolutional neural
network, called the classification network, to re-classify the ex-
tracted proposals. The output of the two networks allows us to
choose either the first stage scores or the second stage scores as
the final scores. However, we observed that, in general, the sec-
ond stage scores after re-classification do not boost detection per-
formance. There are two reasons for this unsatisfactory accuracy:
(i) the classification network focuses on only classification ob-
jects based on their similarities and differences but lack localiza-
tion support, and (ii) there are no connections between proposal
confidence and classification confidence.

In the present paper, we investigate how to use the secondary
network as an object proposal classifier to improve the object de-
tection performance for various datasets. We present a simple but
effective network model for a two-stage detector. In the proposed
method, we connect the first scores of the proposal network and
the second scores of the classification network using a combina-
tion function. The proposal network overcomes the limitation of
using single scores as final detection scores, thus improving the
performance of a given object detector.

Since we primarily discuss the performance of the two-stage
object detection model, we do not apply enhanced methods such
as multi-crop, horizontal flipping, or multi-scale during testing.

The main contributions of the present paper can be summarized
as follows:
( 1 ) We prove that training the secondary classifier improves the

detection performance without additional training datasets.
We evaluate the proposed method on several benchmarks,
including Caltech [6], Pascal VOC [9], and COCO [19].

( 2 ) We discuss how to combine two networks by introducing
various combination procedures.
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Fig. 1 False positive detections on the Pascal VOC dataset by the Faster R-CNN object detection model.
The green bounding boxes depict the object location inside an image. The text under the image
indicates the detected class, the type of misclassification (sim: confusion with similar objects, oth:
confusion with other objects (dissimilar objects), bg: confusion with background). “Confusion”
occurs when a false positive detection matches with an object from the non-target category with
IOU at least 0.1. We show the ground-truth class for sim and oth cases in the square brackets.

( 3 ) We also propose an optimized combination method to im-
prove the performance of final detection scores. Remark-
ably, the proposed combination method can be used to ef-
ficiently train the classification network. The final output
has higher accuracy than the stand-alone proposal network
as an object detector. The experimental results obtained us-
ing the proposed method are comparable to those obtained
using state-of-the-art object detection methods.

2. Related Research

2.1 Fast/Faster R-CNN
Fast R-CNN [11] is a deep learning object detector that com-

bines an object proposal method (e.g., Selective Search [32]) and
a convolutional neural network (CNN) classifier. Fast R-CNN
introduces a Region Of Interest (ROI) pooling mechanism and
multi-task losses by minimizing the loss function of both class
confidences and bounding box regression.

The improved version of Fast R-CNN, i.e., Faster R-CNN [26],
replaces the region proposal component with a deep network.
Faster R-CNN contains two components: a Region Proposal Net-
work (RPN) and a Fast R-CNN [11] object detection network.
The first component, the RPN, is a fully CNN network that pre-
dicts class-agnostic box proposals. These networks can be trained
separately or end-to-end and share the extracted image features
with the object detection network.

The shared features are fed to the remaining layers of the fea-
tures extractor. The second component uses the box proposals
to crop features and outputs the class-specific and box offset for
each proposal.

2.2 Single Shot Detector (SSD)
The SSD [22] is a single-shot feed forward network based on

a pre-trained network for object detection. Basically, the SSD

model is very similar to the RPN component of the Faster R-CNN
model, except that the SSD model directly predicts class-specific
and box offsets and does not require a second object detection net-
work. Instead of using a CNN module to extract the set of RPN,
the SSD uses a fixed set of default boxes (anchors) for prediction,
and thus the SSD can avoid merging the RPN module with Fast
R-CNN. The SSD model can generate a large pool of possible
box shapes by discrete output into a set of default boxes of differ-
ent scales and aspect ratios at several feature map locations. This
approach allows the SSD model to achieve slightly better speed
than Faster R-CNN-like detectors.

2.3 One-stage and Two-stage Object Detectors
We consider two approaches to object detection modeling. In

the first approach, one-stage detectors (unified detectors), such
as an SSD [22] or YOLO [24], [25], use a single CNN to predict
object location in an entire image. Since one-stage detectors re-
quire only single-network computation, their speed is better than
other CNN-based detectors. However, the limitation of YOLO
is that detecting small objects is difficult and does not work well
with unusual object aspect ratios. Although the SSD provides
better object localization than YOLO, because of location shar-
ing for multiple categories, the SSD method involves increased
confusion with similar object categories. Moreover, the SSD and
MS-CNN [3] independently predict objects at multi-feature maps
locations, because there are no combinations of features or scores.

In the second approach, two-stage detectors, such as
Fast/Faster R-CNN [11], [26] and R-FCN [5], require the first
stage to extract object proposals. By refining the object proposals
twice (when refining the anchors to class-agnostic box proposals
and when refining the RPN output to class-specific boxes),
Fast/Faster R-CNN-like methods can obtain better detection re-
sults than one-stage detectors. However, training these detectors
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requires significant effort because it is difficult to optimize each
network component.

