
IPSJ SIG Technical Report

A Polynomial-delay Algorithm for Enumerating
Connectors under Various Connectivity Conditions

Kazuya Haraguchi1,a) Hiroshi Nagamochi2,b)

Abstract: We are given an instance (G, I, σ) with a graph G = (V, E), a set I of items, and a function σ : V → 2I . For
a subset X of V , let G[X] denote the subgraph induced from G by X, and Iσ(X) denote the common item set over X. A
subset X of V such that G[X] is connected is called a connector if, for any vertex v ∈ V \ X, G[X ∪ {v}] is not connected
or Iσ(X ∪ {v}) is a proper subset of Iσ(X).
In this paper, we present the first polynomial-delay algorithm for enumerating all connectors. For this, we first extend
the problem of enumerating connectors to a general setting so that the connectivity condition on X in G can be specified
in a more flexible way. We next design a new algorithm for enumerating all solutions in the general setting, which
leads to a polynomial-delay algorithm for enumerating all solutions for several connectivity conditions on X in G, such
as the biconnectivity of G[X] or the k-edge-connectivity among vertices in X in G.

1. Introduction
In this paper, we consider enumeration of subgraphs in a given

attributed graph, that is, vertices are given items. The subgraphs
should be connected, and at the same time, be maximal with re-
spect to the common item set.

Let us review related studies. For a usual graph (i.e., a non-
attributed graph), there are some studies on enumeration of con-
nected subgraphs. Avis and Fukuda [3] showed that all connected
induced subgraphs are enumerable in output-polynomial time and
in polynomial space, by means of reverse search. Nutov [9]
showed that minimal undirected Steiner networks, and minimal
k-connected and k-outconnected spanning subgraphs are enumer-
able in incremental polynomial time. Wasa [15] develops a cata-
log of enumeration problems in the literature.

For an attributed graph, community detection [7] and frequent
subgraph mining [6] are among significant graph mining prob-
lems. The latter asks to enumerate all subgraphs that appear in a
given set of attributed graphs “frequently,” where the graph iso-
morphism is defined by taking into account the items. For the
problem, gSpan [16] should be one of the most successful al-
gorithms. The algorithm enumerates all frequent subgraphs by
growing up a search tree. In the search tree, a node in a depth d
corresponds to a subgraph that consists of d vertices, and a node
u is the parent of a node v if the subgraph for v is obtained by
adding one vertex to the subgraph for u.

Now we introduce our research problem. We are given an in-
stance (G, I, σ) with a graph G = (V, E), a set I of items, and a

1 Faculty of Commerce, Otaru University of Commerce
2 Department of Applied Mathematics and Physics, Graduate School of

Informatics, Kyoto University
a) haraguchi@res.otaru-uc.ac.jp
b) nag@amp.i.kyoto-u.ac.jp

function σ : V → 2I . For a subset X ⊆ V , let G[X] denote the
subgraph induced from G by X, and Iσ(X) denote the common
item set

∩
u∈X σ(u). A subset X ⊆ V such that G[X] is connected

called a connector, if for any vertex v ∈ V \ X, G[X ∪ {v}] is not
connected or Iσ(X ∪ {v}) ⊊ Iσ(X); i.e., there is no proper superset
Y of X such that G[Y] is connected and Iσ(Y) = Iσ(X).

For the connector enumeration problem, Sese et al. [13]
proposed the first algorithm, named COPINE, which explores
the search space by utilizing the similar search tree as gSpan.
Okuno et al. [11], [12] and Okuno [10] studied parallelization
of COPINE. No algorithm with a theoretical time bound had
been known until Haraguchi et al. [4], [5] proposed an output-
polynomial algorithm, named COOMA. COOMA enumerates
connectors in a sequential way with respect to items. First, the
algorithm considers a subproblem such that {i} is the given item
set, where i ∈ I is chosen arbitrarily. For the subproblem, the
algorithm searches for connectors by means of a conventional
graph search (e.g., depth-first search). It then goes to the sub-
problem such that {i, i′} is the item set, i′ ∈ I, where connector
candidates are searched by utilizing the connectors discovered by
then. In this way, the subproblems are solved |I| times so that
each subproblem is generated by adding an item to the item set of
the previous subproblem. Finally we obtain all connectors.

In this paper, we present the first polynomial-delay algorithm
for enumerating all connectors. For this, we first extend the prob-
lem of enumerating connectors to a general setting so that the
connectivity condition on a vertex subset X in G can be specified
in a more flexible way. Concretely, we define a family of sets,
called a “transitive system,” which is a generalization of the fam-
ily of all vertex subsets that induce connected subgraphs. The
notion of connector is also extended to the transitive system and
it will be called a solution. We then design a new algorithm for
enumerating all solutions in the transitive system, which leads to

c⃝ 2019 Information Processing Society of Japan 1

Vol.2019-AL-172 No.1
2019/3/5

IPSJ SIG Technical Report

a polynomial-delay algorithm for enumerating all solutions for
several connectivity conditions on X in G, such as the biconnec-
tivity of G[X] or the k-edge-connectivity among vertices in X in
G.

