
Enriching Graph Information for Pedestrian Behavior Learning

 Nahum Alvarez, Chenyi Zhuang, Itsuki Noda

1National Institute of Advanced Industrial Science and Technology

Abstract: Many aspects in planning and prediction in real environments could benefit from behavior

learning techniques, with pedestrian simulation for city and business planning being one of them. We

developed a method for behavior learning called Contextual Action Multiple Policy Inverse Reinforcement

Learning (CAMP-IRL) that allows effective pedestrian behavior simulation. However we noticed some

limitations when identifying important relationships between locations in the city map. In this paper we

present a graph enrichment technique devised to solve this issue and similar ones. The technique works by

applying a number of transformations to the map features in order to permeate with feature information the

nodes that are indirectly related to those features. Our tests showed promising results, improving the

performance of the original CAMP-IRL method and opening new paths to explore.

Introduction

Pedestrian behavior simulation is a difficult task to

perform due to the performance requirements and the

necessary information to learn meaningful behavior

patterns. Inverse Reinforcement Learning techniques help

in solving those issues, as they learn from a set of observed

behaviors provided by an expert and can be processed

before the simulation. We developed a variant that

includes contextual actions and multiple reward functions

and adapted it to work with a multi-agent based pedestrian

simulator. The agents in the simulator are able to navigate

the map with no information other than the learned

behavior patterns and obtain better results than other

methods in terms of goal clear times and trajectory

optimization. We called them "Contextual Action

Multiple Policy Inverse Reinforcement Learning"

(CAMP-IRL) agents.

However, we found several instances when only having

the data from expert trajectories was not enough to obtain

the desired knowledge. For example, under certain

conditions, traversing certain areas of unknown layout to

reach concrete goals is difficult for trained agents, whilst

for humans such information should be trivial to deduct.

In order to avoid such situations, we devised a method to

improve the available graph information contained in the

trajectory database.

This work is organized as follows: Section 2 contains a

review of previous work on reinforcement learning used

for agent behavior and pedestrian simulators. Section 3

describes the CAMP-IRL method and our pedestrian

simulator. Section 4 presents our map enrichment method

and Section 5 shows our preliminary results. Finally,

section 6 contains the conclusions of our research.

Related Work

Apprenticeship learning methods have been widely

used in intelligent agents' systems to train them to perform

tasks in dynamic environments [1]. We can observe

strategies to emulate predefined driving behaviors [2], and

there are also works where agents are given a behavior

cognitive model for pedestrians [3]. However, in those

works the behavior model is predefined by a designer,

having a low degree of flexibility, being tied to its domain,

or even escalating badly.

An extra issue in simulating people's behavior is that the

reward function governing their actions will be often

hidden. We can avoid this problem using inverse

reinforcement learning (here on after IRL) because instead

a reward function, it only needs a set of observed expert

demonstration behaviors. IRL works well on domains

where the reward function is hidden, being appropriate to

model animal and human behavior [4].

We can find many different approaches to IRL, each one

with its own characteristics and issues [5]. For example,

we find a linearly solvable approach in [6], with a number

of constraints in the MDP definition, or the Maximum

Entropy method [7], which works well when we do not

have much information about the solution space. Other

methods have obtained better results under certain

conditions, like [8] which works on a subset of MDPs, but

it does not match well with our domain, or [9] which deals

1ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-ICS-194 No.7

2019/3/10

with non-linear reward functions.

Works using IRL to learn agent behavior are sparse but

effective, as it is shown in [10] where driving styles are

learned by an agent, or [11] where different agents work

together for routing traffic.

Other works have previously dealt with extracting

multiple reward functions, like [12], showing how to

switch between different MDP and obtain their related

policy functions and works well extracting different

behaviors. The work in [13] divides the data in smaller

sub-goals in order to obtain simple reward functions, and

in [14] we find a hierarchical method for selecting MDP

partitions with different policies for each sub-MDP, which

can be interesting for domains where the agent has a

number of sequential small sub-goals.