The proposed model uses a two-stage approach in which the
proposals are class-specific boxes. Without combining the first
and second stages, the proposed model is equivalent to a non-
box-regression Fast R-CNN detector with a pre-computed RPN.
The proposed method is also different from Fast/Faster R-CNN
in terms of sampling. The extracted RPN proposals of Faster R-
CNN are in the same image or the same image batch, whereas the
second stage can freely shuffle the training samples in the entire
training dataset. Following Ref. [2], it is efficient for optimizing
the classifier that the order of samples is changed for each epoch,
and each sample is sampled independently.

3. Proposed Method

Figure 2 shows the proposed architectures. Each model con-
tains two stages: the proposal network and the classification net-
work. An input image is fed to the proposal network (e.g., Faster
R-CNN) to generate a set of object proposals inside the image.
The output of the first stage is the candidate boxes and the cor-
responding scores for each category of these boxes. The boxes
are again used for sample images to fine-tune the classification
network (e.g., Inception-V3 [31]). In the second stage, we intro-
duce two combination strategies: post-combination and during-
training combination (referred to hereinafter as trained combina-
tion). The details of combination methods are discussed in Sec-
tion 3.3.

3.1 Proposal Network
In the first stage of the proposed model, we choose a proposal

network to extract the set of object candidates. We primarily
focus on Fast/Faster R-CNN and an SSD because many recent
methods [3], [12], [13], [18] are based on these architectures.
3.1.1 Single-shot Detector Meta Architecture

With the SSD model, we use VGG16 [28] pre-trained by the
ImageNet [27] dataset as the baseline network, which has a sim-
ple design and is widely used. The VGG16 baseline network is
modified by converting the fc6 and fc7 layers to convolutional
layers, which also reduce the number of outputs to 1,024. All
dropout layers and the fc8 layer are removed from the original
VGG16 network. We add five additional output layers (conv6 2,
conv7 2, conv8 2, conv9 2, and conv10 2) to predict the loca-

Fig. 2 Models proposed in the present paper.

tions and scores of objects. The model is then finely tuned using
the COCO dataset [19] for the COCO test-dev detection task.
3.1.2 Faster R-CNN Meta Architecture

We use a high-quality features extractor, such as Resnet-
101 [13] or Inception-Resnet-V2 [29], which are used in state-
of-the-art ImageNet ILSVRC 2012 classification and detection
tasks, as a baseline.

In the Resnet-101 network, we extract features from the last
layer of the conv4 block. The Region Of Interest (ROI) is cropped
to 14× 14, and a maxpooling layer is then used to reduce the fea-
ture size to 7 × 7.

Inception-Resnet-V2 is the mixing residual design with Incep-
tion networks [30]. We implement Inception-Resnet-V2 on Ten-
sorFlow [1] and extract features from the Mixed 6a layer. The
features are cropped by ROI and resized to 17 × 17 and max-
pooled with a stride of 1.

Training details According to Ref. [26], instead of using four-
step alternating training, we adopt an end-to-end joint training
of the RPN and the Fast R-CNN component for convenience.
The multi-task loss on each ROI is the sum of the cross-entropy
loss of classification and the box regression loss L(p, u, t, t∗) =
Lcls(p, u) + λ[u ≥ 1]Lbox(t, t∗), where Lcls(p, u) = − log(pu) is the
cross-entropy loss for true class u. The tuple t = (tx, ty, tw, th) is
predicted bounding box regression offsets, and t∗ = (t∗x, t∗y, t∗w, t∗h)
represents the ground-truth. The indicator function [u ≥ 1] is
equal to 1 when u ≥ 1, and is 0 otherwise. In our experiment,
we set the balance loss weight λ = 1. We use the non-maximum
suppression (nms) with a threshold of 0.7 intersection over union
(IOU) and 0.6 IOU for the RPN and Fast R-CNN, respectively.

3.2 Classification Network
3.2.1 Baseline Networks

After extracting the set of object proposals from an image, the
number of false positive detections is still large because of the
sliding window scheme. We use these proposals to train the sec-
ond stage as a classifier. In the present paper, we use several
classifiers, such as Resnet-101 [13], Inception-V1 [30], or its suc-
cessor Inception-V3 [31]. All of these classifiers are pre-trained
on ImageNet, which contains 1.2 million training images.

