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Abstract: Many aspects in planning and prediction in real environments could benefit from behavior 

learning techniques, with pedestrian simulation for city and business planning being one of them. We 

developed a method for behavior learning called Contextual Action Multiple Policy Inverse Reinforcement 

Learning (CAMP-IRL) that allows effective pedestrian behavior simulation. However we noticed some 

limitations when identifying important relationships between locations in the city map. In this paper we 

present a graph enrichment technique devised to solve this issue and similar ones. The technique works by 

applying a number of transformations to the map features in order to permeate with feature information the 

nodes that are indirectly related to those features. Our tests showed promising results, improving the 

performance of the original CAMP-IRL method and opening new paths to explore. 

 

Introduction 

Pedestrian behavior simulation is a difficult task to 

perform due to the performance requirements and the 

necessary information to learn meaningful behavior 

patterns. Inverse Reinforcement Learning techniques help 

in solving those issues, as they learn from a set of observed 

behaviors provided by an expert and can be processed 

before the simulation. We developed a variant that 

includes contextual actions and multiple reward functions 

and adapted it to work with a multi-agent based pedestrian 

simulator. The agents in the simulator are able to navigate 

the map with no information other than the learned 

behavior patterns and obtain better results than other 

methods in terms of goal clear times and trajectory 

optimization. We called them "Contextual Action 

Multiple Policy Inverse Reinforcement Learning" 

(CAMP-IRL) agents.  

However, we found several instances when only having 

the data from expert trajectories was not enough to obtain 

the desired knowledge. For example, under certain 

conditions, traversing certain areas of unknown layout to 

reach concrete goals is difficult for trained agents, whilst 

for humans such information should be trivial to deduct. 

In order to avoid such situations, we devised a method to 

improve the available graph information contained in the 

trajectory database. 

This work is organized as follows: Section 2 contains a 

review of previous work on reinforcement learning used 

for agent behavior and pedestrian simulators. Section 3 

describes the CAMP-IRL method and our pedestrian 

simulator. Section 4 presents our map enrichment method 

and Section 5 shows our preliminary results. Finally, 

section 6 contains the conclusions of our research. 

Related Work 

Apprenticeship learning methods have been widely 

used in intelligent agents' systems to train them to perform 

tasks in dynamic environments [1]. We can observe 

strategies to emulate predefined driving behaviors [2], and 

there are also works where agents are given a behavior 

cognitive model for pedestrians [3]. However, in those 

works the behavior model is predefined by a designer, 

having a low degree of flexibility, being tied to its domain, 

or even escalating badly.  

An extra issue in simulating people's behavior is that the 

reward function governing their actions will be often 

hidden. We can avoid this problem using inverse 

reinforcement learning (here on after IRL) because instead 

a reward function, it only needs a set of observed expert 

demonstration behaviors. IRL works well on domains 

where the reward function is hidden, being appropriate to 

model animal and human behavior [4].  

We can find many different approaches to IRL, each one 

with its own characteristics and issues [5]. For example, 

we find a linearly solvable approach in [6], with a number 

of constraints in the MDP definition, or the Maximum 

Entropy method [7], which works well when we do not 

have much information about the solution space. Other 

methods have obtained better results under certain 

conditions, like [8] which works on a subset of MDPs, but 

it does not match well with our domain, or [9] which deals 
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with non-linear reward functions. 

Works using IRL to learn agent behavior are sparse but 

effective, as it is shown in [10] where driving styles are 

learned by an agent, or [11] where different agents work 

together for routing traffic. 

Other works have previously dealt with extracting 

multiple reward functions, like [12], showing how to 

switch between different MDP and obtain their related 

policy functions and works well extracting different 

behaviors. The work in [13] divides the data in smaller 

sub-goals in order to obtain simple reward functions, and 

in [14] we find a hierarchical method for selecting MDP 

partitions with different policies for each sub-MDP, which 

can be interesting for domains where the agent has a 

number of sequential small sub-goals.  

The CAMP-IRL Method 

IRL techniques work on domains that can be modeled by 

a Markov Decision Process (MDP) but have hidden 

reward functions (the reward function dictates the gain 

from performing a given action in a given state). However 

human behavior is not only directed by only one goal but 

many, with different rewards that are managed at the same 

time.  

