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Abstract: The task of non-adaptive group testing is to identify up to d defective items from N items, where a test is
positive if it contains at least one defective item, and negative otherwise. If there are t tests, they can be represented
as a t × N measurement matrix. We have answered the question of whether there exists a scheme such that a larger
measurement matrix, built from a given t × N measurement matrix, can be used to identify up to d defective items in

time O(t log2 N). In the meantime, a t × N nonrandom measurement matrix with t = O
(

d2 log2
2 N

(log2(d log2 N)−log2 log2(d log2 N))2

)
can be obtained to identify up to d defective items in time poly(t). This is much better than the best well-known bound,
t = O

(
d2 log2

2 N
)
. For the special case d = 2, there exists an efficient nonrandom construction in which at most two

defective items can be identified in time 4 log2
2 N using t = 4 log2

2 N tests. Numerical results show that our proposed
scheme is more practical than existing ones, and experimental results confirm our theoretical analysis. In particular, up
to 27 = 128 defective items can be identified in less than 16 s even for N = 2100.
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1. Introduction

Group testing dates back to World War II, when an economist,
Robert Dorfman, solved the problem of identifying which
draftees had syphilis [10]. It turned out to a problem of finding
up to d defective items in a huge number of items N by testing t

subsets of N items. The meanings of “items”, “defective items”,
and “tests” depend on the context. Classically, a test is positive if
there is at least one defective item, and negative otherwise. Dam-
aschke [9] generalized this problem into threshold group testing
in which a test is positive if it contains at least u defective items,
negative if it contains at most l defective items, and arbitrary oth-
erwise. If u = 1 and l = 0, threshold group testing reduces to
classical group testing.

In this work, we focus on classical group testing in which a
test is positive if there exists at least one defective item, and neg-
ative otherwise. There are two main approaches to testing de-
sign: adaptive and non-adaptive. In adaptive group testing, tests
are performed in a sequence of stages, and the designs of later
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tests depend on the results of earlier tests. With this approach,
the number of tests can be theoretically optimized [11]. How-
ever, the testing can take a long time if there are many stages.
Therefore, non-adaptive group testing (NAGT) [12] is preferred:
all tests are designed in advance and performed simultaneously.
The growing use of NAGT in various fields such as compressed
sensing [1], data streaming [8], DNA library screening [19], and
neuroscience [3] has made it increasingly attractive recently. The
focus here is thus on NAGT.

If t tests are needed to identify up to d defective items among
N items, they can be seen as a t × N measurement matrix. The
procedure to get the matrix is called construction, the procedure
to get the outcome of t tests using the measurement matrix is
called encoding, and the procedure to get the defective items from
t outcomes is called decoding. Note that the encoding procedure
includes the construction procedure. The objective of NAGT is
to design a scheme such that all defective items are “efficiently”
identified from the encoding and decoding procedures. Six cri-
teria determine the efficiency of a scheme: measurement matrix
construction type, number of tests needed, decoding time, time
needed to generate an entry for the measurement matrix, space
needed to generate a measurement matrix entry, and probability
of successful decoding. The last criterion reduces the number of
tests and/or the decoding complexity. With high probability, Cai
et al. [5] and Lee et al. [18] achieved a low number of tests and
decoding complexity, namely O(t), where t = O(d log d · log N)
(log is referred to as the logarithm of base 2). However, the con-
struction type is random, and the whole measurement matrix must
be stored for implementation, so it is limited to real-time appli-
cations. For example, in a data stream [8], routers have limited
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Table 1 Comparison with existing schemes.

No. Scheme
Construction

type
Number of tests

t
Decoding time

Time to
generate
an entry

Space to
generate
an entry

〈1〉 Indyk et al. [16]
(Theorem 3)

Nonrandom O(d2 log2 N) O
(

d9(log N)16+1/3

(log(d log N))7+1/3

)
O(t) O(t)

〈2〉 Indyk et al. [16]
(Theorem 2)

Nonrandom O(d2 log N) poly(t) = O
(
d11 log17 N

)
poly(t,N) poly(t)

〈3〉 Proposed
(Theorem 8) Nonrandom O

(
d2 log2 N

(log(d log N)−log log(d log N))2

) O
(

d3.57 log6.26 N
(log(d log N)−log log(d log N))6.26

)

+O
(

d6 log4 N
(log(d log N)−log log(d log N))4

) O(t) O(t)

〈4〉 Proposed
(Corollary 3) Nonrandom O

(
d2 log3 N

(log(d log N)−log log(d log N))2

)
O(t) O(t) O(t)

〈5〉 Porat-Rothschild [21]
(Theorem 1)

Nonrandom O(d2 log N) O(tN) = O(d2 log N × N) O(tN) O(tN)

〈6〉 Proposed
(Corollary 2) Nonrandom O(d2 log2 N) O(t) = O(d2 log2 N) O(tN) O(tN)

〈7〉 Indyk et al. [16]
(Theorem 3)

Nonrandom
d = 2

2 log N(2 log N − 1) 29(log N)16+1/3

(log(2 log N))7+1/3 log2 N log N

〈8〉 Proposed
(Theorem 7)

Nonrandom
d = 2

4 log2 N 4 log2 N 4
2 log N

+ log(2 log N)

〈9〉 Indyk et al. [16]
(Theorem 2)

Random O(d2 log N) poly(t) = O
(
d11 log17 N

)
O(t2 log N) O(t log N)

〈10〉 Proposed
(Corollary 1) Random O(d2 log2 N) O(t) = O(d2 log2 N) O(t2) O(t log N)

〈11〉 Proposed
(Corollary 4) Random O(d log N · log d

ε
) O(d log N · log d

ε
) O(tN) O(tN)

resources and need to be able to access the column in the mea-
surement matrix assigned to an IP address as quickly as possible
to perform their functions. The schemes proposed by Cai et al. [5]
and Lee et al. [18], therefore, are inadequate for this application.

For exact identification of defective items, there are four main
criteria to be considered: measurement matrix construction type,
number of tests needed, decoding time, and time needed to gen-
erate measurement matrix entry. The measurement matrix is non-
random if it always satisfies the preconditions after the construc-
tion procedure with probability 1. It is random if it satisfies the
preconditions after the construction procedure with some prob-
ability. A t × N measurement matrix is more practical if it is
nonrandom, t is small, the decoding time is a polynomial of t

(poly(t)), and the time to generate its entry is also poly(t). How-
ever, there is always a trade-off between these criteria.

Kautz and Singleton [17] proposed a scheme in which each en-
try in a t × N measurement matrix can be generated in poly(t),
where t = O(d2 log2 N). However, the decoding time is O(tN).
Indyk et al. [16] reduced the decoding time to poly(t) while main-
taining the order of the number of tests and the time to generate
the entries. However, the number of tests in a nonrandom mea-
surement matrix is not optimal.

In term of the pessimum number of tests, Guruswami and In-
dyk [14] proposed a linear-time decoding scheme in accordance
with the number of tests of O(d4 log N). To achieve an optimal
bound on the number of tests, i.e., O(d2 log N), while maintain-
ing a decoding time of poly(t) and keeping the entry computation
time within poly(t), Indyk et al. [16] proposed a random construc-
tion. Although they tried to derandomize their schemes, it takes
poly(t,N) time to construct such matrices, which is impractical
when d and N are sufficiently large.