In the Inception-V1 baseline, we extract the features from the
Mixed 5c layer and add an average pooling layer with kernel size
7 × 7. The network input size is 224 × 224. In Inception-V3, we
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extract the features from the Mixed 7c layer and add an average
pooling layer with kernel size 8 × 8. The input size of Inception-
V3 is 299 × 299. We do not use auxiliary branches of Inception-
V1 and Inception-V3 for fine-tuning the classification network.
In the Resnet-101, we faithfully follow the design of Ref. [13]
which puts batch normalization after every convolutional layer.
We set the input size of Resnet-101 to 224 × 224.
3.2.2 Data Sampling

Although the second stage is trained using the same dataset
as the proposal network (except for the Caltech pedestrian
dataset [6], as described in Section 4.1), the method for sampling
data is different from the first stage. We first eliminate some “bad”
proposals (boxes with very low confidence scores or boxes that
are too small). Each proposal is then matched with ground-truth
boxes. We calculate the IOU of these object proposals with the
ground-truth available in an image. We set a proposal p as a pos-
itive sample if α∗ ≥ 0.5, where

α∗ = max
gi∈G

IOU(p, gi) (1)

and G = {(gi, li)}Mi=1 is the set of ground-truth bounding boxes
where gi = (gi

x, g
i
y, g

i
w, g

i
h) specifies the top left coordinates of

the ground-truth box together with its width and height, li is
the ground-truth class, M is the number of ground-truth boxes
in the given image, otherwise p is a negative sample. In case
of a positive sample, the class of proposal p is li

∗
where i∗ =

argmaxi∈[1,M] IOU(p, gi).
In order to train a more stable classification network, we main-

tain a constant ratio between the number of positive samples and
the number of negative samples (In our experiments, the ratio of
positive to negative samples is 1 : 3).
3.2.3 Training

The classification network is fine-tuned from a pre-trained
model. The proposal regions from the first stage are used to
crop the input images, then are resized using bilinear interpola-
tion to size of 256 × 256 for Inception-V1 and Resnet-101, and
340 × 340 for Inception-V3. We then randomly crop to network
input size for training (at the test time, we use center cropping).
The training samples are randomly flipped horizontally (left to
right) with probability of 0.5 and are subtracted from the dataset
image means.

3.3 Combination of Two Networks
As shown in Fig. 2, in the proposed model architectures, our

combination module uses post-combination and trained combina-
tion. These combination procedures are key techniques by which
to make a stronger object detector based on an object detector as
a proposal network. We use post-combination for model 1 and
trained combination for model 2.

Post-combination In this approach, the combination occurs
after the training of two stages. The classification network out-
puts the scores of object proposals and the final detections can
use either proposal scores or classification scores. However, we
observed that standalone classification scores do not improve de-
tection performance. For large and clear objects, the proposals
are usually well detected, and the detection scores are high. On

the other hand, deep-learning-based detectors tend to be weak for
small objects because of insufficient resolution of feature maps
for detecting small instances [34]. In this case, the output detec-
tion scores are usually low. In order to address this problem, we
propose a method by which to maintain good detections and en-
hance weak detections by combining two detection scores. For
each output of the proposal network (L, sp), L = (x1, x2, y1, y2)
is the location of the box, sp = (sp0 , . . . , spN ) is the score of the
proposal network, and sc = (sc0 , . . . , scN ) is the score of the classi-
fication network. i∗ = argmaxi∈[0,N] spi and j∗ = argmax j∈[0,N] sc j

are the detected classes of the proposal network and the classifi-
cation network, respectively. The final detection of the combined
network is (L, si∗ , i∗) where

si∗ = f (sp, sc) (2)

where f is a combination function. We evaluate several combi-
nation functions. The combinations are based on the value of two
scores and the agreement of two detection classes. We consider a
mean function ( f1) and a multiplication function ( f2), which are
defined as follows:

f1(sp, sc) =
(spi∗ + sci∗ )

2
(3)

and

f2(sp, sc) = (spi∗ ∗ sci∗ ) (4)

and we define f3 as follows:

f3(sp, sc) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f1(sp, sc ∗ c) if i∗ = j∗ and spi∗ < d

f1(sp, sc) otherwise
(5)

where c > 1 is the boosting weight and d < 1 is the high-score
threshold, respectively.

The key idea behind the function f3 is that we encourage detec-
tions, which have the same detected classes, that are more confi-
dent between the proposal network and the classification network.
However, the scores of the proposal network for these cases are
not good enough (lower than the threshold score d). Note that to
increase the final score, it is possible to boost the first stage score
(sp), but we found that the experimental results of boosting first
stage score are worse than that of boosting the second stage score
(sc).

Trained combination In this approach, the combination oc-
curred not only after training of the classification network but
also during the training classifier process. Given a proposal
P = (P1

x, P
1
y, P

2
x, P

2
y), the output of the last layer in the classifi-

cation network is denoted by φl(P). By adding the new combina-
tion module in Fig. 2 (b), the output of the classification network
becomes ŵ�(φl(P), sp), where sp is the score vector, and ŵ� are
trainable parameters. In this case, for true class u the training loss
is:

Lcls(p, u) = − log(pu) (6)

where p = (p0, . . . , pN) = fcls(ŵ�(φl(Pi), sp)) is computed as
softmax ( fcls) over the N + 1 outputs of the last fully connected
layer. After training the second stage, we apply the average score
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Fig. 3 Classification network with trained combination.