The paper is organized as follows. In Section 2, we introduce
the transitive system, a solution, and two oracles that we require
for the transitive system, along with preparation of the notation
and the terminology. We explain the structure of the family tree
of solutions in Section 3. The proposed algorithm enumerates
the solutions by traversing the family tree. The family tree is
determined once the parent-child relationship among solutions is
defined. We present how we define the parent of a given solution
and how to generate its children. Then in Section 4, we provide
an algorithm that enumerates all the solutions by traversing the
family tree. We also show that, applying the algorithm, all con-
nectors for (G, I, σ) are enumerable in polynomial-delay and in
polynomial space. In Section 5, we explain how we deal with
various notions of edge- and vertex-connectivity in the enumera-
tion algorithm, followed by concluding remarks in Section 6.

2. Preliminaries
For two integers a and b, let [a, b] denote the set of inte-

gers i with a ≤ i ≤ b. For two subsets J = { j1, j2, . . . , j|J|}
and K = {k1, k2, . . . , k|K|} of a set A with a total order, where
j1 < j2 < · · · < j|J| and k1 < k2 < · · · < k|K|, we denote
by J ≺ K if J ⊊ K or the sequence (j1, j2, . . . , j|J|) is lexico-
graphically smaller than the sequence (k1, k2, . . . , k|K|). We denote
J ⪯ K if J ≺ K or J = K.

A system (V,C) consists of a finite set V and a family C ⊆ 2V ,
where an element in V is called a vertex, and a set in C is called a
component. A system (V,C) (or C) is called transitive if

any tuple of Z, X,Y ∈ C with Z ⊆ X ∩ Y implies X ∪ Y ∈ C.

For a subset X ⊆ V , a component Z ∈ C with Z ⊆ X is called
X-maximal if no other component W ∈ C satisfies Z ⊊ W ⊆ X.
Let Cmax(X) denote the family of all X-maximal components.

For example, any Sperner family, a family of subsets every two
of which intersect, is a transitive system. Also the family CG of
vertex subsets X ∈ 2V in a graph G = (V, E) such that G[X] is
connected is transitive, where G[X] with |X| = 1 (resp., X = ∅) is
connected (resp., disconnected).

We define an instance to be a tuple (V,C, I, σ) of a set V of
n ≥ 1 vertices, a family C ⊆ 2V , a set I of q ≥ 1 items and a func-
tion σ : V → 2I . For each subset X ⊆ V , let Iσ(X) ⊆ I denote
the common item set over σ(v), v ∈ X; i.e., Iσ(X) =

∩
v∈X σ(v). A

solution is defined to be a component X ∈ C such that

any component Y ∈ C with Y ⊋ X satisfies Iσ(Y) ⊊ Iσ(X).

Let S denote the family of all solutions to the instance. Our aim
is to design an algorithm for enumerating all solutions in S when
C is transitive. When an instance (V,C, I, σ) is given, we assume
that C is implicitly given as two oracles L1 and L2 such that

- given non-empty subsets X ⊆ Y ⊆ V , L1(X,Y) returns a com-
ponent Z ∈ Cmax(Y) with X ⊆ Z (or ∅ if no such Z exists) in
θ1,t time and θ1,s space; and

- given a non-empty subset Y ⊆ V , L2(Y) returns Cmax(Y) in
θ2,t time and θ2,s space.

We also denote by δ(Y) an upper bound on |Cmax(Y)|, where
we assume that δ is a non-decreasing function in the sense that
δ(X) ≤ δ(Y) if X ⊆ Y . For the example of family CG of vertex
subsets X such that G[X] is connected in a graph G with n vertices
and m edges, we see that θi,t = O(n+m), i = 1, 2, θi,s = O(n+m),
i = 1, 2, and δ(Y) = O(|Y |).

We show that the time delay of our algorithm is polynomial of
θ1,t, θ2,t and δ(V).

To facilitate our aim, we introduce a total order over the items
in I by representing I as a set [1, q] = {1, 2, . . . , q} of integers.
For each subset X ⊆ V , let min Iσ(X) ∈ [0, q] denote the mini-
mum item in Iσ(X), where min Iσ(X) ≜ 0 for Iσ(X) = ∅. For each
i ∈ [0, q], define Si ≜ {X ∈ S | min Iσ(X) = i}, where we see that
S is a disjoint union of Si, i ∈ [0, q]. We design an algorithm that
enumerates all solutions in Sk for any specified k ∈ [0, q].