The CAMP-IRL Method

IRL techniques work on domains that can be modeled by

a Markov Decision Process (MDP) but have hidden

reward functions (the reward function dictates the gain

from performing a given action in a given state). However

human behavior is not only directed by only one goal but

many, with different rewards that are managed at the same

time.

We based our method in a non-parametric Bayesian

approach to the problem [15] extracting a number of

clusters from the data, obtaining different reward and

policy functions for each one of them. Also, we adapted

the MDP to be able to work with contextual actions, used

to avoid an explosion in the solution space by cutting

redundant actions and allow flexibility in the domain

definition.

Contextual Action Multiple Policy MDP (CAMP-

MDP) consists on an MDP {S, 𝒜, 𝒯, γ , ℛ} with S as the

set of states, the transition function 𝒯(s, a, s’) from one

state to another by executing an action, and γ as the

discount factor. It also composed by a super set 𝒜 (s) of

actions as a function of a state s, and ℛ (s, a) as a super set

of Reward functions where s is a state from S and a is an

action from the set 𝒜 (s). This means that available actions

are dependent of the state (i.e., contextual), because each

location has a different number of possible paths to take;

when translating the locations to states and paths to actions,

there will be certain actions only available to certain states.

Finally, each state has a set of features, which influence

how the reward function is calculated.

The CAMP-IRL algorithm uses a Dirichlet process [16]

to classify the trajectories into different groups we call

profiles, and then a reward function is calculated for each

profile using a Bayesian approach to the IRL method.

However, we modified it to be able to work with the

CAMP-MDP considering that each state will have a

different action set. The algorithm follows the next steps

and formulas:

1. Initialize the profile set C containing K elements and

the reward set {𝑟}𝑘=1
𝐾

I. The initial clusters (profiles) and their reward

function are randomized. The reward function

consists in a weight vector containing the weights

of all the map features.

II. An initial policy is generated randomly from each

reward. This policy consists in a vector containing

the optimal action to perform for each node, and

it is obtained by calculating the value of

performing the most optimal action a from the

available actions in the state s following the next

function:

𝑉∗(𝑠) = 𝑚𝑎𝑥𝑎∈𝒜(𝑠) ℛ(s, a) + γ ∑ 𝒯(s, a, s′) 𝑉∗(𝑠′)

𝑠′𝜖S

2. For each element m in the trajectory set, select a new

class candidate 𝑐𝑚
∗ using the following rule:

I. If the trajectory has no assigned class, generate a

new one, and a reward function for it.

II. If it has one, obtain the most populated profile.

III. Assign the trajectory to the new class with

probability

𝑃(𝜒𝑚|𝑐𝑚
∗)

𝑃(𝜒𝑚|𝑐𝑚)

3. For each class k:

I. Create a weight vector candidate

𝑟𝑘
∗ = 𝑟𝑘 +

𝜏2

2
∇ log(𝑃(𝜒𝑘|𝑟𝑘)𝑃(𝑟𝑘)) + 𝜏𝛼

where τ is a scaling factor and 𝛼 is a random

number sampled from a multinomial distribution

(0,1).

II. Update the weight and value vectors with

probability

𝑃(𝜒𝑘|𝑟𝑘
∗)𝑃(𝑟𝑘

∗)𝑔(𝑟𝑘
∗, 𝑟𝑘)

𝑃(𝜒𝑘|𝑟𝑘)𝑃(𝑟𝑘)𝑔(𝑟𝑘 , 𝑟𝑘
∗)

Being the function g the gradient from the

Langevin algorithm, calculated as follows:

2ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-ICS-194 No.7

2019/3/10

𝑔(𝑥, 𝑦)

=
exp (−

1
2𝜏2 ‖𝑥 − 𝑦 −

𝜏2

2 ∇𝑙𝑜𝑔𝑃(𝜒𝑘|𝑥)𝑃(𝑥)‖)

(2𝜋𝜏2)𝐷/2

where τ is a scaling factor.