Table 1 Evaluation settings on the Caltech benchmark.

Height (pixels) Occlusion level
All 20–in f 0–80%
Reasonable 50–in f 0–35%
Near scale 80–in f 0%
Medium scale 30–80 0%
Far scale 20–30 0%
No occlusion 50–in f 0%
Partial occlusion 50–in f 1–35%
Heavy occlusion 50–in f 35–80%
Small objects 30–50 0–35%

to generate the final score.
The implementation of the combination module is depicted in

Fig. 3. We construct a 1× 1× (N + 1) vector from the score of the
proposal network, where N is the number of interest categories
and plus 1 for background. This vector is concatenated with ex-
tracted features from the last layer of the features extractor net-
work, and then connected to a fully connected layer. The compu-
tation of this new trained combination module is nearly cost-free
in comparison to training the original classification network.

4. Experiments

In this section, we applied the proposed models to several ob-
ject detection datasets. These object detection datasets vary in
terms of the number of images, the testing conditions, and the
evaluation method. While the experiments mainly showed the
benefit of using a two-stage network detector, we also obtained
results that were comparable to those obtained using other cutting
edge detection methods. The description of the two-stage model
used in various experiments is given as follows: SSD+Inception-
V1+M represents the proposal network is the SSD, the baseline
of the classification network is Inception-V1, and the method of
combination is multiplicity score f2 (M). Other notation of the
combination method includes the mean function f1 (A), the com-
bination with threshold function f3 (T), the trained combination
(TC).

4.1 Caltech Pedestrian Detection
We first applied the proposed network for the only one cate-

gory of dataset, namely, the Caltech pedestrian [6]. The dataset
consists of approximately 1,900 individual pedestrians, which are
annotated with approximately 350,000 ground-truth annotations.
The number of images in the test set is 4,024. The Caltech eval-
uation benchmark uses the log-average miss rate to summarize
the detector performance. The average miss rate is computed by
averaging the miss rate for nine false positives per image (FPPI)
in log space from 10−2 to 100. The evaluation is performed using
several different settings based on the height and occlusion level
of pedestrians. The settings are listed in Table 1.

In Ref. [34], it is argued that, despite particularly successful
general object detection, Faster R-CNN (as a stand-alone detec-
tor) has limited success for pedestrian detection. For this rea-
son, we use an SSD [22] with a VGG16 baseline [28] as the
proposal network for this experiment. In the network settings,
the aspect ratios of the default bounding boxes (the anchors) are
{1/3, 1/2, 1, 2, 3}. For output from the conv4 3 layer, because of
the different feature scale, an L2 normalization layer [23] is added
in order to scale down the feature norm to 20.

In order to fine-tune the proposal network, we used a pre-
trained SSD from the COCO [19] dataset because the COCO
dataset is more similar to the Caltech dataset than ImageNet [27].
Since Caltech is a relatively small dataset, we adopt the data aug-
mentation strategy by adding more training images from other
pedestrian datasets: the KITTI dataset [10], the TUD-Brussels
dataset [33], and the ETH pedestrian dataset [8]. This addition of
data increases the number of images by 26% compared to the Cal-
tech dataset alone. We trained a model with a base learning rate
of 10−4, a momentum of 0.9, and a weight decay of 0.0005. The
total number of training iterations is 240,000. We used Inception-
V1 [30] to classify pedestrian candidates extracted from the pro-
posal network, where the initial learning rate is 10−4.

The performances of the proposal network, the classification
network, and the combination of the two networks are compared.
Table 2 shows the experimental results. The classification net-
work is better than the proposal network for the “all”, “medium”,
and “small objects” settings by 2.36%, 4.84%, and 3.79%, re-
spectively. However, the performance of the classification net-
work is inferior for “near” objects. This indicates that Inception-
V1 is more robust than the SSD for small pedestrian classifica-
tion. Moreover, the performances of occluded pedestrians (“par-
tial occ.” and “heavy occ.”) of the classification network are also
worse than the proposal network. The reason might be that the
SSD model’s classification task is supported by the box predic-
tion task which allows the model can better predict the objects
of unusual aspect ratio (occluded objects). The results in Table 2
show that the miss rates for every setting are reduced for all com-
bination functions to compare with the proposal network. With
combination function f3, the performance for the near scale is
slightly improved (0.32%) and can be significantly improved for
smaller objects. The miss rate reductions for the “small objects”
and “medium” setting are 7.30% and 8.81%, respectively. Over-
all, the mean combination f1 is slightly better than the multiply
combination f2.

We also compare the proposed model with other state-of-the-
art pedestrian detection methods. For overall configuration (“all”
setting), our proposed method outperforms MS-CNN [3] method
and is close to the result of F-DNN+SS [7] which uses pixel-wise
semantic segmentation for reinforced detection. Furthermore, our
method is simpler and faster than F-DNN+SS which requires
2.48 s per image [7].