We observe an important property on a transitive family of
components.

Lemma 1 Let (V,C) be a transitive system. For a component
X ∈ C and a superset Y ⊇ X, there is exactly one component
C ∈ Cmax(Y) that contains X.
Proof: Since X ⊆ Y , Cmax(Y) contains a Y-maximal component
C that contains X. For any component W ∈ C with X ⊆ W ⊆ Y ,
the transitivity of C and X ⊆ C ∩ W imply C ∪ W ∈ C, where
C ∪ W = C must hold by the Y-maximality of C. Hence C is
unique. □

For a component X ∈ C and a superset Y ⊇ X, we denote by
C(X; Y) the component C ∈ Cmax(Y) that contains X.

3. Defining Family Tree
To generate all solutions in S efficiently, we use the idea of

family tree, where we first introduce a parent-child relationship
among solutions, which defines a rooted tree (or a set of rooted
trees), and we traverse each tree starting from the root and gener-
ating the children of a solution recursively. Our tasks to establish
such an enumeration algorithm are as follows:

- Define the roots, called “bases,” over all solutions in S;
- Define the “parent” π(S) ∈ S of each non-base solution

S ∈ S, where S is called a “child” of T = π(S);
- Design an algorithm A that, given S ∈ S, returns π(S); and
- Design an algorithm B that, given a solution T ∈ S, gen-

erates a set X of components X ∈ C such that X contains
all children of T . For each component X ∈ X, we construct
π(X) by algorithm A to see if X is a child of T (i.e., π(X) is
equal to T).

Starting from each base, we recursively generate the children of a
solution. The complexity of delay-time of the entire algorithm is
the time complexity of algorithms A and B, where |X| is bounded
from above by the time complexity of algorithm B.

3.1 Defining Base
Let (V,C, I = [1, q], σ) be an instance on a transitive system.

We define V⟨0⟩ ≜ V and V⟨i⟩ ≜ {v ∈ V | i ∈ σ(v)}, i ∈ I. For each
non-empty subset J ⊆ I, define V⟨J⟩ ≜

∩
i∈J V⟨i⟩. For J = ∅, define

c⃝ 2019 Information Processing Society of Japan 2

Vol.2019-AL-172 No.1
2019/3/5

IPSJ SIG Technical Report

V⟨J⟩ ≜ V . Define

Bi ≜ {X ∈ Cmax(V⟨i⟩) | min Iσ(X) = i}, for each i ∈ [0, q],

and B ≜ ∪i∈[0,q] Bi. We call a component in B a base.
Lemma 2 Let (V,C, I = [1, q], σ) be an instance on a transi-

tive system.
(i) For each non-empty set J ⊆ [1, q] or J = {0}, it holds that
Cmax(V⟨J⟩) ⊆ S;

(ii) For each i ∈ [0, q], a solution S ∈ Si is contained in a base
in Bi; and

(iii) S0 = B0 and Sq = Bq.
Proof: (i) Let X be a component in Cmax(V⟨J⟩), where J ⊆ Iσ(X).
When J = {0} (i.e., V⟨J⟩ = V), no proper superset of X is a com-
ponent, and X is a solution. Consider the case of ∅ , J ⊆ [1, q].
To derive a contradiction, assume that X is not a solution; i.e.,
there is a proper superset Y of X such that Iσ(Y) = Iσ(X). Since
∅ , J ⊆ Iσ(X) = Iσ(Y), we see that V⟨J⟩ ⊇ Y . This, however,
contradicts the V⟨J⟩-maximality of X. This proves that X is a so-
lution.

(ii) We prove that each solution S ∈ Si is contained in a base
in Bi, where i = min Iσ(S). By Lemma 1, S is a subset of the
component C(S ; V⟨i⟩) ∈ Cmax(V⟨i⟩), where Iσ(S) ⊇ Iσ(C(S ; V⟨i⟩)).
Since i ∈ Iσ(C(S ; V⟨i⟩)) for i ≥ 1 (resp., Iσ(C(S ; V⟨i⟩)) = ∅ for
i = 0), we see that min Iσ(S) = i = min Iσ(C(S ; V⟨i⟩)). This
proves that C(S ; V⟨i⟩) is a base in Bi.