Cheraghchi [6] achieved similar results. However, his pro-
posed scheme can deal with the presence of noise in the test
outcomes. Porat and Rothschild [21] showed that it is possible

to construct a nonrandom t × N measurement matrix in time
O(tN) while maintaining the order of the number of tests, i.e.,
O(d2 log N). However, each entry in the resulting matrix is iden-
tified after the construction is completed. This is equivalent to
each entry being generated in time O(tN). If we reduce the num-
ber of tests, the nonrandom construction proposed by Indyk et
al. [16] is the most practical.

1.1 Contributions
Overview: There are two main contributions in this work.

First, we have answered the question of whether there exists a
scheme such that a larger measurement matrix, built from a given
t × N measurement matrix, can be used to identify up to d defec-
tive items in time O(t log N). Second, a t×N nonrandom measure-

ment matrix with t = O
(

d2 log2 N
(log(d log N)−log log(d log N))2

)
can be obtained

to identify up to d defective items in time poly(t). This is much
better than the best well-known bound t = O

(
d2 log2 N

)
. There

is a special case for d = 2 in which there exists a 4 log2 N × N

nonrandom measurement matrix such that it can be used to iden-
tify up to two defective items in time 4 log2 N. Numerical results
show that our proposed scheme is the most practical and exper-
imental results confirm our theoretical analysis. For instance, at
most 27 = 128 defective items can be identified in less than 16 s
even for N = 2100.

Comparison: We compare variants of our proposed scheme
with existing schemes in Table 1. As mentioned above, six cri-
teria determine the efficiency of a scheme: measurement matrix
construction type, number of tests needed, decoding time, time
needed to generate measurement matrix entry, space needed to
generate a measurement matrix entry, and probability of success-
ful decoding. Since the last criterion is only used to reduce the
number of tests, it is not shown in the table. If the number of
tests and the decoding time are the top priorities, the construction
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in 〈11〉 is the best choice. However, since the probability of suc-
cessful decoding is at least 1 − ε for any ε > 0, some defective
items may not be identified.

From here on, we assume that the probability of successful de-
coding is 1; i.e., all defective items are identified. There are trade-
offs among the first five criteria. When d = 2, the number of tests
with our proposed scheme (〈8〉) is slightly larger than that with
〈7〉, although our proposed scheme has the best performance for
the remaining criteria. When d > 2, the comparisons are as fol-
lows. First, if the generation of a measurement matrix must be
certain, the best choices are 〈1〉, 〈2〉, 〈3〉, 〈4〉, 〈5〉, and 〈6〉. Sec-
ond, if the number of tests must be as low as possible, the best
choices are 〈2〉, 〈5〉, and 〈9〉. Third, if the decoding time is most
important, the best choices are three variations of our proposed
scheme: 〈4〉, 〈6〉, and 〈10〉. Fourth, if the time needed to generate
a measurement matrix entry is most important, the best choices
are 〈1〉, 〈3〉, 〈4〉, 〈7〉, 〈9〉 and 〈10〉. Finally, if the space needed to
generate a measurement matrix entry is most important, the best
choices are 〈1〉, 〈2〉, 〈3〉, 〈4〉, 〈7〉, 〈9〉 and 〈10〉.

For real-time applications, because “defective items” are usu-
ally considered to be abnormal system activities [8], they should
be identified as quickly as possible. It is thus acceptable to use
extra tests to speed up their identification. Moreover, the mea-
surement matrix deployed in the system should not be stored in
the system because of saving space. Therefore, the construction
type should be nonrandom, and the time and space needed to gen-
erate an entry should be within poly(t). Thus, the best choice is
〈4〉 and the second best choice is 〈3〉.

1.2 Outline
The paper is organized as follows. Section 2 presents some pre-

liminaries on tensor product, disjunct matrices, list-recoverable
codes, and a previous scheme. Section 3 describes how to achieve
an efficient decoding scheme when a measurement matrix is
given. Section 4 presents nonrandom constructions for identi-
fying up to two or more defective items. The numerical and ex-
perimental results are presented in Section 5. The final section
summarizes the key points and addresses several open problems.

2. Preliminaries

Notation is defined here for consistency. We use capital cal-
ligraphic letters for matrices, non-capital letters for scalars, and
bold letters for vectors. Matrices and vectors are binary. The
frequently used notations are as follows:
• N; d: number of items; maximum number of defective items.

For simplicity, suppose that N is the power of 2.
• | · |: weight; i.e, number of non-zero entries of input vector

or cardinality of input set.
• ⊗,�, ◦: operation for NAGT, tensor product, concatenation

code (to be defined later).
• S,B: k × N measurement matrices used to identify at most

one defective item, where k = 2 log2 N.
• M = (mi j): t × N d-disjunct matrix, where integer t ≥ 1 is

number of tests.
• T = (ti j): T×N measurement matrix used to identify at most

d defective items, where integer T ≥ 1 is number of tests.

• x; y: binary representation of N items; binary representation
of test outcomes.

• S j,B j,M j,Mi,∗: column j of matrix S, column j of matrix
B, column j of matrixM, row i of matrixM.

• D: index set of defective items, e.g., D = {2, 6} means items
2 and 6 are defective.

• diag(Mi,∗) = diag(mi1,mi2, . . . ,miN): diagonal matrix con-
structed by input vectorMi,∗ = (mi1,mi2, . . . ,miN).

• e, log, ln, exp(·): base of natural logarithm, logarithm of base
2, natural logarithm, exponential function.

• 	x
, �x�: ceiling and floor functions of x.

2.1 Tensor Product
Given an f × N matrix A and an s × N matrix S, their tensor

product � is defined as

R = A � S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
S × diag(A1,∗)

...

S × diag(A f ,∗)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11S1 . . . a1NSN

...
. . .

...

a f 1S1 . . . a f NSN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (2)

where diag(.) is the diagonal matrix constructed by the input vec-
tor, Ah,∗ = (ah1, . . . , ahN) is the hth row of A for h = 1, . . . , f ,
and S j is the jth column of S for j = 1, . . . ,N. The size of R is
r × N, where r = f s. One can imagine that an entry ah j of matrix
A would be replaced by the vector ah jS j after the tensor product
is used. For instance, suppose that f = 2, s = 3, and N = 4.
MatricesA and S are defined as

A =
⎡⎢⎢⎢⎢⎣1 0 1 0
0 1 1 1

⎤⎥⎥⎥⎥⎦ , S =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0 0
1 0 1 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (3)

Then R = A � S is

R = A � S =
⎡⎢⎢⎢⎢⎣1 0 1 0
0 1 1 1

⎤⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0 0
1 0 1 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 0 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 1 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 0 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 1 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 1 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 1 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
1 0 1 0
0 0 1 0
0 1 0 0
0 0 1 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

2.2 Disjunct Matrices
To gain insight into disjunct matrices, we present the concept

of an identity matrix inside a set of vectors. This concept is used
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to later construct a d-disjunct matrix.
Definition 1. Any c column vectors with the same size contain a

c × c identity matrix if a c × c identity matrix could be obtained

by placing those columns in an appropriate order.

Note that there may be more than one identity matrix inside
those c vectors. For example, let b1, b2, and b3 be vectors of size
4 × 1:

b1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,b3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

Then, (b1,b2) and (b2,b3) contain 2×2 identify matrices, whereas
(b1,b3) does not.