Repeat the process from (2) until convergence. Once

finished, it is possible to use the obtained set of

optimal policies for each profile to calculate the

value vector. This value represents the expected

reward of executing that policy on a node s and it is

calculated as follows:

𝑉𝜋(𝑠) = ℛ(s, π) + γ ∑ 𝒯(s, π, s′) 𝑉𝜋(𝑠′)

𝑠′𝜖S

In order to use this method for pedestrian prediction,

we created a CAMP-IRL module that interfaces with a

crowd simulator called CrowdWalk where each pedestrian

is represented by an agent.

Our simulator simplifies the city map into a 1-

dimensional network consisting of nodes and links. The

model of the map consists in a custom xml that describes

the map in the form of network where nodes represent

intersections and links represent streets or paths, which in

our CAMP-MDP will represent as well as states and

actions, respectively. The contextual actions are created

using the number of links each node has, with one action

per link, being semantically different for each node; thus,

the first action in certain state will be different from the

first action in another one, but will have the same label.

A link also has length and width attributes influencing

how long the agents need to walk from an end to another

and how many agents can walk in parallel, and can be two-

way or one-way. Nodes also can have features, and

information describing what facilities are on that location,

which are also the state features in the CAMP-MDP.

The inputs of our method are the city map in this

model and a file containing the trajectories we want to

train the agents with. The CAMP-IRL training algorithm

is performed before the simulation as a pre-processing

task, so even if it can take a long time depending of the

complexity of the map it does not represent a big impact

in the simulation speed as the decision process of the

agents once we have these files is enough fast to use it in

real time. Once the training process finishes, we obtain

two files: one containing the weights of the features of

each discovered profile, and another containing the value

of each map node (as defined in the step 4 of the

algorithm) for each profile. The weight and value files will

be used in the simulation by the agents created by our

CAMP-IRL module agents to traverse the map using the

trained behaviors.

In our experiments, the CAMP-IRL agents

outperformed other types of agents that do not work with

multiple policy functions or contextual actions, but we

identified one issue that hindered their behavior. We

observed that some useful information that should be

extracted from the map and the routes was not being

reflected in the learning process; in some of our

experiments, one of the goals was a scarce feature that

only was present in four nodes of the map; the agents were

able to find it, but the wandered excessively before to do

it. The main reason was that the system switching between

different policies without finding any goal.

After analyzing why this was happening, we found

that this situation was due to the coincidence of two

factors: scarcity of the goal feature in the map and having

only a few and indirect ways to reach those features. In

one example, in order to reach one of its goals, agents had

to cross from one area of the map to another which could

only be reached by crossing three links between them, but

those links were not very remarkable in terms of learned

value for the selected policies to reach that feature. Thus,

agents were conducted by their policies to go towards the

feature, but when reaching the nearby areas of the map

they could not find the crossing point which was far away.

We plan to solve this issue by improving the learning

process by adding enriched information to the map, trying

to establish semantic relations between nodes of the map

like those crossing points and the featured nodes using a

method we explain in the next section.

Map Enrichment

Before training the pedestrian behaviors, we first propose

a method to improve the available graph information

contained in the trajectory database. The intuitive idea we

have is that by enriching each graph node information by

its neighbors, an agent could make better decisions when

choosing the next node to move.

In our experiments, the graph we collected from the

trajectory database contains the following information: (1)

there are 13 categories (i.e., hostel, books, convenience,

restaurant, café, dry_cleaning, hospital, supermarket,

fast_food, kindergarten, telephone, cinema and

post_office) describing each node; and (2) the graph

structure is stored as an adjacency matrix. Therefore, the

input of this method are a feature matrix 𝑋 ∈ ℝ𝑛×13

recording the category information for all the 𝑛 nodes

3ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-ICS-194 No.7

2019/3/10

and an adjacency matrix 𝐴 ∈ ℝ𝑛×𝑛 recording the graph

structure. The output of this method is a new feature

matrix 𝑋̂ ∈ ℝ𝑛×𝑘, where the value of 𝑘 depends on how

many different filters we will used in this method.

Having defined the input and output of this method,

in the remainder of this section, we will introduce the

method in detail. Similar to signal processing, our method

consists on three steps: (1) by using discrete Fourier

transform, we first transform the feature matrix 𝑋 from

the graph vertex domain to the graph spectrum domain

that is donated as matrix 𝑋′; (2) then, we do filtering on

𝑋′ in the graph spectrum domain; (3) at last, by using

inverse discrete Fourier transform, we transform the

filtered feature matrix from the spectrum back to the

vertex domain.