(iii) Let k ∈ {0, q}. We see from (i) that Cmax(V⟨k⟩) ⊆ S, which
implies that Bk = {X ∈ Cmax(V⟨k⟩) | min Iσ(X) = k} ⊆ {X ∈ S |
min Iσ(X) = k} = Sk. We prove that any solution S ∈ Sk is a
base in Bk. By (ii), there is a base X ∈ Bk such that S ⊆ X,
which implies that Iσ(S) ⊇ Iσ(X), min Iσ(S) ≤ min Iσ(X). We
see that Iσ(S) = Iσ(X), since ∅ = Iσ(S) ⊇ Iσ(X) for k = 0, and
q = min Iσ(S) ≤ min Iσ(X) ≤ q for k = q. Hence S ⊊ X would
contradict that S is a solution. Therefore S = X ∈ Bk, as required.
□

By Lemma 2(iii), we can find all solutions in S0∪Sq by calling
oracle L2(Y) for Y = V⟨0⟩ = V and Y = V⟨q⟩. In the following, we
consider how to generate all solutions in Sk with 1 ≤ k ≤ q − 1.

For a notational convenience, we denote by C(X; i) the com-
ponent C(X; V⟨i⟩) with i ∈ Iσ(X) and by C(X; J) the component
C(X; V⟨J⟩) with J ⊆ Iσ(X).

Lemma 3 Let (V,C, I = [1, q], σ) be an instance on a transi-
tive system. Let S ,T ∈ S be solutions such that S ⊆ T . It holds
that T = C(S ; Iσ(T)).
Proof: Let T ′ = C(S ; Iσ(T)) ∈ Cmax(V⟨Iσ(T)⟩), where S ⊆ T ⊆
V⟨Iσ(T)⟩. The uniqueness of maximal component T ′ = C(S ; Iσ(T))
by Lemma 1 indicates T ⊆ T ′. To derive a contradiction, as-
sume that T ⊊ T ′. By Lemma 2(i), T ′ ∈ Cmax(V⟨Iσ(T)⟩) is a so-
lution. Since T and T ′ are solutions with T ⊊ T ′, it must hold
that Iσ(T) ⊋ Iσ(T ′), implying that V⟨Iσ(T)⟩ ⊉ T ′, a contradiction.
Therefore we have T = T ′. □

3.2 Defining Parent
This subsection defines the “parent” of a non-base solution.

For two solutions S ,T ∈ S, we say that T is a superset solution

of S if T ⊋ S and S ,T ∈ Si for some i ∈ [1, q − 1]. A superset
solution T of S is called minimal if no proper subset Z ⊊ T is a
superset solution of S . Let S be a non-base solution in Sk \ Bk,
k ∈ [1, q − 1]. We call a minimal superset solution T of S the
lex-min solution of S if Iσ(T) ⪯ Iσ(T ′) for all minimal superset
solutions T ′ of S .

Algorithm 1 Parent(S): Finding the lex-min solution of a solu-
tion S
Input: An instance (V,C, I = [1, q], σ) on a transitive system, an item

k ∈ [1, q− 1], and a non-base solution S ∈ Sk \Bk , where k = min Iσ(S).
Output: The lex-min solution T ∈ Sk of S .
1: Let {k, i1, i2, . . . , ip} := Iσ(S), where k < i1 < i2 < · · · < ip;
2: J := {k}; /* C(S ; k) ⊋ S by S < Bk */
3: for j = 1, 2, 3, . . . , p do
4: if C(S ; J ∪ {i j}) , S then
5: J := J ∪ {i j}
6: end if
7: end for; /* J = Iσ(T) holds */
8: Return T := C(S ; J)

Lemma 4 Let (V,C, I = [1, q], σ) be an instance on a transi-
tive system. For a non-base solution S ∈ Sk\Bk with k ∈ [1, q−1],
let Iσ(S) = {k, i1, i2, . . . , ip}, where k < i1 < i2 < · · · < ip, and let
T denote the lex-min solution of S .
(i) For an integer j ∈ [1, p], let J = Iσ(T) ∩ {k, i1, i2, . . . , i j−1}.

Then i j ∈ Iσ(T) if and only if C(S ; J ∪ {i j}) ⊋ S ; and
(ii) Given S , algorithm Parent(S) in Algorithm 1 correctly de-

livers the lex-min solution of S in O(q(n + θ1,t)) time and
O(q + n + θ1,s) space.

Proof: (i) By Lemma 2(i) and min Iσ(S) = k, we see that
C(S ; J ∪ {i j}) ∈ Sk.

Case 1. C(S ; J ∪ {i j}) = S : For any set J′ ⊆ {i j+1, i j+2, . . . , ip},
the component C(S ; J ∪ {i j} ∪ J′) is equal to S and cannot be a
minimal superset solution of S . This implies that i j < Iσ(T).