[
b1 b2

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
0 1
0 0
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
[
b2 b3

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 0
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 0
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The union of l vectors is defined as follows. Given l binary
vectors yw = (y1w, y2w, . . . , yBw)T for w = 1, . . . , l and some in-
teger B ≥ 1, their union is defined as vector y = ∨l

i=1yi =

(∨l
i=1y1i, . . . ,∨l

i=1yBi)T , where ∨ is the OR operator.
Definition 1 is interchangeably defined as follows: the union of

at most c − 1 vectors does not contain the remaining vector. Here
we use definition 1, so the definition for a d-disjunct matrix is as
follows.
Definition 2. A binary t × N matrix is called a d-disjunct matrix

iff there exists an (d + 1) × (d + 1) identity matrix in a set of d + 1
columns arbitrarily selected from the matrix.

For example, a 3× 3 identity matrix is a 2-disjunct matrix. The
encoding and decoding procedures used to identify up to d de-
fective items using a d-disjunct matrix are as follows. Suppose
thatM = (mi j) is a t × N measurement matrix, which is used to
identify at most d defective items. Item j is represented by col-
umnM j for j = 1, . . . ,N. Test i is represented by row i in which
mi j = 1 iff the item j belongs to test i, and mi j = 0 otherwise,
where i = 1, . . . , t. Usually,M is a d-disjunct matrix, but this is
not a requirement. In Section 3, we will see thatM may not be
d-disjunct and still be able to identify up to d defective items.

Let x = (x1, . . . , xN)T be a binary representation for N items, in
which x j = 1 iff item j is defective for j = 1, . . . ,N. The outcome
of t tests, denoted as y = (y1, . . . , yt)T ∈ {0, 1}t, is:

y =M⊗ x =
N∨

j=1

x jM j =
∨
j∈D
M j, (8)

where D is the index set of defective items. The construction
procedure is used to getM. The encoding procedure (which in-
cludes the construction procedure) is used to get y. The decoding
procedure is used to recover x from y andM.

We next present some recent results for the construction and
decoding of disjunct matrices. With naive decoding, all items
belonging to tests with negative outcomes are removed; the items
remaining are considered to be defective. The decoding complex-
ity of this approach is O(tN). Naive decoding is used only a little
here because the decoding time is long. A matrix is said to be

nonrandom if its columns are deterministically generated without
using randomness. In contrast, a matrix is said to be random if
its columns are randomly generated. We thus classify construc-
tion types on the basis of the time it takes to generate a matrix
entry. A t × N matrix is said to be weakly explicit if each of its
columns is generated in time (and space) O(tN). It is said to be
strongly explicit if each of its columns is generated in time (and
space) poly(t). We first present a weakly explicit construction of
a disjunct matrix.
Theorem 1 (Theorem 1 [21]). Given 1 ≤ d < N, there exists a

nonrandom t×N d-disjunct matrix that can be constructed in time

O(tN), where t = O(d2 log N). Moreover, the decoding time is

O(tN), and each column is generated in time (and space) O(tN).
The second construction is strongly explicit.

Theorem 2 (Corollary 5.1 [16]). Given 1 ≤ d < N, there exists

a random t × N d-disjunct matrix that can be decoded in time

poly(t) = O(d11 log17 N), where t = 4800d2 log N = O(d2 log N).
Each column can be generated in time O(t2 log N) and space

O(t log N). There also exists a matrix that can be nonrandomly

constructed in time poly(t,N) and space poly(t) while the con-

struction time and space for each column of the matrix remain

same.

Finally, the last construction is nonrandom. We analyze this
construction in detail for later comparison. Although the precise
formulas were not explicitly given in Ref. [16], they can be de-
rived.
Theorem 3 (Corollary C.1 [16]). Given 1 ≤ d < N, a

nonrandom t × N d-disjunct matrix can be decoded in time

O
(

d9(log N)16+1/3

(log(d log N))7+1/3

)
= poly(t), where t = O(d2 log2 N). Moreover,

each entry (column) can be generated in time (and space) O(t)
(O(t3/2)).When d = 2, the number of tests is 2 log N×(2 log N−1),
the decoding time is longer than 29(log N)16+1/3

(log(2 log N))7+1/3 , and each entry is

generated in time log2 N and space log N.

2.3 List Recoverable Codes
There may be occasions in the physical world where a person

might want to recover a similar codeword from a given code-
word. For example, a person searching on a website such as
Google might be searching using the word “intercept”. However,
mistyping results in the input word being “inrercep”. The web-
site should suggest a list of similar words that are “close” to the
input word such as “intercept” and “intercede”. This observa-
tion leads to the concept of list-recoverable codes. The basic idea
of list-recoverable codes is that, given a list of subsets in which
each subset contains at most � symbols in a given alphabet Σ (a
finite field), the decoder of the list-recoverable codes produces at
most L codewords from the list. Formally, this can be defined as
follows.
Definition 3 (Definition 2.2 [13]). Given integers 1 ≤ � ≤ L,

a code C ⊆ Σn is said to be (�, L)-list-recoverable if for all se-

quences of subsets S 1, S 2, . . . , S n with each S a ⊂ Σ satisfying

|S a| ≤ �, there are at most L codewords c = (c1, . . . , cn) ∈ C with

the property that ca ∈ S a for a ∈ {1, 2, . . . , n}. The value � is

referred to as the input list size.

Note that for any �′ ≤ �, an (�, L)-list-recoverable code is
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also an (�′, L)-list-recoverable code. For example, if we set
Σ = {a, b, . . . , z}, � = 2, n = 9, and L = 2, we have the follow-
ing input and output:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 1 = {e, g}
S 2 = {r, x}
S 3 = {o, q}
S 4 = {t, u}
S 5 = {e, i}
S 6 = {s}

S 7 = {i, q}
S 8 = {t, u}
S 9 = {e}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

decode
====⇒ c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e

x

q

u

i

s

i

t

e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g

r

o

t

e

s

q

u

e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

2.4 Reed-solomon Codes
We first review the concept of (n, r,D)q code C:

Definition 4. Let n, r,D, q be positive integers. An (n, r,D)q code

is a subset of Σn such that

( 1 ) Σ is a finite field and is called the alphabet of the code:

|Σ| = q. Here we set Σ = Fq.

( 2 ) Each codeword is considered to be a vector of Fn×1
q .

( 3 ) D = min
x,y∈C
Δ(x, y), where Δ(x, y) is the number of positions

in which the corresponding entries of x and y differ.

( 4 ) The cardinality of C, i.e., |C|, is at least qr.

These parameters (n, r,D, q) are the block length, dimension,
minimum distance, and alphabet size of C. If the minimum dis-
tance is not considered, we refer to C as (n, r)q. Given a full-rank
n × r matrix G ∈ Fn×r

q , suppose that, for any y ∈ C, there exists a
message x ∈ Fr

q such that y = Gx. In this case, C is called a linear
code and denoted as [n, r,D]q. LetMC denote an n× qr matrix in
which the columns are the codewords in C.

Reed-Solomon (RS) codes are constructed by applying a poly-
nomial method to a finite field Fq. Here we review a common and
widely used Reed-Solomon code, an [n, r,D]q-code C in which
|C| = qr and D = n − r + 1. Since D is determined from n

and r, we refer to [n, r,D]q-RS code as [n, r]q-RS code. Gu-
ruswami [13] (Section 4.4.1) showed that any [n, r]q-RS code is
also an

(⌈
n
r

⌉
− 1,O

(
n4

r2

))
-list-recoverable code. To efficiently de-

code RS code, Chowdhury et al. [7] proposed an efficient scheme,
which they summarized in Table 1 of their paper with ω < 2.38,
as follows:
Theorem 4 (Corollary 18 [7]). Let 1 ≤ r ≤ n ≤ q be integers.