We based our method in a non-parametric Bayesian 

approach to the problem [15] extracting a number of 

clusters from the data, obtaining different reward and 

policy functions for each one of them. Also, we adapted 

the MDP to be able to work with contextual actions, used 

to avoid an explosion in the solution space by cutting 

redundant actions and allow flexibility in the domain 

definition. 

Contextual Action Multiple Policy MDP (CAMP-

MDP) consists on an MDP {S, 𝒜, 𝒯, γ , ℛ} with S as the 

set of states, the transition function 𝒯(s, a, s’) from one 

state to another by executing an action, and γ as the 

discount factor. It also composed by a super set 𝒜 (s) of 

actions as a function of a state s, and ℛ (s, a) as a super set 

of Reward functions where s is a state from S and a is an 

action from the set 𝒜 (s). This means that available actions 

are dependent of the state (i.e., contextual), because each 

location has a different number of possible paths to take; 

when translating the locations to states and paths to actions, 

there will be certain actions only available to certain states. 

Finally, each state has a set of features, which influence 

how the reward function is calculated. 

The CAMP-IRL algorithm uses a Dirichlet process [16] 

to classify the trajectories into different groups we call 

profiles, and then a reward function is calculated for each 

profile using a Bayesian approach to the IRL method. 

However, we modified it to be able to work with the 

CAMP-MDP considering that each state will have a 

different action set. The algorithm follows the next steps 

and formulas: 

1. Initialize the profile set C containing K elements and 

the reward set {𝑟}𝑘=1
𝐾

 

I. The initial clusters (profiles) and their reward 

function are randomized. The reward function 

consists in a weight vector containing the weights 

of all the map features. 

II. An initial policy is generated randomly from each 

reward. This policy consists in a vector containing 

the optimal action to perform for each node, and 

it is obtained by calculating the value of 

performing the most optimal action a from the 

available actions in the state s following the next 

function: 

𝑉∗(𝑠) =  𝑚𝑎𝑥𝑎∈𝒜(𝑠) ℛ(s, a) + γ ∑ 𝒯(s, a, s′) 𝑉∗(𝑠′)

𝑠′𝜖S

 

2. For each element m in the trajectory set, select a new 

class candidate 𝑐𝑚
∗  using the following rule: 

I. If the trajectory has no assigned class, generate a 

new one, and a reward function for it. 

II. If it has one, obtain the most populated profile. 

III. Assign the trajectory to the new class with 

probability 

𝑃(𝜒𝑚|𝑐𝑚
∗ )

𝑃(𝜒𝑚|𝑐𝑚)
 

3. For each class k: 

I. Create a weight vector candidate 

𝑟𝑘
∗  =  𝑟𝑘 + 

𝜏2

2
∇ log(𝑃(𝜒𝑘|𝑟𝑘)𝑃(𝑟𝑘)) +  𝜏𝛼 

where τ is a scaling factor and 𝛼  is a random 

number sampled from a multinomial distribution 

(0,1). 

II. Update the weight and value vectors with 

probability  

𝑃(𝜒𝑘|𝑟𝑘
∗)𝑃(𝑟𝑘

∗)𝑔(𝑟𝑘
∗, 𝑟𝑘)

𝑃(𝜒𝑘|𝑟𝑘)𝑃(𝑟𝑘)𝑔(𝑟𝑘 , 𝑟𝑘
∗)

 

Being the function g the gradient from the 

Langevin algorithm, calculated as follows: 
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𝑔(𝑥, 𝑦)

=  
exp (−

1
2𝜏2 ‖𝑥 − 𝑦 −

𝜏2

2 ∇𝑙𝑜𝑔𝑃(𝜒𝑘|𝑥)𝑃(𝑥)‖)

(2𝜋𝜏2)𝐷/2
 

where τ is a scaling factor. 

Repeat the process from (2) until convergence. Once 

finished, it is possible to use the obtained set of 

optimal policies for each profile to calculate the 

value vector. This value represents the expected 

reward of executing that policy on a node s and it is 

calculated as follows: 

𝑉𝜋(𝑠) =  ℛ(s, π) + γ ∑ 𝒯(s, π, s′) 𝑉𝜋(𝑠′)

𝑠′𝜖S

 

In order to use this method for pedestrian prediction, 

we created a CAMP-IRL module that interfaces with a 

crowd simulator called CrowdWalk where each pedestrian 

is represented by an agent.  