Case 2. C(S ; J ∪ {i j}) ⊋ S : Then C = C(S ; J ∪ {i j}) is a solu-
tion by Lemma 2(i). Observe that k ∈ J ∪ {i j} ⊆ Iσ(C) ⊆ Iσ(S)
and min Iσ(C) = k, implying that C ∈ Sk is a superset solution
of S . Then C contains a minimal superset solution T ∗ ∈ Sk of
S , where Iσ(T ∗) ∩ [1, i j−1] = Iσ(T ∗) ∩ {k, i1, i2, . . . , i j−1} ⊇ J =
Iσ(T) ∩ {k, i1, i2, . . . , i j−1} = Iσ(T) ∩ [1, i j−1] and i j ∈ Iσ(T ∗). If
Iσ(T ∗) ∩ [1, i j−1] ⊋ J or i j < Iσ(T), then Iσ(T ∗) ≺ Iσ(T) would
hold, contradicting that T is the lex-min solution of S . Hence
Iσ(T) ∩ [1, i j−1] = J = Iσ(T ∗) ∩ [1, i j−1] and i j ∈ Iσ(T).

(ii) Based on (i), we can obtain the solution T as follows. First
we find the item set Iσ(T) by applying (i) to each j ∈ [1, p],
where we construct subsets J0 ⊆ J1 ⊆ · · · ⊆ Jp ⊆ Iσ(S) such that
J0 = {k} and

J j =

 J j−1 ∪ {i j} if C(S ; J j−1 ∪ {i j}) ⊋ S ,
J j−1 otherwise.

Each J j can be obtained from J j−1 by testing whether C(S ; J j−1 ∪
{i j}) ⊋ S holds or not, where C(S ; J j−1 ∪ {i j}) is computable by
calling the oracle L1. By (i), we have J j = Iσ(T) ∩ {k, i1, . . . , i j},
and in particular, Jp = Iσ(T) holds. Next we compute C(S ; Jp)
by calling the oracle L1(S ,V⟨Jp⟩), where C(S ; Jp) is equal to the
solution T by Lemma 3. The above algorithm is described as

c⃝ 2019 Information Processing Society of Japan 3

Vol.2019-AL-172 No.1
2019/3/5

IPSJ SIG Technical Report

algorithm Parent(S) in Algorithm 1.
Let us mention critical parts in terms of time complexity anal-

ysis. In line 1, it takes O(qn) time to compute Iσ(S). The for-
loop from line 3 to 7 is repeated O(q) times. In line 4, the oracle
L1(S ,V⟨J∪{i j}⟩) is called to obtain a component Z = C(S ; J ∪ {i j})
and whether S = Z or not is tested. This takes O(θ1,t + n) time.
The overall running time is O(q(n + θ1,t)). It takes O(q) space to
store Iσ(S) and J, and O(n) space to store S and Z. An additional
O(θ1,s) space is needed for the oracle L1. □

For each non-base solution in Sk \Bk, k ∈ [1, q− 1], the parent
π(S) of S is defined to be the lex-min solution of S . For a solution
T ∈ Sk, each non-base solution S ∈ Sk \ Bk such that π(S) = T
is called a child of T .

3.3 Generating Children
This subsection shows how to construct a family X of compo-

nents so that all children of a solution T are included in X.
Lemma 5 Let (V,C, I = [1, q], σ) be an instance on a transi-

tive system. For an item k ∈ [1, q − 1], let T ∈ Sk be a solution.
(i) For each child S ∈ Sk \ Bk of T , it holds that [k + 1, q] ∩

(Iσ(S) \ Iσ(T)) , ∅ and S ∈ Cmax(T ∩ V⟨ j⟩) for any j ∈
[k + 1, q] ∩ (Iσ(S) \ Iσ(T)).

(ii) The set of all children of T can be constructed in O
(
qθ2,t +

q2(n + θ1,t)δ(T)
)

time and O(q + n + θ1,s + θ2,s) space.
Proof: (i) Note that [0, k] ∩ Iσ(S) = [0, k] ∩ Iσ(T) = {k} since
S ,T ∈ Sk. Since S ⊆ T are both solutions, Iσ(S) ⊋ Iσ(T). Hence
[k+1, q]∩ (Iσ(S) \ Iσ(T)) , ∅. Let j ∈ [k+1, q]∩ (Iσ(S) \ Iσ(T)).
Since S ⊆ T ∩ V⟨ j⟩, there is a (T ∩ V⟨ j⟩)-maximal component
C ∈ Cmax(T ∩ V⟨ j⟩) with S ⊆ C, where S ⊆ C ⊆ T and
Iσ(S) ⊇ Iσ(C) ⊇ Iσ(T). Then k = min Iσ(S) = min Iσ(T) im-
plies min Iσ(C) = k.