4.2 Pascal VOC Object Detection
We used the Pascal VOC [9] dataset to evaluate the proposed

method. The Pascal VOC 2007 test set has 4,952 images belong-
ing to 20 categories for the object detection task. We performed
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Table 2 Miss rates of detection using the proposal network (SSD 512) and the classification network, and
combination scores for the Caltech test set.

All Reasonable Near Medium Far No occ. Partial occ. Heavy occ. Small objects
Proposal network (SSD [22]) 57.74 17.56 1.47 43.11 79.61 15.59 27.89 69.02 48.86
Classification network (Inception-V1) 55.38 17.63 1.59 38.27 77.71 15.53 30.34 70.08 45.07
SSD+Inception-V1+A 52.02 14.59 1.44 34.77 77.26 12.74 26.01 68.34 42.05
SSD+Inception-V1+M 52.30 14.97 1.44 35.33 77.59 13.11 25.66 67.85 42.21
SSD+Inception-V1+T 51.70 13.89 1.15 34.30 74.92 11.75 27.29 66.59 41.56
SSD+Inception-V1+TC 55.11 15.28 1.33 38.64 79.67 13.08 28.19 68.62 47.06
MS-CNN [3] 60.95 9.95 2.60 49.13 97.23 8.15 19.24 59.94 70.34
F-DNN+SS [7] 50.29 8.18 2.82 33.15 77.37 6.74 15.11 53.76 45.14

Table 3 Individual average precision (%) on the Pascal VOC 2007 test set. All models are trained with
the COCO data set and then fine-tuned with the Pascal VOC 2007+2012 training set. We then
retrain Faster R-CNN [26] using for the fine-tuning classification network (note: Faster R-CNN1

uses Resnet-101 as a baseline, and Faster R-CNN2 uses Inception-Resnet-V2 as a baseline).

vehicles animals furniture
aero bike boat bus car mbike train bird cat cow dog horse sheep person bottle chair table plant sofa tv mAP

Proposal Faster R-CNN1 [26] 80.0 80.2 67.7 79.7 86.6 79.3 78.6 77.2 87.0 83.5 84.6 86.8 75.7 77.1 65.4 62.4 73.3 40.3 77.9 69.6 75.6
Faster R-CNN+Resnet-101+A 81.0 80.2 70.5 81.1 88.7 79.9 78.7 78.3 87.5 86.3 86.0 87.3 78.9 78.6 68.3 63.5 74.0 43.5 80.8 71.0 77.2
Faster R-CNN+Resnet-101+M 81.0 80.2 70.6 81.2 88.7 79.8 78.7 77.9 88.4 85.8 86.3 87.6 78.6 78.7 68.2 63.9 73.9 43.5 80.5 71.2 77.2
Faster R-CNN+Resnet-101+T 81.0 80.3 70.7 81.3 88.6 80.2 78.7 78.3 87.4 86.2 86.0 87.6 78.8 78.8 67.9 63.9 74.2 43.7 81.3 71.1 77.3
Faster R-CNN+Resnet-101+TC 81.3 80.6 72.8 81.2 88.6 80.1 79.2 78.8 87.0 86.7 86.9 88.3 78.9 79.9 69.1 64.7 74.8 46.5 82.6 71.4 78.0
Proposal Faster R-CNN2 [26] 87.1 88.6 74.4 87.5 88.7 86.8 87.3 86.4 78.2 87.6 88.0 89.3 78.5 86.6 74.7 65.3 76.1 57.9 78.6 78.6 81.3
Faster R-CNN+Inception-V3+A 87.5 88.9 76.5 88.5 89.2 87.4 87.1 86.6 79.6 88.5 86.4 89.6 79.6 86.9 77.3 66.9 75.5 57.4 78.5 79.6 81.9
Faster R-CNN+Inception-V3+M 87.4 88.9 76.4 88.4 89.2 87.4 87.1 86.7 79.6 88.5 86.4 89.6 79.6 86.9 77.2 66.9 75.6 57.2 78.4 79.7 81.8
Faster R-CNN+Inception-V3+T 87.7 88.8 76.8 88.7 89.3 87.4 87.2 86.7 79.5 88.9 87.0 89.9 79.9 86.9 77.2 67.1 75.7 58.1 79.0 79.9 82.1
Faster R-CNN+Inception-V3+TC 88.3 89.1 77.8 88.8 89.3 87.5 87.5 87.2 79.0 88.7 88.4 89.8 79.3 87.2 77.2 67.1 76.1 60.3 80.5 80.3 82.5

the data augmentation by adding the Pascal VOC 2007 trainval
set and the Pascal VOC 2012 trainval set (referred to herein as
Pascal VOC 2007+2012), resulting in approximately 16k images
for training. We chose the Faster R-CNN architecture to extract
the set of object proposals. We first fine-tuned the proposal net-
work on the COCO [19] dataset for 80 categories of the object
detection task. The detector was then fine-tuned on Pascal VOC
2007+2012 and tested on the Pascal VOC 2007 test set.