1. Transform 𝐗 in graph vertex domain to 𝐗′ in graph

spectrum domain:

To do the graph Fourier transform, we first need to

calculate the eigenvectors and eigenvalues of the

graph Laplacian matrix 𝐿 = 𝐷 − 𝐴, where 𝐴 is the

adjacency matrix and 𝐷 = 𝑑𝑖𝑎𝑔(∑ 𝐴𝑖,𝑗𝑗≠𝑖
) is the

degree diagonal matrix. After obtaining the Laplacian

matrix 𝐿, we obtained its eigen- vectors and values

using the following factorization:

𝐿 = 𝑈 Λ U∗

where all the eigenvectors are stored as columns in

matrix 𝑈 , the diagonal matrix Λ records all the

eigenvalues and ∗ is the conjugate transpose

operator. Then, the graph Fourier transform is defined

as:

X′ = U∗ X

Since each node has 13 categories in our case, by

regrading 𝑋 as a signal having 13 channels, the

equation above maps the signal from vertex domain

into the spectrum domain, i.e., X′.

2. Do frequency-based filtering on 𝐗′:

Then, we apply different filters to the obtained X′ .

Without loss of generality, if we define any filter as a

function 𝑔, the frequency-based filtering process is:

g(Λ)X′.

Similar to signal process, the input of function 𝑔 are

the 𝑛 eigenvalues stored in Λ , which can be

regarded as graph frequencies. By defining different

filters, we can adjust the final results. Since we do not

know which eigenvalues are important for our final

pedestrian simulation in advance, we constructed a

filter bank to record as many filters as possible. In our

experiments, we utilized heat-kernel based filters [17]

and Meyer filters [18]. Heat-kernel based filters are

low-pass filters (only allowing small eigenvalues to

pass the filter) and Meyer filters cover all the

frequency ranges, which can allow low-pass, band-

pass and high-pass. In our preliminary tests, heat-

kernel filters laid better results than Meyers filters,

but the performance is highly dependent of the

distribution of the features which may vary in other

domains of application.

3. Transform 𝑋′ in graph spectrum domain back to

graph vertex domain, i.e. the output 𝑋̂:

After filtering, we finally transform the information

in spectrum domain back to the vertex domain.

Assuming we used two filtering functions g1, g2 in

the second step, the final output would be calculated

as:

𝑋̂ = [U(g1(Λ)X′)] ⊕ [U(g2(Λ)X′)]
where ⊕ is the matrix concatenating operator along

the second dimension.

Using different filtering functions 𝑔 would lead to

different graph filtering results. To automatically identify

which filters are better than others, is advisable to perform

a cross validation process where the simulation output

feeds the map enrichment method and a final simulation

would automatically do the selection.

Once the map enrichment process finishes, it

generates a modified map file where the nodes’ features

are modified and can be passed to our inverse

reinforcement learning method to generate finally the

behavior patterns and pass them to the CAMP-IRL agents.

Performance comparison

We compared this method of map enrichment by

comparing the performance of our CAMP-IRL agents

trained using a map with different types of feature filtering.

Concretely we used two heat-kernel filters, one with tau =

100, tau = 1000, a Meyer filter with two bands and an

addition filter without normalization which consisted on

adding to each node the features of its adjacent nodes. By

comparing these different filtering strategies, we want to

verify whether map filtering would improve the final

pedestrian simulation performance.

We tested the speed of the agents in locating 5 goal

features in the map. The agents were trained using 150

trajectories belonging to different pedestrian profiles

4ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-ICS-194 No.7

2019/3/10

obtained using synthetic data. All of them were instances

of our CAMP-IRL agents, so the only difference in the

comparison is the filter applied to the map. The

simulations were executed with 150 agents in the same

map that was trained, and we performed 10 runs of each

simulation in order to average our results.