We show that C ∈ S, which implies C ∈ Sk. Note that
j ∈ Iσ(C)\Iσ(T), and C ⊊ T . Assume that C is not a solution; i.e.,
there is a solution C∗ ∈ S such that C ⊊ C∗ and Iσ(C) = Iσ(C∗),
where j ∈ Iσ(C) = Iσ(C∗) means that C∗ ⊆ V⟨ j⟩. Hence C∗\T , ∅
by the (T ∩ V⟨ j⟩)-maximality of C. Since C,C∗,T ∈ C and
C ⊆ C∗ ∩ T , we have C∗ ∪ T ∈ C by the transitivity. We also see
that Iσ(C∗ ∪ T) = Iσ(C∗) ∩ Iσ(T) = Iσ(C) ∩ Iσ(T) = Iσ(T). This,
however, contradicts that T is a solution, proving that C ∈ Sk.
If S ⊊ C, then S ⊊ C ⊊ T would hold for S ,C,T ∈ Sk, con-
tradicting that T is a minimal superset solution of S . Therefore
S = C.

(ii) By (i), the union of families Cmax(T ∩ V⟨ j⟩) with j ∈
[k + 1, q] \ Iσ(T) contains all children of T . Whether a set S is a
child of T or not can be tested by checking if Parent(S) is equal to
T or not. However, for two items j, j′ ∈ [k+1, q]∩(Iσ(S)\ Iσ(T)),
the same child S can be generated from the different families
Cmax(T ∩ V⟨ j⟩) and Cmax(T ∩ V⟨ j′⟩). To avoid this, we output a
child S of T when S ∈ Cmax(T ∩ V⟨ j⟩) for the minimum item j
in the item set [k + 1, q] ∩ (Iσ(S) \ Iσ(T)). In other words, we
discard any set S ∈ Cmax(T ∩ V⟨ j⟩) if j is not the minimum item
in [k + 1, q]∩ (Iσ(S) \ Iσ(T)). An entire algorithm is described in
Algorithm 2.

Now we analyze the time and space complexities of the algo-
rithm. Note that T may have no children. The outer for-loop from

Algorithm 2 Children(T, k): Generating all children
Input: An instance (V,C, I, σ), k ∈ [1, q − 1] and a solution T ∈ Sk .
Output: All children of T , each of which is output whenever it is generated.
1: for each j ∈ [k + 1, q] \ Iσ(T) do
2: Compute Cmax(T ∩ V⟨ j⟩);
3: for each S ∈ Cmax(T ∩ V⟨ j⟩) do
4: if k = min Iσ(S) and j = min{i | i ∈ [k + 1, q] ∩ (Iσ(S) \ Iσ(T))}

then
5: if T =Parent(S) (i.e., S is a child of T) then
6: Output S as one of the children of T
7: end if
8: end if
9: end for

10: end for

line 1 to 10 is repeated O(q) times. Computing C(T ∩V⟨ j⟩) in line
2 takes θ2,t time by calling the oracle L2. The inner for-loop from
line 3 to 9 is repeated at most δ(T ∩V⟨ j⟩) times for each j, and the
most time-consuming part of the inner for-loop is algorithm Par-
ent(S) in line 5, which takes O(q(n + θ1,t)) time by Lemma 4(ii).
Recall that δ is a non-decreasing function. Then the running time
of algorithm Children(T, k) is evaluated by

O
(
qθ2,t + q(n + θ1,t)

∑
j∈[k+1,q]\Iσ(T)

δ(T ∩ V⟨ j⟩)
)

= O
(
qθ2,t + q2(n + θ1,t)δ(T)

)
.

For the space complexity, we do not need to share the space
between iterations of the outer for-loop from line 1 to 10. In each
iteration, we use the oracle L2 and algorithm Parent(S), whose
space complexity is O(q + n + θ1,s) by Lemma 4(ii). Then algo-
rithm Children(T, k) uses O(q + n + θ1,s + θ2,s) space. □

4. Traversing Family Tree
We are ready to describe an entire algorithm for enumerating

solutions in Sk for a given k ∈ [0, q]. We first compute Cmax(V⟨k⟩).
We next compute the set Bk (⊆ Cmax(V⟨k⟩)) of bases by testing
whether k = min Iσ(T) or not, where Bk ⊆ Sk. When k = 0 or q,
we are done with Bk = Sk by Lemma 2(iii). Let k ∈ [1, q − 1].
Suppose that we are given a solution T ∈ Sk, we find all the
children of T by Children(T, k) in Algorithm 2. By applying
Algorithm 2 to a newly found child recursively, we can find all
solutions in Sk.

When no child is found to a given solution T ∈ Sk, we may
need to go up to an ancestor by traversing recursive calls O(n)
times before we generate the next solution. This would result in
O(nα) time delay, where α denotes the time complexity required
for a single run of Children(T, k). To improve the delay to O(α),
we employ the alternative output method [14], where we output
the children of T after (resp., before) generating all descendants
when the depth of the recursive call to T is an even (resp., odd)
integer.

The entire enumeration algorithm is described in Algorithm 3
and Algorithm 4.