Then, any [n, r]q-RS code, which is also
(⌈

n
r

⌉
− 1,O

(
n4

r2

))
-list-

recoverable code, can be decoded in time O(n3.57r2.69).
A codeword of the [n, r]q-RS code can be computed in time

O(r2 log log r) ≈ O(r2) and space O(r log q/ log2 r) [22].

2.5 Concatenated Codes
Concatenated codes C are constructed by using an (n1, k1)q

outer code Cout, where q = 2k2 (in general, q = pk2 where p is
a prime number), and an (n2, k2)2 binary inner code Cin, denoted
as C = Cout ◦Cin.

Given a message m ∈ Fk1
q , let Cout(m) = (x1, . . . , xn1 ) ∈ Fn1

q .
Then Cout◦Cin(m) = (Cin(x1),Cin(x2), . . . ,Cin(xn1 )) ∈ ({0, 1}n2 )n1 .
Note that C is an (n1n2, k1k2)2 code.

Using a suitable outer code and a suitable inner code, d-

disjunct matrices can be generated. For example, let Cout and
Cin be (3, 1)8 and (3, 3)2 codes, where |Cout| = 12 and |Cin| = 8.
The corresponding matrices are H = MCout and K = MCin as
follows:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1 2 2 2 4 4 4 7 0 0
1 2 4 1 2 4 1 2 4 0 7 0
1 4 2 4 2 1 2 1 4 0 0 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

If we concatenate each element ofH with its 3-bit binary rep-
resentation such as matrix K , we get a 2-disjunct matrix:

M = H ◦ K

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 1 1 1 0 0 0 1 0 0
1 1 1 0 0 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 1 0
0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 0 1 0
0 1 0 1 0 0 0 0 1 0 0 1
0 0 1 0 1 0 1 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
From this discussion, we can draw an important conclusion

about decoding schemes using concatenation codes and list-
recoverable codes.
Theorem 5 (Simplified version of Theorem 4.1 [16]). Let d, L ≥
1 be integers. Let Cout be an (n1, k1)2k2 code that can be (d, L)-list

recovered in time T1(n1, d, L, k1, k2). Let Cin be (n2, k2)2 codes

such thatMCin is a d-disjunct matrix that can be decoded in time

T2(n2, d, k2). Suppose that matrix M = MCout◦Cin is d-disjunct.

Note that M is a t × N matrix where t = n1n2 and N = 2k1k2 .

Further, suppose that any arbitrary position in any codeword in

Cout and Cin can be computed in space S 1(n1, d, L, k1, k2) and

S 2(n2, d, k2), respectively. Then:

(a) given any outcome produced by at most d posi-

tives, the positive positions can be recovered in time

n1T2(n2, d, k2) + T1(n1, d, L, k1, k2) + 2Lt = n1T2(n2, d, k2) +
T1(n1, d, L, k1, k2) + O(Lt); and

(b) any entry in M can be computed in log t + log N +

S 1(n1, d, L, k1, k2) + S 2(n2, d, k2) = O(log t + log N) +
O (max{S 1(n1, d, L, k1, k2), S 2(n2, d, k2)}) space.

Since the decoding scheme requires knowledge from several
fields that are beyond the scope of this work, we do not discuss
it here. Readers are encouraged to refer to Ref. [16] for further
reading.

2.6 Review of Bui et al.’s Scheme
A scheme proposed by Bui et al. [2] plays an important role

for constructions in later sections. It is used to identify at most
one defective item while never producing a false positive. The
technical details are as follows.

Encoding procedure: Lee et al. [18] proposed a k×N measure-
ment matrix S that uses log N-bit representation of an integer, to
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detect at most one defective item:

S :=

⎡⎢⎢⎢⎢⎣b1 b2 . . . bN

b1 b2 . . . bN

⎤⎥⎥⎥⎥⎦ = [
S1 . . .SN

]
, (9)

where k = 2 log N, b j is the log N-bit binary representation

of integer j − 1, b j is b j’s complement, and S j :=

⎡⎢⎢⎢⎢⎣b j

b j

⎤⎥⎥⎥⎥⎦ for

j = 1, 2, . . . ,N. The weight of every column in S is k/2 = log N.
Given an input vector g = (g1, . . . , gN) ∈ {0, 1}N , measurement

matrix S is generalized:

B := S × diag(g) =
[
g1S1 . . . gNSN

]
, (10)

where diag(g) = diag(g1, . . . , gN) is the diagonal matrix con-
structed by input vector g, and B j = g jS j for j = 1, . . . ,N.
It is obvious that B = S when g is a vector of all ones; i.e.,
g = 1 = (1, 1, . . . , 1) ∈ {1}N . Moreover, the column weight of B
is either k/2 = log N or 0.

For example, consider the case N = 8, k = 2 log N = 6, and
g = (1, 0, 1, 0, 1, 1, 1, 1). Measurement matrices S and B are

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (11)

B = S × diag(g) = S × diag(1, 0, 1, 0, 1, 1, 1, 1)

= [1 × S1 0 × S2 1 × S3 0 × S4

1 × S5 1 × S6 1 × S7 1 × S8]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1 1 1
0 0 1 0 0 0 1 1
0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0
1 0 0 0 1 1 0 0
1 0 1 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Then, given a representation vector of N items x =

(x1, . . . , xN)T ∈ {0, 1}N , the outcome vector is

y′ = B ⊗ x =
N∨

j=1

x jB j (13)

=

N∨
j=1

x jg jS j =

N∨
j=1

x jg j=1

S j. (14)

Note that, even if there is only one entry x j0 = 1 in x, index j0
cannot be recovered if g j0 = 0.

Decoding procedure: From Eq. (14), the outcome y′ is the
union of at most |x| columns in S. Because the weight of each
column in S is log N, if the weight of y′ is log N, the index of one
non-zero entry in x is recovered by checking the first half of y′.
On the other hand, if y′ is the union of at least two columns in S
or zero vector, the weight of y′ is not equal to log N. This case is
considered here as a defective item is not identified. Therefore,
given a k×1 input vector, we can either identify one defective item
or no defective item in time k = 2 log N = O(log N). Moreover,

the decoding procedure does not produce a false positive.
For example, given x1 = (0, 1, 0, 0, 0, 0, 0, 0)T , x2 =

(0, 1, 1, 0, 0, 0, 0, 0)T , and x3 = (0, 1, 1, 1, 0, 0, 0, 0)T , their
corresponding outcomes using the measurement matrix B in
Eq. (12) are y′1 = (0, 0, 0, 0, 0, 0)T , y′2 = (0, 1, 0, 1, 0, 1)T , and
y′3 = (0, 1, 0, 1, 0, 1)T . Since |y′1| = 0, there is no defective item
identified. Since |y′2| = |y

′
3| = 3 = log N, the only defective item

identified from the first half of y′2 or y′3, i.e., (0, 1, 0) is 3. Note
that, even if |x1| � |x2|, the same defective item is identified.