During training, we used an SGD [16] optimizer with a batch
size of 1, a momentum of 0.9, and a weight decay of 0.0005.
The images were resized to 600 × 1,024, and other preprocess-
ing steps, such as means subtraction and random flipping, were
also applied. With a base learning rate of 0.003, we trained the
proposed model for 200,000 iterations.

Table 3 shows the results for the Pascal VOC 2007 test set.
We use Faster R-CNN as the proposal network. In the first test
(the first five rows of Table 3), the baseline is Resnet-101 [13]
(pre-trained on ImageNet), and the second stage uses Resnet-101
as the classification network. The two-stage model with trained
combination has a better mAP than the proposal network (Faster
R-CNN) by 2.4%. In the second test (the last five rows of Ta-
ble 3) with Faster R-CNN, which has a better baseline Inception-
Resnet-V2, and the second stage network is Inception-V3. With
trained combination, the mAP surpasses Faster R-CNN by 1.2%.
Some categories are greatly improved (e.g., plant: 2.4%, bottle:
2.5%, boat: 3.4%).

Error analysis In order to scrutinize the effect of the second
stage on the detection results, we used a tool from Ref. [14]. Fig-
ure 4 shows the distribution of the top-ranked false positive types.
We classify objects into three groups: animals (all animals + per-
son), furniture, and vehicles. Compared with the proposal net-
work results shown in Fig. 4 (a), the proportion of the error results
from poor localization (a duplicate detection or a detection with

Fig. 4 Distribution of top-ranked false positive (FP) types for three groups,
i.e., animals, furniture, and vehicles from the Pascal VOC 2007 test
set. The top row shows the distribution of FPs on the proposal net-
work results, and bottom row shows the distribution of FPs on the
trained combination results. The FPs are divided into four error
types: poor localization (Loc), confusion with a similar category
(Sim), confusion with a dissimilar object category (Oth), confusion
with the background (BG). False positives are sorted in descending
order by the confidence score.

IOU overlapping the correct class between 0.1 and 0.5) of the
two-stage detector in Fig. 4 (b) is higher. Since we do not modify
the proposal localization, the result indicates that the combination
results are better than the proposal network results for reducing
misclassification (Sim, Oth, and BG). The vehicles group shows
the significant improvement of the combination method for re-
ducing misclassification errors. On the other hand, the animals
group shows only a slight improvement.

Further analysis As discussed in Section 3.3, we proposed
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Table 5 COCO results on the COCO 2014 minival set (bounding box AP). The subscript number indi-
cates the IOU value, and AP without a subscript number indicates the AP at IOU from 50% to
95%. Moreover, S, M, and L indicate small, medium, and large objects, respectively.

Baseline AP AP50 AP75 APS APM APL

Mask R-CNN [12] Resnet-101-FPN [18] 37.5 60.6 39.9 17.7 41 55.4
Faster R-CNN Resnet-101 37.8 55.7 42.5 15.5 43.5 57.6
Faster R-CNN+Inception-V3+A Resnet-101 37.9 55.8 42.6 15.6 43.6 57.7
Faster R-CNN Inception-Resnet-V2 43 60.7 48.4 19.1 49.2 64.7
Faster R-CNN+Inception-V3+A Inception-Resnet-V2 43.1 60.8 48.6 19.2 49.2 64.7
Faster R-CNN+Inception-V3+T Inception-Resnet-V2 43.1 60.9 48.6 19.1 49.4 64.8
Faster R-CNN+Inception-V3+TC Inception-Resnet-V2 43 60.8 48.6 19.2 49.3 64.7

Table 4 Experimental results for different high score threshold settings.
The results are evaluated on the Pascal VOC 2007 test set.

d 0.4 0.5 0.6 0.7 0.8 0.9
mAP 82.2 82.3 82.5 82.4 82.0 81.5

Eq. (5) to encourage detections that have matched labels between
proposal and classification. In our experiment, we set c = 1.4 as a
constant boosting weight. The parameter d depicts the high-score
threshold. Table 4 shows the effect of choosing the threshold. We
try different high-score thresholds from 0.4 to 0.9 and find that the
performance peaks at 0.6, indicating that beyond that value, the
first stage confidence is sufficiently good and the final confidence
does not require further boosting. On the other side, if the high-
score threshold is below that value, the matching labels between
two networks are not reliable enough to correctly predict labels.