Table 1 shows the results of our initial experiments,

displaying positive results, but mixed when comparing the

simple addition method with the use of the filters. We can

see that any kind of filtering improves the agents’ results

in clearing the scenario. As we thought initially, the Meyer

filter does not work well with our domain, but we may

adapt it for future versions, as its ability to generate

different bands for each feature we think it holds potential

to be useful. The best filters we found were the addition

filter, which is the simplest of them, and the heat kernel

filter using a tau value of 100. There are some differences

between the two, with the addition filter having the best

average clear time for the individual agents, and the heat

kernel having faster total clear times for the whole set of

150 agents. This means that the addition filter lowers the

time required for agents that are not located in difficult

locations where the paths to the goal features is very

complex. On the other hand, the kernel filter may benefit

more those cases instead. In general, when choosing one

filter for the map treatment and in case that it can be only

one, the decision will depend on the layout of the map: if

there are critical features in spots with no easy access, the

heat kernel would be the chosen. In other cases, the

addition filter would work fine as a general solution.

 However, it also appears that is necessary to perform

a cross validation selection for the different filtering

functions and their hyper-parameters, as the resulting

performance varies greatly depending on it. In our case,

Meyer filter did not work well because the features have

semantic information for the agents, so dividing each

feature into different bands require further training for the

agents or they won’t be able to select the appropriate band

in each situation. In this case, the low pass filter or even

simple filters like the addition filter benefit more from the

domain characteristics. As a future improvement, we can

think in training the model to learn which filter is better,

or a switching method in order to allow multi-band filters

to work with our domain.

Conclusions

This work presents an graph enriching technique that

works with our Contextual Action Multiple Policy Inverse

Reinforcement Learning (CAMP-IRL) method, designed

to learn pedestrian behavior. This method was devised in

order to solve a problem we observed in agent driven

simulations with no prior knowledge of the environment

layout using machine learning. We found that under

certain conditions, it was very difficult for the agents to

learn how to get to locations containing features that are

very sparse and have only a few ways to get to them if they

only use the layout information as it is provided. We

proposed that by pre-processing the map before training

the agents by adding richer information could solve this

problem.

 Our method converts a city map into a model where

the states represent locations on the map and the actions

symbolize movements between locations. Once this model

is created, it is enriched using a filter that modifies the

features value of the map nodes. Concretely, the method

consists on transformation from the graph vertex domain

to the graph spectrum domain and then the desired filter is

applied. Finally the map is reverted again to the vertex

domain.

The technique is flexible enough to allow different

types of filters, and it is possible to define new ones that

fit better other domains. In fact, we observed that is

important to choose an appropriate filter to work with our

pedestrian simulation problem, obtaining very different

results depending on which one was chosen.

 Once obtained the enriched map, the model is

trained using the data from previously stored pedestrian

trajectories. The products of the training process are a set

Agent Individual Avg. Std. Dev. Avg. Total Clear Time

No Enrichment 8236.84 7871.77 11:48:35

Addition Filter 3338.19 2965.07 5:21:00

Heat Kernel (Tau = 100) 3575.10 3047.51 4:44:31

Heat Kernel (Tau = 1000) 4851.17 5472.58 9:18:44

Meyer Filter 6325.51 6075.81 10:08:53

Table 1: Clear Times of the Agents

5ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-ICS-194 No.7

2019/3/10

of behavior profiles which will be used by the agents to

traverse the map, choosing the profile that fits better their

goals. The CAMP-IRL agents are also able to switch

profiles whenever they have to obtain a different goal or

when they consider that their profile is not good enough to

reach the current goal.

We prepared a set of experiments in order to compare

the performance of different filters. The experiments

consisted in running a number of simulations where the

agents have to reach 5 goals after being trained with our

CAMP-IRL method. In our tests we experimented with

different heat kernel, Meyer and addition filters. We

observed that in general, enriching the map information

improves the agents’ performance, being the best ones the

addition filter and the heat kernel filter with tau = 100.

Also, we found that those two filters have different

advantages, with the addition filter obtaining better goal

completion times for the pedestrians in general, and the

heat kernel being better for pedestrians placed in locations

where it is difficult to reach certain goals.