3. Efficient Decoding Scheme Using a given
Measurement Matrix

In this section, we present a simple but powerful tool for iden-
tifying defective items using a given measurement matrix. We
thereby answer the question of whether there exists a scheme such
that a larger T × N measurement matrix built from a given t × N

measurement matrix, can be used to identify up to d defective
items in time poly(t) = t × log N = T . It can be summarized as
follows:
Theorem 6. For any ε ≥ 0, suppose each set of d columns in a

given t×N matrixM contains a d×d identity matrix with proba-

bility at least 1−ε. Then there exists a T×N matrixT constructed

fromM that can be used to identify at most d defective items in

time T = t × 2 log N with probability at least 1 − ε. Further, sup-

pose that any entry of M can be computed in time β and space

γ, so every entry of T can be computed in time O(β log N) and

space O(log T + log N) + O(γ log N).

Proof. Suppose M = (mi j) ∈ {0, 1}t×N . Then the T × N mea-
surement matrix T is generated by using the tensor product ofM
and S in Eq. (9):

T =M � S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
S × diag(M1,∗)

...

S × diag(Mt,∗)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
B1

...

Bt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
m11S1 . . . m1NSN

...
. . .

...

mt1S1 . . . mtNSN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (15)

where T = t × k = t × 2 log N and Bi = S × diag(Mi,∗) for
i = 1, . . . , t. Note that Bi is an instantiation of B when g is set
to Mi,∗ in Eq. (10). Then, for any N × 1 representation vector
x = (x1, . . . , xN) ∈ {0, 1}N , the outcome vector is

y� = T ⊗ x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
B1 ⊗ x
...

Bt ⊗ x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y′1
...

y′t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (16)

where y′i = Bi ⊗ x for i = 1, . . . , t; y′i is obtained by replacing B
by Bi in Eq. (13).

By using the decoding procedure in Section 2.6, the decoding
procedure is simply to scan all y′i for i = 1, . . . , t. If |y′i | = log N,
we take the first half of y′i to calculate the defective item. Thus,
the decoding complexity is T = t × 2 log N = O(T ).

Our task now is to prove that the decoding procedure above
can identify all defective items with probability at least 1− ε. Let
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D = { j1, . . . , j|D|} be the defective set, where |D| = g ≤ d. We will
prove that there exists y′i1 , . . . , y

′
ig

such that ja can be recovered
from y′ia for a = 1, . . . , g. Because any set of d columns in M
contains a d × d identity matrix with probability at least 1 − ε,
any set of g ≤ d columns j1, . . . , jg in M also contains a g × g
identity matrix with probability at least 1 − ε. Let i1, . . . , ig be
the row indexes of M such that mia ja = 1 and mia jb = 0, where
a, b ∈ {1, 2, . . . , g} and a � b. Then the probability that rows
i1, . . . , ig coexist is at least 1 − ε.

For any outcome y′ia , where a = 1, . . . , g, by using Eq. (14), we
have

y′ia = B
ia ⊗ x =

N∨
j=1

x jmia j=1

S j =
∨
j∈D

x jmia j=1

S j = S ja , (17)

because there are only g non-zero entries x j1 , . . . , x jg in x. Thus,
all defective items j1, . . . , jg can be identified by checking the
first half of each corresponding y′i1 , . . . , y

′
ig

. Since the probability
that rows i1, . . . , ig coexist is at least 1 − ε, the probability that
defective items j1, . . . , jg are identified is also at least 1 − ε.

We next estimate the computational complexity of computing
an entry in T . An entry in row 1 ≤ i ≤ T and column 1 ≤ j ≤ N

needs log T + log N bits (space) to be indexed. It belongs to vec-
tor mi0 jS j, where i0 = i/(2 log N) if i mod (2 log N) ≡ 0 and
i0 = �i/(2 log N)� if i mod (2 log N) � 0. Since each entry inM
needs γ space to compute, every entry in T can be computed in
space O(log T + log N) + O(γ log N) after mapping it to the cor-
responding column of S. The time to generate an entry for T is
straightforwardly obtained as β log N = O(β log N). �

Part of Theorem 6 is implicit in other papers (e.g., Ref. [2],
[4], [5], [18]). However, the authors of those papers only con-
sidered cases specific to their problems. They mainly focused
on how to generate matrix M by using complicated techniques
and a non-constructive method, i.e., random construction (e.g.,
Ref. [5], [18]). As a result, their decoding schemes are random-
ized. Moreover, they did not consider the cost of computing an
entry inM. In two of the papers [2], [4], the decoding time was
not scaled to t × log N for deterministic decoding, i.e., ε = 0.
Our contribution is to generalize their ideas into the framework
of non-adaptive group testing. We next instantiate Theorem 6 in
the broad range of measurement matrix construction.

3.1 Case of ε = 0
We consider the case in which ε = 0; i.e., a given matrixM is

always (d − 1)-disjunct. There are three metrics for evaluating an
instantiation: number of tests, construction type, and time to gen-
erate an entry for T . We first present an instantiation of a strongly
explicit construction. LetM be a measurement matrix generated
from Theorem 2. Then t = O(d2 log N), β = O(t2 log N), and
γ = O(t log N). Thus, we obtain efficient NAGT where the num-
ber of tests and the decoding time are O(d2 log2 N).
Corollary 1. Let 1 ≤ d ≤ N be integers. There exists a random

T × N measurement matrix T with T = O(d2 log2 N) such that

at most d defective items can be identified in time O(T ). More-

over, each entry in T can be computed in time O(T 2) and space

O(T log N).

It is also possible to construct T deterministically. However, it
would take poly(t,N) time and poly(t) space, which are too long
and too much for practical applications. Therefore, we should
increase the time needed to generate an entry for T in order to
achieve nonrandom construction with the same number of tests
T = O(d2 log2 N) and a short construction time. The follow-
ing theorem is based on the weakly explicit construction of a
given measurement matrix as in Theorem 1; i.e., t = O(d2 log N),
β = O(tN), and γ = O(tN).
Corollary 2. Let 1 ≤ d ≤ N be integers. There exists a nonran-

dom T × N measurement matrix T with T = O(d2 log2 N) that

can be used to identify at most d defective items in time O(T ).
Moreover, each entry in T can be computed in time (and space)

O(T N).
Although the number of tests is low and the construction type

is nonrandom, the time to generate an entry for T is long. If we
increase the number of tests, one can achieve both nonrandom
construction and low generating time for an entry as follows:
Corollary 3. Let 1 ≤ d ≤ N be integers. There ex-

ists a nonrandom T × N measurement matrix T with T =

O
(

d2 log3 N
(log(d log N)−log log(d log N))2

)
that can be used to identify at most

d defective items in time O(T ). Moreover, each entry in T can be

computed in time (and space) O(T ).
The above corollary is obtained by choosing a measurement

matrix as a d-disjunct matrix in Theorem 8 (Section 4): t =

O
(

d2 log2 N
(log(d log N)−log log(d log N))2

)
, β = O(t), and γ = O(t).