Theorem 1 Let (V,C, I = [1, q], σ) be an instance on a tran-
sitive system. For each k ∈ [0, q], the set Sk of solutions can
be enumerated in O

(
qθ2,t + q2(n + θ1,t)δ(V⟨k⟩)

)
time delay and in

c⃝ 2019 Information Processing Society of Japan 4

Vol.2019-AL-172 No.1
2019/3/5

IPSJ SIG Technical Report

Algorithm 3 An algorithm to enumerate solutions in Sk for a
given k ∈ [0, q]
Input: An instance (V,C, I = [1, q], σ) on a transitive system, and an item

k ∈ [0, q]
Output: The set Sk of solutions to (V,C, I, σ)
1: Compute Cmax(V⟨k⟩); d := 1;
2: for each T ∈ Cmax(V⟨k⟩) do
3: if k = min Iσ(T) (i.e., T ∈ Bk) then
4: Output T ;
5: if k ∈ [1, q − 1] then
6: Descendants(T, k, d + 1)
7: end if
8: end if
9: end for

Algorithm 4 Descendants(T, k, d): Generating all descendants
Input: An instance (V,C, I, σ), k ∈ [1, q − 1], a solution T ∈ Sk , and the

current depth d of recursive call of Descendants
Output: All descendants of T in Sk

1: for each j ∈ [k + 1, q] \ Iσ(T) do
2: Compute Cmax(T ∩ V⟨ j⟩);
3: for each S ∈ Cmax(T ∩ V⟨ j⟩) do
4: if k = min Iσ(S) and j = min{i | i ∈ [k + 1, q] ∩ (Iσ(S) \ Iσ(T))}

then
5: if T =Parent(S) (i.e., S is a child of T) then
6: if d is odd then
7: Output S
8: end if;
9: Descendants(S , k, d + 1);

10: if d is even then
11: Output S
12: end if
13: end if
14: end if
15: end for
16: end for

O
(
(q + n + θ1,s + θ2,s)n

)
space.

Proof: First we analyze the time delay. Let α denote the time
complexity required for a single run of Children(T, k). By
Lemma 5(ii) and δ(T) ≤ δ(V⟨k⟩), we have α = O

(
qθ2,t + q2(n +

θ1,t)δ(V⟨k⟩)
)
. Hence we see that the time complexity of Algo-

rithm 3 and Descendants without including recursive calls is
O(α).

From Algorithm 3 and Descendants, we observe:
(i) When d is odd, the solution S for any call
Descendants(S , k, d + 1) is output

immediately before Descendants(S , k, d + 1) is executed; and
(ii) When d is even, the solution S for any call
Descendants(S , k, d + 1) is output

immediately after Descendants(S , k, d + 1) is executed.
Let m denote the number of all calls of Descendants during a
whole execution of Algorithm 3. Let d1 = 1, d2, . . . , dm denote
the sequence of depths d in each Descendants(S , k, d + 1) of
the m calls. Note that d = di satisfies (i) when di+1 is odd and
di+1 = di + 1, whereas d = di satisfies (ii) when di+1 is even
and di+1 = di − 1. Therefore we easily see that during three
consecutive calls with depth di, di+1 and di+2, at least one solution
will be output. This implies that the time delay for outputting a

solution is O(α).
We analyze the space complexity. Observe that the number

of calls Descendants whose executions are not finished during
an execution of Algorithm 3 is the depth d of the current call
Descendants(S , k, d + 1). In Algorithm 4, |T | + d ≤ n + 1 holds
initially, and Descendants(S , k, d + 1) is called for a nonempty
subset S ⊊ T , where |S | < |T |. Hence |S | + d ≤ n + 1
holds when Descendants(S , k, d + 1) is called. Then Algorithm 3
can be implemented to run in O(nβ) space, where β denotes
the space required for a single run of Children(T, k). We have
β = O(q + n + θ1,s + θ2,s) by Lemma 5(ii). Then the overall space
complexity is O

(
(q + n + θ1,s + θ2,s)n

)
. □

Theorem 1 yields a polynomial-delay algorithm for the con-
nector enumeration problem as follows.

Theorem 2 Given an instance (G = (V, E), I, σ), we can
enumerate all connectors in O(q2(n + m)n) time delay and in
O((q + n + m)n) space, where n = |V |, m = |E| and q = |I|.
Proof: Recall that CG denotes the family of vertex subsets X ∈ 2V

such that G[X] is connected. A connector induces a connected
subgraph, and thus is an element in CG. By the definition of so-
lution, an element in CG is a connector iff it is a solution. Hence,
the connector enumeration problem for (G, I, σ) is solved by enu-
merating all solutions for the instance (V,CG, I, σ).