By seeing the results of our experiments, we think it

is worth to work further in this method, and testing more

different filters. A filter that we want concretely to develop

is one able to reflect how much influence has a feature in

a node, even if such feature is not actually present in it. We

plan to do it by identifying feature-driven relations

between nodes and influence areas for the features.

References

[1] Svetlik, M., Leonetti, M., Sinapov, J., Shah, R., Walker, N.,

and Stone, P. (2016). Automatic curriculum graph

generation for reinforcement learning agents.

[2] Faccin, J., Nunes, I., and Bazzan, A. (2017). Understanding

the Behaviour of Learning-Based BDI Agents in the Braess’

Paradox, pages 187–204. Springer International Publishing.

[3] Martinez-Gil, F., Lozano, M., and Fernandez, F. (2017).

Emergent behaviors and scalability for multiagent

reinforcement learning-based pedestrian models.

Simulation Modelling Practice and Theory, 74:117–133.

[4] Ng, A. Y., Russell, S. J., et al. (2000). Algorithms for

inverse reinforcement learning. In Icml, pages 663–670.

[5] Zhifei, S. and Meng Joo, E. (2012). A survey of inverse

reinforcement learning techniques. International Journal of

Intelligent Computing and Cybernetics, 5(3):293–311.

[6] Kohjima, M., Matsubayashi, T., and Sawada, H. What-if

prediction via inverse reinforcement learning. In

Proceedings of the Thirtieth International Florida Artificial

Intelligence Research Society Conference, FLAIRS 2017,

Florida, USA, May 22-24, 2017, pages 74–79.

[7] Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.

(2008). Maximum entropy inverse reinforcement learning.

In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA.

[8] Dvijotham, K. and Todorov, E. (2010). Inverse optimal

control with linearly-solvable mdps. In Proceedings of the

27th International Conference on Machine Learning

(ICML-10), pages 335–342.

[9] Levine, S., Popovic, Z., and Koltun, V. (2011). Nonlinear

inverse reinforcement learning with gaussian processes. In

Advances in Neural Information Processing Systems,

pages 19–27.

[10] Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning

via inverse reinforcement learning. In Proceedings of the

twenty-first international conference on Machine learning,

page 1. ACM.

[11] Natarajan, S., Kunapuli, G., Judah, K., Tadepalli, P.,

Kersting, K., and Shavlik, J. (2010). Multi-agent inverse

reinforcement learning. In 2010 Ninth International

Conference on Machine Learning and Applications, pages

395–400. IEEE.

[12] Surana, A. and Srivastava, K. (2014). Bayesian

nonparametric inverse reinforcement learning for switched

markov decision processes. In Machine Learning and

Applications (ICMLA), 2014 13th International

Conference on, pages 47–54. IEEE.

[13] Michini, B. and How, J. P. (2012). Bayesian nonparametric

inverse reinforcement learning. In Joint European

Conference on Machine Learning and Knowledge

Discovery in Databases, pages 148–163. Springer.

[14] Krishnan, S., Garg, A., Liaw, R., Miller, L., Pokorny, F. T.,

and Goldberg, K. (2016). Hirl: Hierarchical inverse

reinforcement learning for long-horizon tasks with delayed

rewards. arXiv preprint arXiv:1604.06508.

[15] Choi, J. and Kim, K.-E. (2012). Nonparametric bayesian

inverse reinforcement learning for multiple reward

functions. In Advances in Neural Information Processing

Systems, pages 305–313.

[16] Neal, R. M. (2000). Markov chain sampling methods for

dirichlet process mixture models. Journal of computational

and graphical statistics, 9(2):249–265.

[17] Nicole Berline, Ezra Getzler, and Michele Vergne. Heat

kernels and Dirac operators. Springer Science & Business

Media, 2003.

[18] Nora Leonardi and Dimitri Van De Ville. Wavelet frames

on graphs defined by fmri functional connectivity. In

Biomedical Imaging: From Nano to Macro, 2011 IEEE

International Symposium on, 2136–2139.

6ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-ICS-194 No.7

2019/3/10