Our simulator simplifies the city map into a 1-

dimensional network consisting of nodes and links. The 

model of the map consists in a custom xml that describes 

the map in the form of network where nodes represent 

intersections and links represent streets or paths, which in 

our CAMP-MDP will represent as well as states and 

actions, respectively. The contextual actions are created 

using the number of links each node has, with one action 

per link, being semantically different for each node; thus, 

the first action in certain state will be different from the 

first action in another one, but will have the same label.  

A link also has length and width attributes influencing 

how long the agents need to walk from an end to another 

and how many agents can walk in parallel, and can be two-

way or one-way. Nodes also can have features, and 

information describing what facilities are on that location, 

which are also the state features in the CAMP-MDP.  

The inputs of our method are the city map in this 

model and a file containing the trajectories we want to 

train the agents with. The CAMP-IRL training algorithm 

is performed before the simulation as a pre-processing 

task, so even if it can take a long time depending of the 

complexity of the map it does not represent a big impact 

in the simulation speed as the decision process of the 

agents once we have these files is enough fast to use it in 

real time. Once the training process finishes, we obtain 

two files: one containing the weights of the features of 

each discovered profile, and another containing the value 

of each map node (as defined in the step 4 of the 

algorithm) for each profile. The weight and value files will 

be used in the simulation by the agents created by our 

CAMP-IRL module agents to traverse the map using the 

trained behaviors. 

In our experiments, the CAMP-IRL agents 

outperformed other types of agents that do not work with 

multiple policy functions or contextual actions, but we 

identified one issue that hindered their behavior. We 

observed that some useful information that should be 

extracted from the map and the routes was not being 

reflected in the learning process; in some of our 

experiments, one of the goals was a scarce feature that 

only was present in four nodes of the map; the agents were 

able to find it, but the wandered excessively before to do 

it. The main reason was that the system switching between 

different policies without finding any goal. 

After analyzing why this was happening, we found 

that this situation was due to the coincidence of two 

factors: scarcity of the goal feature in the map and having 

only a few and indirect ways to reach those features. In 

one example, in order to reach one of its goals, agents had 

to cross from one area of the map to another which could 

only be reached by crossing three links between them, but 

those links were not very remarkable in terms of learned 

value for the selected policies to reach that feature. Thus, 

agents were conducted by their policies to go towards the 

feature, but when reaching the nearby areas of the map 

they could not find the crossing point which was far away. 

We plan to solve this issue by improving the learning 

process by adding enriched information to the map, trying 

to establish semantic relations between nodes of the map 

like those crossing points and the featured nodes using a 

method we explain in the next section. 

Map Enrichment 

Before training the pedestrian behaviors, we first propose 

a method to improve the available graph information 

contained in the trajectory database. The intuitive idea we 

have is that by enriching each graph node information by 

its neighbors, an agent could make better decisions when 

choosing the next node to move.  

In our experiments, the graph we collected from the 

trajectory database contains the following information: (1) 

there are 13 categories (i.e., hostel, books, convenience, 

restaurant, café, dry_cleaning, hospital, supermarket, 

fast_food, kindergarten, telephone, cinema and 

post_office) describing each node; and (2) the graph 

structure is stored as an adjacency matrix. Therefore, the 

input of this method are a feature matrix 𝑋 ∈ ℝ𝑛×13 

recording the category information for all the 𝑛  nodes 
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and an adjacency matrix 𝐴 ∈ ℝ𝑛×𝑛 recording the graph 

structure. The output of this method is a new feature 

matrix 𝑋̂ ∈ ℝ𝑛×𝑘, where the value of 𝑘 depends on how 

many different filters we will used in this method.  

Having defined the input and output of this method, 

in the remainder of this section, we will introduce the 

method in detail. Similar to signal processing, our method 

consists on three steps: (1) by using discrete Fourier 

transform, we first transform the feature matrix 𝑋 from 

the graph vertex domain to the graph spectrum domain 

that is donated as matrix 𝑋′; (2) then, we do filtering on 

𝑋′  in the graph spectrum domain; (3) at last, by using 

inverse discrete Fourier transform, we transform the 

filtered feature matrix from the spectrum back to the 

vertex domain.  