3.2 Case of ε > 0
To reduce the number of tests and the decoding complexity,

the construction process of the given measurement matrix must
be randomized. We construct the matrix as follows. A given t×N

matrixM = (mi j) is generated randomly, where Pr(mi j = 1) = 1
d

and Pr(mi j = 0) = 1 − 1
d for i = 1, . . . , t and j = 1, . . . ,N. The

value of t is set to ed ln d
ε
. Then, for each set of d columns inM,

the probability that a set does not contain a d × d identity matrix
is at most

(
d
1

) ⎛⎜⎜⎜⎜⎜⎝1 − 1
d

(
1 − 1

d

)d−1⎞⎟⎟⎟⎟⎟⎠
t

(18)

≤ d · exp

⎛⎜⎜⎜⎜⎜⎝− 1
d − 1

(
1 − 1

d

)d

t

⎞⎟⎟⎟⎟⎟⎠ (19)

≤ d · exp

(
− t

d − 1
· e−1

(
1 − 1

d

))
(20)

≤ d · exp
(
− t

ed

)
= d · exp

(
− ln

d
ε

)
(21)

≤ ε. (22)

Expression (19) is obtained because (1 + x)y ≤ exp(xy) for
all |x| ≤ 1 and y ≥ 1. Expression (20) is obtained because(
1 + x

n

)n
≥ ex

(
1 − x2

n

)
for n > 1 and |x| < n. Therefore, there

exists a t × N matrix M with t = O
(
d log d

ε

)
such that each set

of d columns contains a d × d identity matrix with probability at
least 1 − ε, for any ε > 0. Since β = γ = O(tN), W can derive the
following corollary.
Corollary 4. Given integers 1 ≤ d ≤ N and a scalar ε > 0,

there exists a random T × N measurement matrix T with T =
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O
(
d log N · log d

ε

)
that can be used to identify at most d defective

items in time O(T ) with probability at least 1 − ε. Furthermore,

each entry in T can be computed in time (and space) O(T N).
While the result in Corollary 4 is similar to previously reported

ones [5], [18], construction of matrix M is much simpler. It is
possible to achieve the number of tests t = O

(
d log d

ε
· log N

)
when each set of d columns in M contains a d × d identity
matrix with probability at least 1 − ε for any ε > 0. How-
ever, it is impossible to achieve this number for every set of
d columns that contains a d × d identity matrix with proba-
bility at least 1 − ε. In this case, by using the same proce-
dure used for generating random matrix M and by resolving(

N
d

)(
d
1

) (
1 − 1

d

(
1 − 1

d

)d−1
)t
≤ ε, the number of tests needed is de-

termined to be t = O
(
d2 log N + d log 1

ε

)
. Since this number is

greater than that when ε = 0 (O(d2 log N)), it is not beneficial to
consider the case that every set of d columns that contains a d× d

identity matrix with probability at least 1 − ε.

4. Nonrandom Disjunct Matrices

It is extremely important to have nonrandom constructions for
measurement matrices in real-time applications. Therefore, we
now focus on nonrandom constructions. We have shown that the
well-known barrier on the number of tests O(d2 log2 N) for con-
structing a d-disjunct matrix can be overcome.

4.1 Case of d = 2
When d = 2, the measurement matrix is T = S � S, where
S is given by Eq. (9). Note that the size of S is k × N, where
k = 2 log N, and T is not a 2-disjunct matrix. We start by proving
that any two columns in S contain a 2×2 identity matrix. Indeed,
suppose bw = (b1w, . . . , b(k/2)w)T , which is a log N-bit binary rep-
resentation of 0 ≤ w − 1 ≤ N − 1. For any two vectors bw1 and
bw2 , there exists a position i0 such that bi0w1 = 0 and bi0w2 = 1,
or bi0w1 = 1 and bi0w2 = 0 for any 1 ≤ w1 � w2 ≤ N. Then their
corresponding complementary vectors bw1 = (b1w1 , . . . , b(k/2)w1 )T

and bw2 = (b1w2 , . . . , b(k/2)w2 )T satisfy: bi0w1 = 0 and bi0w2 = 1
when bi0w1 = 0 and bi0w2 = 1, or bi0w1 = 1 and bi0w2 = 0 when
bi0w1 = 1 and bi0w2 = 0. Thus, any two columns w1 and w2 in
S always contain a 2 × 2 identity matrix. From Theorem 6 (set
M = S), we obtain the following theorem.
Theorem 7. Let 2 ≤ N be an integer. A 4 log2 N × N nonran-

dom measurement matrix T can be used to identify at most two

defective items in time 4 log2 N. Moreover, each entry in T can

be computed in space 2 log N + log(2 log N) with four operations.

Proof. It takes γ = 2 log N + log(2 log N) bits to index an en-
try in row i and column j. Only two shift operations and a mod
operation are needed to exactly locate the position of the entry
in column S j. Therefore, at most four operations (β = 4) and
2 log N + log(2 log N) bits are needed to locate an entry in matrix
T . The decoding time is straightforwardly obtained from Theo-
rem 6 (t = k = 2 log N). �

4.2 General Case
Indyk et al. [16] used Theorem 5 and Parvaresh-Vardy (PV)

codes [20] to come up with Theorem 3. Since they wanted to
convert RS code into list-recoverable code, they instantiated PV
code into RS code. However, because PV code is powerful in
terms of solving general problems, its decoding complexity is
high. Therefore, the decoding complexity in Theorem 3 is rel-
atively high. Here, by converting RS code into list-recoverable
code using Theorem 4, we carefully use Theorem 5 to construct
and decode disjunct matrices. As a result, the number of tests
and the decoding time for a nonrandom disjunct matrix are sig-
nificantly reduced.

Let W(x) be a Lambert W function in which W(x)eW(x) = x for
any x ≥ − 1

e . When x > 0, W(x) is an increasing function. One
useful bound [15] for a Lambert W function is ln x − ln ln x ≤
W(x) ≤ ln x − 1

2 ln ln x for any x ≥ e. Theorem 5 is used to
achieve the following theorem with careful setting of Cout and Cin

Theorem 8. Let 1 ≤ d ≤ N be integers. Then there exists

a nonrandom d-disjunct matrix M with t = O
(

d2 ln2 N
(W(d ln N))2

)
=

O
(

d2 log2 N
(log(d log N)−log log(d log N))2

)
. Each entry (column) in M can be

computed in time (and space) O(t) (O(t3/2)).Moreover,M can be

used to identify up to d′ defective items, where d′ ≥
⌊

d
2

⌋
+ 1, in

time

O

(
d3.57 log6.26 N

(log(d log N) − log log(d log N))6.26

)

+O

(
d6 log4 N

(log(d log N) − log log(d log N))4

)
.

When d is the power of 2, d′ = d − 1.

Proof. Construction: We use the classical method proposed by
Kautz and Singleton [17] to construct a d-disjunct matrix. Let η
be an integer satisfying 2η < 2eW( 1

2 d ln N) < 2η+1. Choose Cout as
an [n = q − 1, r]q-RS code, where

q =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2eW( 1

2 d ln N) = d ln N
W( 1

2 d ln N) if 2eW( 1
2 d ln N) is the power

of 2.
2η+1, otherwise.

(23)

Set r =
⌈

q−2
d

⌉
, and let Cin be a q × q identity matrix. The com-

plexity of q is Θ
(
eW(d ln N)

)
= Θ

(
d ln N

W(d ln N)

)
in both cases because

2eW( 1
2 d ln N) =

d ln N

W
(

1
2 d ln N

)

≤ q < 2 · 2eW( 1
2 d ln N) =

2d ln N

W
(

1
2 d ln N

) .

Let C = Cout ◦ Cin. We are going to prove thatM =MC is d-
disjunct for such q and r. It is well known [17] that if d ≤ q−1−1

r−1 ,
M is d-disjunct with t = q(q − 1) tests. Indeed, we have

q − 1 − 1
r − 1

=
q − 2

	 q−2
d 
 − 1

≥ q − 2
q−2

d + 1 − 1
= d. (24)

Since q = O
(

d ln N
W(d ln N)

)
, the number of tests inM is

t = q(q − 1) = O

(
d2 ln2 N

(W(d ln N))2

)
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= O

(
d2 ln2 N

(ln(d ln N) − ln ln(d ln N))2

)

= O

(
d2 log2 N

(log(d log N) − log log(d log N))2

)
,

because ln x − ln ln x ≤ W(x) ≤ ln x − 1
2 ln ln x for any x ≥ e.