4.3 MS COCO Object Detection
In this section, we performed experiments on the COCO

dataset. COCO is a large-scale object detection dataset that has
80 object categories. The training dataset contains 118,287 im-
ages, including all training images and a subset of valuation im-
ages (coco 2014 train and coco 2014 valminusminival). We use
COCO API [20] to evaluate our results, which are measured by
mAP over IOU in various thresholds. The model results are tested
on the minivaluation test (coco 2014 minival), which contains
5,000 images. Compared with Pascal VOC, objects in the COCO
dataset tend to be smaller, and the number of objects is higher.
Thus, we fine-tuned the COCO dataset with more iterations. For
more details, we trained the proposal network with 1.2M itera-
tions with a base learning rate of 0.0003 and reduce the learning
rate by a factor of 10 at 900,000 iterations with a momentum of
0.9. We fine-tuned the classification network for 800,000 itera-
tions with a base learning rate of 0.001.

The results are summarized in Table 5. Although the perfor-
mance of the two-stage model depends on which proposal net-
work is used, we observed that the performance is slightly im-
proved in all settings. This indicates that the two-stage model
still improves the proposal network performance on the COCO
dataset.

5. Discussions

5.1 How to Choose between Model 1 and Model 2
The differences between model 1 and model 2 are the method

of training the second stage and the combination method. We
propose several combination methods and observe that the mean
combination ( f1) and the multiply combination ( f2) are approxi-

mately equal. The combination with the threshold function ( f3)
is better than f1 or f2 alone. However, the f3 function depends on
the high-score threshold and the boosting weight values, and thus
is more difficult to optimize. The trained combination is better
than f3 on the Pascal VOC dataset, but is almost equal to f3 on
the COCO dataset, because the scores of the first stage affect the
classification results of the second stage. The trained combina-
tion only works well on “high” accuracy proposals. For instance,
at IOU = 0.5, the mAP on Pascal VOC, which is approximately
84% is much higher than the mAP on COCO, which is approxi-
mately 60%. (For reasons of comparison, we evaluated the Pascal
VOC test set using the COCO evaluation tool.).

In the trained combination model (model 2), the second stage
uses the output scores of the first stage as additional inputs. We
conclude that model 2 needs a reliable proposal (high mAP) net-
work to outperform the post-combination model (model 1). The
selection between model 1 and model 2 depends on the specific
dataset. As shown in the experiment section, both proposed mod-
els are better than given proposal networks. For high mAP pro-
posal model (e.g., mAP > 75%) model 2 should be chosen. For
not high enough mAP model (e.g., mAP < 60%), model 1 should
be chosen. Otherwise, we need more experiments to choose be-
tween the two models.

5.2 How to Decide the Network for the First and Second
Stage

Although the first stage has a strong impact on the final perfor-
mance, choosing the second stage is also important. We analyze
the method by which to decide the network for the first and sec-
ond stage of the proposed model.

First, following Ref. [15], the baseline of the first stage is cho-
sen based on its classification performance. However, the SSD
meta-architecture appears to be less affected by its baseline’s
classification accuracy, while it significantly affects the Faster R-
CNN meta-architecture performance. Second, because the sec-
ond stage of the proposed model does not change the proposal
location, we should use strong-localization-type detectors, rather
than strong-classification-type detectors. For general object de-
tection tasks, the Faster R-CNN is a considerably better choice
than the SSD.

Finally, the second stage is chosen by balancing the perfor-
mance and the model complexity. Table 6 shows the properties
of the feature extractors used in the second stage. We explore
the relationship between the performance (mAP) on Pascal VOC
2007 and image classification accuracies on ImageNet, and the
number of parameters of the feature extractors used to initialize
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Table 9 Detection speed (s) and memory usage (GB) of the proposed models.

Proposal network Classification network Total
Dataset model baseline time mem. baseline time mem. time mem.
Caltech ped. SSD VGG16 0.087 0.9 Inception-V1 0.014 0.9 0.10 1.8
Pascal VOC Faster R-CNN Resnet-101 0.106 2.2 Resnet-101 0.018 4.0 0.12 6.2
Pascal VOC Faster R-CNN Inception-Resnet-V2 0.602 10.6 Inception-V3 0.036 3.1 0.64 13.7
COCO Faster R-CNN Resnet-101 0.115 2.0 Inception-V3 0.036 3.1 0.15 5.1
COCO Faster R-CNN Inception-Resnet-V2 0.602 10.7 Inception-V3 0.036 3.1 0.64 13.8

Table 6 Feature extractor properties used in the second stage. The top-1 and
top-5 accuracy (%) are the classification accuracies on ImageNet.
The bounding box mAP is evaluated on Pascal VOC 2007 using the
same proposal network (Faster R-CNN) and the same combination
method ( f3).