1. Transform 𝐗 in graph vertex domain to 𝐗′ in graph 

spectrum domain: 

To do the graph Fourier transform, we first need to 

calculate the eigenvectors and eigenvalues of the 

graph Laplacian matrix 𝐿 = 𝐷 −  𝐴, where 𝐴 is the 

adjacency matrix and 𝐷 =  𝑑𝑖𝑎𝑔(∑ 𝐴𝑖,𝑗𝑗≠𝑖
) is the 

degree diagonal matrix. After obtaining the Laplacian 

matrix 𝐿, we obtained its eigen- vectors and values 

using the following factorization: 

𝐿 =  𝑈 Λ U∗ 

where all the eigenvectors are stored as columns in 

matrix 𝑈 , the diagonal matrix Λ  records all the 

eigenvalues and ∗  is the conjugate transpose 

operator. Then, the graph Fourier transform is defined 

as: 

X′ = U∗ X 

Since each node has 13 categories in our case, by 

regrading 𝑋  as a signal having 13 channels, the 

equation above maps the signal from vertex domain 

into the spectrum domain, i.e., X′. 

2. Do frequency-based filtering on 𝐗′: 

Then, we apply different filters to the obtained X′ . 

Without loss of generality, if we define any filter as a 

function 𝑔, the frequency-based filtering process is: 

g(Λ)X′. 

Similar to signal process, the input of function 𝑔 are 

the 𝑛  eigenvalues stored in Λ , which can be 

regarded as graph frequencies. By defining different 

filters, we can adjust the final results. Since we do not 

know which eigenvalues are important for our final 

pedestrian simulation in advance, we constructed a 

filter bank to record as many filters as possible. In our 

experiments, we utilized heat-kernel based filters [17] 

and Meyer filters [18]. Heat-kernel based filters are 

low-pass filters (only allowing small eigenvalues to 

pass the filter) and Meyer filters cover all the 

frequency ranges, which can allow low-pass, band-

pass and high-pass. In our preliminary tests, heat-

kernel filters laid better results than Meyers filters, 

but the performance is highly dependent of the 

distribution of the features which may vary in other 

domains of application.  

3. Transform 𝑋′  in graph spectrum domain back to 

graph vertex domain, i.e. the output 𝑋̂: 

After filtering, we finally transform the information 

in spectrum domain back to the vertex domain. 

Assuming we used two filtering functions g1, g2 in 

the second step, the final output would be calculated 

as: 

𝑋̂  =  [U(g1(Λ)X′)] ⊕ [U(g2(Λ)X′)] 
where ⊕ is the matrix concatenating operator along 

the second dimension.  

Using different filtering functions 𝑔  would lead to 

different graph filtering results. To automatically identify 

which filters are better than others, is advisable to perform 

a cross validation process where the simulation output 

feeds the map enrichment method and a final simulation 

would automatically do the selection.  

Once the map enrichment process finishes, it 

generates a modified map file where the nodes’ features 

are modified and can be passed to our inverse 

reinforcement learning method to generate finally the 

behavior patterns and pass them to the CAMP-IRL agents. 

Performance comparison 

We compared this method of map enrichment by 

comparing the performance of our CAMP-IRL agents 

trained using a map with different types of feature filtering. 

Concretely we used two heat-kernel filters, one with tau = 

100, tau = 1000, a Meyer filter with two bands and an 

addition filter without normalization which consisted on 

adding to each node the features of its adjacent nodes. By 

comparing these different filtering strategies, we want to 

verify whether map filtering would improve the final 

pedestrian simulation performance.  

We tested the speed of the agents in locating 5 goal 

features in the map. The agents were trained using 150 

trajectories belonging to different pedestrian profiles 
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obtained using synthetic data. All of them were instances 

of our CAMP-IRL agents, so the only difference in the 

comparison is the filter applied to the map. The 

simulations were executed with 150 agents in the same 

map that was trained, and we performed 10 runs of each 

simulation in order to average our results. 