Since Cout is an [n, r]q-RS code, each of its codewords can be
computed [22] in time

O(r2) = O

⎛⎜⎜⎜⎜⎜⎝
(

ln N
ln (d ln N) − ln ln (d ln N)

)2⎞⎟⎟⎟⎟⎟⎠
= O

( t
d2

)
= O(t),

and space

S 1 = O(r log q/ log2 r)

= O(q log q) = O (d ln N) = O(t). (25)

Our task is now to prove that the number of columns in MC ,
i.e., qr, is at least N. The range of d ln N

W( 1
2 d ln N) ≤ q < 2d ln N

W( 1
2 d ln N) is:

d + 2 <
d ln N

ln
(

1
2 d ln N

)
− 1

2 ln ln
(

1
2 d ln N

) ≤ q (26)

q ≤ 2d ln N

ln
(

1
2 d ln N

)
− ln ln

(
1
2 d ln N

) < 2d ln N. (27)

These inequalities were obtained because ln x − ln ln x ≤
W(x) ≤ ln x − 1

2 ln ln x for any x ≥ e. Then we have:

q(q−2)/d =

(
qq

q2

)1/d

≥
(

1
q2
×

(
2eW( 1

2 d ln N)
)q

)1/d

≥
(

2q

q2
×

(
eW( 1

2 d ln N)
)q

)1/d

≥
(

2q

q2
×

(
eW( 1

2 d ln N)×2eW( 1
2 d ln N)

))1/d

≥
(

2q

q2
× e2× 1

2 d ln N

)1/d

(28)

≥ N ×
(

2q

q2

)1/d

> N. (29)

Equation (28) is achieved because W(x)eW(x) = x. Equation (29)

is obtained because
(

2q

q2

)1/d
≥ 1 for any q ≥ 5. Since q−2

d ≤ r =

	 q−2
d 
 <

q−2
d + 1, the number of codewords in Cout is:

N < q(q−2)/d ≤ qr < q(q−2)/d+1 = q × q(q−2)/d (30)

<
d ln N

W
(

1
2 d ln N

)
(

2q

q2

)1/d

× N. (31)

Equation (30) indicates that the number of columns inMC is
more than N. To obtain a t×N matrix, one simply removes qr−N

columns fromMC . The maximum number of columns that can
be removed is O(d ln N × N2) because of Eq. (31).

Decoding: Consider the ratio q−1
r implied by list size d′ =⌈

q−1
r

⌉
− 1 =

⌈
q−1

	(q−2)/d


⌉
− 1 of [q − 1, r]q-RS code. Parameter d′ is

also the maximum number of defective items thatM can be used

to identify because of Theorem 5. We thus have

d′ =

⌈
q − 1

	(q − 2)/d


⌉
− 1 ≥ d

(
1 − d − 1

q + d − 2

)
>

d
2
,

because q + d − 2 ≥ 2d > 2(d − 1). Since d′ is an integer,
d′ ≥

⌊
d
2

⌋
+ 1.

Next we prove that d′ = d − 1 when d is the power of 2, e.g.,
d = 2x for some positive integer x. Since q is also the power of 2
as shown by Eq. (23), suppose that q = 2y for some positive inte-
ger y. Because q > d in Eq. (26), 2y > 2x. Then r = 	 q−1

d 
 = 2y−x.
Therefore, d′ =

⌈
q−1

r

⌉
− 1 = 2x − 1 = d − 1.

The decoding complexity of our proposed scheme is analyzed
here. We have:
• Code Cout is an (d′ =

⌈
q−1

	(q−2)/d


⌉
− 1, L = O

(
n4

r2

)
= O(q2d2))-

list recoverable code as in Theorem 4. It can be decoded in
time

T1 = O(n3.57r2.69)

= O

(
d3.57 log6.26 N

(log(d log N) − log log(d log N))6.26

)
.

Moreover, any codeword in Cout can be computed in time
O(r2) = O

(
t

d2

)
and space S 1 = O(t) as in Eq. (25).

• Cin is a q × q identity matrix. ThenMCin is a q-disjunct ma-
trix. Since d′ ≤ d < q,MCin is also a d′-disjunct matrix. It
can be decoded in time T2 = d′q and each codeword can be
computed in space S 2 = log q.

From Theorem 5, given any outcome produced by at most d′

defective items, those items can be identified in time

Ts = nT2 + T1 + O(Lt)

= nd′q + O

⎛⎜⎜⎜⎜⎝ d3.57 log6.26 N(
log(d log N) − log log(d log N)

)6.26

⎞⎟⎟⎟⎟⎠
+ O

⎛⎜⎜⎜⎜⎝ d6 log4 N(
log(d log N) − log log(d log N)

)4

⎞⎟⎟⎟⎟⎠
= O

⎛⎜⎜⎜⎜⎝ d3.57 log6.26 N(
log(d log N) − log log(d log N)

)6.26

⎞⎟⎟⎟⎟⎠
+ O

⎛⎜⎜⎜⎜⎝ d6 log4 N(
log(d log N) − log log(d log N)

)4

⎞⎟⎟⎟⎟⎠ . (32)

Moreover, each entry (column) in M can be computed in
time O(t) (O(tq) = O(t3/2)) and space O(log t + log N) +
O(max{S 1, S 2}) = O

(
d log N

)
= O(t) (O(tq) = O(t3/2)). �

If we substitute d by 2�log2 d�+1 in the theorem above, the mea-
surement matrix is 2�log2 d�+1-disjunct. Therefore, it can be used
to identify at most d′ = 2�log2 d�+1 − 1 ≥ d defective items. The
number of tests and the decoding complexity in the theorem re-
main unchanged because d < 2�log2 d�+1 ≤ 2d.

5. Evaluation

We evaluated variations of our proposed scheme by simulation
using d = 2, 23, 27, 210, 212 and N = 220, 240, 260, 280, 2100 in Mat-
lab R2015a on an HP Compaq Pro 8300SF desktop PC with a
3.4-GHz Intel Core i7-3770 processor and 16-GB memory.
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Table 2 Parameter settings for [q − 1, r]q-RS code and resulting q(q − 1) × N d-disjunct matrix: number
of items N, maximum number of defective items d, alphabet size q as in Eq. (23), number of
tests t = q(q − 1), dimension r = 	 q−2

d 
. Parameter d′ =
⌈

q−1
	(q−2)/d


⌉
− 1 is the maximum number

of defective items that the t × N resulting matrix can be used to identify. Parameter N′ = qr is
maximum number of items such that resulting q(q− 1)× N′ matrix generated from this RS code
is still d-disjunct. Parameters t2 = 4800d2 log N and t1 = d log N(d log N − 1) are number of
tests from Theorems 2 and 3.

d N q t = q(q − 1) r d′ N′
t1 =

d log N(d log N − 1)
t2 = 4800d2 log N

23 = 8

220 26 = 64 4,032 8 d − 1 248 25,440 6,144,000
240 27 = 128 16,256 16 d − 1 2102 102,080 12,288,000
260 27 = 128 16,256 16 d − 1 2102 229,920 18,432,000
280 27 = 128 16,256 16 d − 1 2102 408,960 24,576,000
2100 28 = 256 65,280 32 d − 1 2256 639,200 30,720,000