Feature extractor Num. Params. Top-1 Acc. Top-5 Acc. mAP
Resnet-101 43M 76.4 92.9 81.9
Inception-V3 22M 78.0 95.2 82.4
Inception-Resnet-V2 54M 80.4 95.3 82.2

Fig. 5 Top-1 error evolution during training of Inception-V3 vs. an
Inception-V3+trained combination module. The computational
costs of the two models are approximately equal. The evaluation
set is extracted from the Pascal VOC 2007 test set.

the second stage. Remarkably, although Inception-Resnet-V2 is
the most accurate model on ImageNet, the two-stage model us-
ing Inception-Resnet-V2 has a lower performance than the two-
stage model using Inception-V3. The Inception-V3 model also
has less complexity than the Inception-Resnet-V2 model. Thus,
the Inception-V3 appears to be the most relevant model for use in
the second stage.

5.3 Efficiency of the Trained Combination
Since we analyzed how to use trained combination above, if

the first stage is “good” enough, the trained combination is better
than other combination methods. For this reason, we continue to
explore the roles of the trained combination module in the second
stage as a classifier on the Pascal VOC 2007 dataset. We train
the Inception-V3 and Inception-V3+trained combination module
with the same training set and learning rate, and then evaluate two
models on the Pascal VOC 2007 test set. In Fig. 5, we compare
the training errors of two classification models. The error drops
more quickly on the Inception-V3+trained combination network,
which indicates that the first stage confidence helps speed up the
training classification network process.

5.4 Effectiveness of Small Object Detection
Deep learning performance suffers for small object detection.

We believe that the reason for this is that low-resolution fea-
ture maps are used to handle small objects. The proposed model

Table 7 Miss rate comparison with state-of-the-art pedestrian detection
methods on the Caltech test set for the detection of small objects.

Method Small objects (30-50) Far scale (20-30)
RPN+BF [34] 79.83 100
CompACT-Deep [4] 75.86 100
SA-FastRCNN [17] 74.49 100
MS-CNN [3] 70.34 97.23
F-DNN [7] 44.86 77.47
F-DNN+SS [7] 45.14 77.37
SmallDeep [21] 42.05 77.26
Proposed model 41.56 74.92

Table 8 Top improvement performance (AP) for small object detection.
The results are evaluated on COCO minival using Faster R-CNN
as the proposal network and Inception-V3 as the classification net-
work.

Category Faster R-CNN Faster R-CNN+Inception-V3+A Gap (%)
suitcase 11.5 13.0 1.5
stop sign 23.5 25.2 1.6
carrot 10.3 12.0 1.7
fire hydrant 25.2 27.4 2.2
sheep 21.1 23.5 2.4
toilet 8.6 11.5 2.9

works well for some individual object categories on small scale.
For the Caltech pedestrian task, we consider the “small ob-

jects” setting (or small pedestrian setting), because the miss rate
increases drastically in the range of from 30 to 50 pixels for most
pedestrian detectors [6]. The proposed method achieves state-of-
the-art performance for small pedestrian detection, as shown in
Table 7.

Likewise, in the COCO dataset, the largest gaps between the
single model detector and the proposed two-stage network are in
small object detection. The top six improvement categories for
small object evaluation are listed in Table 8.

5.5 Time and Memory Analysis
We trained and tested the proposed model on a machine with

32 GB of RAM and a single GPU TITAN X. The models are im-
plemented on a TensorFlow framework [1]. The proposed method
comprises two stages, and thus the running time of the proposed
model is the total running time of two stages. Table 9 summa-
rizes the speed of the proposed model. The running time of the
SSD model is faster than that of Faster R-CNN. The running time
of the trained combination method (for model 2) is the same as
that of the post-combination method (for model 1) with the same
baseline. Since the number of proposals is large, we perform non-
maximum suppression (nms) to keep the 100 maximum suppres-
sion proposals per image. These proposals then are efficiently
forwarded to the classification network with batch sizes of 32.
The second stage running time is less than 24% of total running
time; thus, most of the running time is expended on object pro-
posal extraction. Note that the slowest second stage running time
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is just 0.036 s per image, but the slowest proposed model is still
far from real-time (30 frames per second or better).

Since the proposed model requires two networks, the memory
usage of the model is the total memory usage of the proposal net-
work and the classification network. Overall, the memory of each
stage depends on the size of the feature extractors and whether
meta architectures are used. In Table 9, we also report the mem-
ory usage for each stage of the proposed model.

6. Conclusion

In the present paper, we present a simple but effective two-
stage deep neural network model for object detection. We use
CNNs for object proposal extraction and classification as well as
to reduce misclassification. The experimental results reveal that
the connection between the detection confidence score and the
classification confidence score is a key component to improv-
ing accuracy. We introduce several combination methods and
prove the advantages of using a two-stage model for object detec-
tion. The trained combination method can improve the classifica-
tion performance and detection performance of the overall model.
We also discuss how to choose an appropriate first stage, second
stage, and combination method in order to construct a strong two-
stage detector for a specific application.

One drawback of the proposed method is time and space com-
plexity, and, in the future, we hope to reduce the running time and
memory usage of the model and make deployment of the model
easier.
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