Table 1 shows the results of our initial experiments, 

displaying positive results, but mixed when comparing the 

simple addition method with the use of the filters. We can 

see that any kind of filtering improves the agents’ results 

in clearing the scenario. As we thought initially, the Meyer 

filter does not work well with our domain, but we may 

adapt it for future versions, as its ability to generate 

different bands for each feature we think it holds potential 

to be useful. The best filters we found were the addition 

filter, which is the simplest of them, and the heat kernel 

filter using a tau value of 100. There are some differences 

between the two, with the addition filter having the best 

average clear time for the individual agents, and the heat 

kernel having faster total clear times for the whole set of 

150 agents. This means that the addition filter lowers the 

time required for agents that are not located in difficult 

locations where the paths to the goal features is very 

complex. On the other hand, the kernel filter may benefit 

more those cases instead. In general, when choosing one 

filter for the map treatment and in case that it can be only 

one, the decision will depend on the layout of the map: if 

there are critical features in spots with no easy access, the 

heat kernel would be the chosen. In other cases, the 

addition filter would work fine as a general solution. 

 However, it also appears that is necessary to perform 

a cross validation selection for the different filtering 

functions and their hyper-parameters, as the resulting 

performance varies greatly depending on it. In our case, 

Meyer filter did not work well because the features have 

semantic information for the agents, so dividing each 

feature into different bands require further training for the 

agents or they won’t be able to select the appropriate band 

in each situation. In this case, the low pass filter or even 

simple filters like the addition filter benefit more from the 

domain characteristics. As a future improvement, we can 

think in training the model to learn which filter is better, 

or a switching method in order to allow multi-band filters 

to work with our domain. 

Conclusions 

This work presents an graph enriching technique that 

works with our Contextual Action Multiple Policy Inverse 

Reinforcement Learning (CAMP-IRL) method, designed 

to learn pedestrian behavior. This method was devised in 

order to solve a problem we observed in agent driven 

simulations with no prior knowledge of the environment 

layout using machine learning. We found that under 

certain conditions, it was very difficult for the agents to 

learn how to get to locations containing features that are 

very sparse and have only a few ways to get to them if they 

only use the layout information as it is provided. We 

proposed that by pre-processing the map before training 

the agents by adding richer information could solve this 

problem.  

 Our method converts a city map into a model where 

the states represent locations on the map and the actions 

symbolize movements between locations. Once this model 

is created, it is enriched using a filter that modifies the 

features value of the map nodes. Concretely, the method 

consists on transformation from the graph vertex domain 

to the graph spectrum domain and then the desired filter is 

applied. Finally the map is reverted again to the vertex 

domain.  

The technique is flexible enough to allow different 

types of filters, and it is possible to define new ones that 

fit better other domains. In fact, we observed that is 

important to choose an appropriate filter to work with our 

pedestrian simulation problem, obtaining very different 

results depending on which one was chosen.  

 Once obtained the enriched map, the model is 

trained using the data from previously stored pedestrian 

trajectories. The products of the training process are a set 

Agent Individual Avg. Std. Dev. Avg. Total Clear Time 

No Enrichment  8236.84 7871.77 11:48:35 

Addition Filter 3338.19 2965.07 5:21:00 

Heat Kernel (Tau = 100) 3575.10 3047.51 4:44:31 

Heat Kernel (Tau = 1000) 4851.17 5472.58 9:18:44 

Meyer Filter 6325.51 6075.81 10:08:53 

Table 1: Clear Times of the Agents 
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of behavior profiles which will be used by the agents to 

traverse the map, choosing the profile that fits better their 

goals. The CAMP-IRL agents are also able to switch 

profiles whenever they have to obtain a different goal or 

when they consider that their profile is not good enough to 

reach the current goal. 

We prepared a set of experiments in order to compare 

the performance of different filters. The experiments 

consisted in running a number of simulations where the 

agents have to reach 5 goals after being trained with our 

CAMP-IRL method. In our tests we experimented with 

different heat kernel, Meyer and addition filters. We 

observed that in general, enriching the map information 

improves the agents’ performance, being the best ones the 

addition filter and the heat kernel filter with tau = 100. 

Also, we found that those two filters have different 

advantages, with the addition filter obtaining better goal 

completion times for the pedestrians in general, and the 

heat kernel being better for pedestrians placed in locations 

where it is difficult to reach certain goals. 

By seeing the results of our experiments, we think it 

is worth to work further in this method, and testing more 

different filters. A filter that we want concretely to develop 

is one able to reflect how much influence has a feature in 

a node, even if such feature is not actually present in it. We 

plan to do it by identifying feature-driven relations 

between nodes and influence areas for the features.   
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