27 = 128

220 29 = 512 261,632 4 d − 1 236 6,551,040 1,572,864,000
240 210 = 1,024 1,047,552 8 d − 1 280 26,209,280 3,145,728,000
260 210 = 1,024 1,047,552 8 d − 1 280 58,974,720 4,718,592,000
280 211 = 2,048 4,192,256 16 d − 1 2176 104,847,360 6,291,456,000
2100 211 = 2,048 4,192,256 16 d − 1 2176 163,827,200 7,864,320,000

210 = 1,024

220 211 = 2,048 4,192,256 2 d − 1 222 419,409,920 100,663,296,000
240 212 = 4,096 16,773,120 4 d − 1 248 1,677,680,640 201,326,592,000
260 213 = 8,192 67,100,672 8 d − 1 2104 3,774,812,160 301,989,888,000
280 213 = 8,192 67,100,672 8 d − 1 2104 6,710,804,480 402,653,184,000
2100 214 = 16,384 268,419,072 16 d − 1 2224 10,485,657,600 503,316,480,000

212 = 4,096

220 213 = 8,192 67,100,672 2 d − 1 226 6,710,804,480 1,610,612,736,000
240 214 = 16,384 268,419,072 4 d − 1 256 26,843,381,760 3,221,225,472,000
260 215 = 32,768 1,072,398,336 8 d − 1 2120 60,397,731,840 4,831,838,208,000
280 215 = 32,768 1,072,398,336 8 d − 1 2120 107,373,854,720 6,442,450,944,000
2100 215 = 32,768 1,072,398,336 8 d − 1 2120 167,771,750,400 8,053,063,680,000

5.1 Numerical Settings for N, d, and q
We focused on nonrandom construction of a t × N d-disjunct

matrixM for which the time to generate an entry is poly(t). Given
integers d and N, an [n = q − 1, r]q code Cout and a q × q iden-
tity matrix Cin were set up to createM = MCout◦Cin . The precise
formulas for q, r, t are q = 2eW( 1

2 d ln N) or q = 2η+1 as in Eq. (23),
r = 	 q−2

d 
, and t = q(q − 1). Note that the integer q is the power
of 2. Moreover, N′ = qr is the maximum number of items such
that the resulting t × N′ matrix generated from this RS code was
still d-disjunct. Parameter d′ =

⌈
q−1

r

⌉
− 1 =

⌈
q−1

	(q−2)/d


⌉
− 1 is

the maximum number of defective items that matrix M could
be used to identify. The parameters t2 = 4800d2 log N and
t1 = d log N(d log N−1) are the number of tests from Theorems 2
and 3. The numerical results are shown in Table 2.

Since the number of tests from Theorem 2 is O(d2 log N),
it should be smaller than the number of tests in Theorem 3,
which is t = O(d2 log2 N), and Theorem 8, which is t =

O
(

d2 log2 N
(log(d log N)−log log(d log N))2

)
. However, the numerical results in

Table 2 show the opposite. Even when d = 212 ≈ 0.4% of N,
the number of tests from Theorem 2 was the largest. Moreover,
there was no efficient construction scheme associated with it. The
main reason is that the multiplicity of O(d2 log N) is 4,800, which
is quite large. Figure 1 shows the ratio between the number of
tests from Theorem 2 and the number from Theorem 8 (our pro-
posed scheme) and between the number from Theorem 3 and the
number from Theorem 8 (our proposed scheme). The number of
tests with our proposed scheme was clearly smaller than with the
existing schemes, even when N = 2100. This indicates that the
matrices generated from Theorem 2 and Theorem 3 are good in

theoretical analysis but bad in practice.
In contrast, a nonrandom d-disjunct matrix is easily generated

from Theorem 8. It also can be used to identify at most d − 1

Fig. 1 Ratio of number of tests from Theorem 2 and number from Theo-
rem 3 to number with proposed scheme (Theorem 8) for d = 23, 212

and N = 220, 240, 260, 280, 2100. Ratio was always larger than 1; i.e.,
the number of tests in the proposed scheme is smaller than the com-
pared one.

defective items. If we want to identify up to d defective items, we
must generate a nonrandom (d + 1)-disjunct matrix in which the
number of tests is still smaller than t1 and t2. Since the number
of tests from Theorem 8 is the lowest, its decoding time is the
shortest. In short, for implementation, we recommend using the
nonrandom construction in Theorem 8.

5.2 Experimental Results
Since the time to generate a measurement matrix entry would

be too long if it were O(tN), we focus on implementing the meth-
ods for which the time to generate a measurement matrix entry
is poly(t), i.e., 〈3〉, 〈4〉, 〈8〉, 〈9〉, 〈10〉 in Table 1. However, to in-
corporate a measurement matrix into applications, random con-
structions are not preferable. Therefore, we focus on nonrandom
constructions. Since we are unable to program decoding of list-
recoverable codes because it requires knowledge of algebra, finite
field, linear algebra, and probability. We therefore tested our pro-
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Fig. 2 Decoding time for d = 23 and d = 27 from Theorem 7. Number of
items N was {220, 240, 260, 280, or 2100}.

posed scheme by implementing 〈4〉 (Theorem 7) and 〈8〉 (Corol-
lary 3). This is reasonable because, as analyzed in Section 5.1,
the number of tests in Theorem 8 is the best for implementing
nonrandom constructions. Since Corollary 3 is derived from The-
orem 8, its decoding time should be the best for implementation.

We ran experiments for d = 2 from Theorem 7 and d = 23, 27

from Corollary 3. We did not run any for d = 210, 212 because
there was not enough memory in our set up (more than 100 GB
of RAM is needed). The decoding time was calculated in seconds
and averaged over 100 runs. When d = 2, the decoding time was
less than 1 ms. As shown in Fig. 2, the decoding time was lin-
early related to the number of tests, which confirms our theoreti-
cal analysis. Moreover, defective items were identified extremely
quickly (less than 16 s) even when N = 2100. The accuracy was
always 1; i.e., all defective items were identified.

6. Conclusion

We have presented a scheme that enables a larger measurement
matrix built from a given t×N measurement matrix to be decoded
in time O(t log N) and a construction of a nonrandom d-disjunct

matrix with t = O
(

d2 log2 N
(log(d log N)−log log(d log N))2

)
tests. This number of

tests indicates that the upper bound for nonrandom construction
is no longer O(d2 log2 N). Although the number of tests with our
proposed schemes is not optimal in term of theoretical analysis,
it is good enough for implementation. In particular, the decod-
ing time is less than 16 seconds even when d = 27 = 128 and
N = 2100. Moreover, in nonrandom constructions, there is no
need to store a measurement matrix because each column in the
matrix can be generated efficiently.

Open problem: Our finding that N becomes much smaller
than N′ as q increases (Table 2) is quite interesting. Our hy-
pothesis is that the number of tests needed may be smaller than
2eW( 1

2 d ln N)
(
2eW( 1

2 d ln N) − 1
)
. If this is indeed true, it paves the

way toward achieving a very efficient construction and a shorter
decoding time without using randomness. An interesting ques-
tion is to answer the question that whether there exists a t × N

d-disjunct matrix with t ≤ 2eW( 1
2 d ln N)

(
2eW( 1

2 d ln N) − 1
)

that can
be constructed in time O(tN) with each entry generated in time
(and space) poly(t) and with a decoding time of O(t2).
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