For the transitive system (V,CG), we see that θi,t = O(n + m),
i = 1, 2, θi,s = O(n + m), i = 1, 2, and δ(Y) = O(|Y |) = O(n). By
Theorem 1, we can enumerate all solutions in S in O(q2(n+m)n)
time delay and in O((q + n + m)n) space. □

5. Transitive System Based on Mixed Graphs
In addition to (V,CG), we may obtain an alternative transitive

system by selecting a different notion of connectivity such as the
edge- or vertex-connectivity on a digraph or undirected graph.
To treat those systems universally, this section presents a gen-
eral method of constructing a transitive system based on a mixed
graph and a weight function on elements in the graph.

In Section 5.1, we introduce the notions of mixed graph, meta-
weight function and k-connectivity that is defined on them. We
show that they altogether determine a transitive system. Then in
Section 5.2, we present how to construct a meta-weight function
from given mixed graph M and weight function w on elements
in M. We also explain how to construct two oracles L1 and L2

for given M and w, by which we can run the enumeration algo-
rithm in Section 4 for the corresponding transitive system. In
Section 5.3, as case studies, we observe how to apply the enu-
meration algorithm to transitive systems that are determined by
k-edge- and k-vertex-connectivity.

We omit the proofs of theorems and lemmas in this section,
due to space limitation.

5.1 Mixed Graph and Meta-weight Function
Let R+ denote the set of non-negative reals. For a function

f : A→ R+ and a subset B ⊆ A, we let f (B) denote
∑

a∈B f (a).
Let M be a mixed graph, which is defined to be a graph that

may contain undirected edges and directed edges. In this paper,

c⃝ 2019 Information Processing Society of Japan 5

Vol.2019-AL-172 No.1
2019/3/5

IPSJ SIG Technical Report

M may have multiple edges but no self-loops. Let V(M), E⃗(M)
and E(M) denote the sets of vertices, directed edges and undi-
rected edges, respectively. Let n = |V(M)| and m = |E(M)|. Let
E(M) ≜ E⃗(M) ∪ E(M). For two vertices u, v ∈ V(M), let

E⃗(u, v) denote the set of directed edges from u to v,
E(u, v) denote the set of undirected edges between u and v in M,

and
E(u, v) ≜ E⃗(u, v) ∪ E(u, v).

For two non-empty subsets X,Y ⊆ V(M), let
E⃗(X; Y) ≜

∪
u∈X,v∈Y E⃗(u, v),

E(X; Y) ≜
∪

u∈X,v∈Y E(u, v) and
E(X; Y) ≜

∪
u∈X,v∈Y E(u, v).

For two vertices s, t ∈ V(M), an s, t-cut C is defined to be an or-
dered pair (S ,T) of disjoint subsets S ,T ⊆ V(M) such that s ∈ S
and t ∈ T , and the element set ε(C) of C (ε(S ,T) of (S ,T)) is
defined to be a union F ∪ R of the edge subset F = E(S ,T) and
the vertex subset R = V(M) \ (S ∪ T), where R = ∅ is allowed.

We define a meta-weight function on M to be ω : 2V ×
(V(M) ∪ E(M)) → R+. For each subset X ∈ 2V , we denote
w(X, a), a ∈ V(M)∪E(M) as a function ωX : V(M)∪E(M)→ R+
such that ωX(a) = ω(X, a) for each a ∈ V(M) ∪ E(M). We call ω
monotone if for any subsets X ⊆ Y ⊆ V , the next holds:

ωY (a) ≥ ωX(a) for any a ∈ V(M) ∪ E(M).

For two vertices s, t ∈ V(M) and a subset X ⊆ V(M), define
µ(s, t; X) ≜ min{ωX(ε(C)) | s, t-cuts C = (S ,T) in M}. We call a
vertex subset X ⊆ V(M) k-connected if |X| = 1 or µ(u, v; X) ≥ k
for each pair of vertices u, v ∈ X.

Lemma 6 Let (M, ω) be a mixed graph with a monotone
meta-weight function, and k ≥ 0. For two k-connected subsets
X,Y ⊆ V(M) such that ωX∩Y (X ∩ Y) ≥ k, the subset X ∪ Y is
k-connected.

For a mixed graph (M, ω) with a meta-weight function and
a real k ≥ 0, let C(M, ω, k) ⊆ 2V(M) denote the family of k-
connected subsets X ⊆ V with ωX(X) ≥ k.

Lemma 7 For a mixed graph (M, ω) with a monotone meta-
weight function a real k ≥ 0, let C = C(M, ω, k). Then C is
transitive.

5.2 Construction of Monotone Meta-weight Functions
This subsection shows a concrete method of constructing a

monotone meta-weight function from a mixed graph with a stan-
dard weight function on the vertex and edge sets. We also present
how to construct oracles L1 and L2 that are required when we ap-
ply the enumeration algorithm in Section 4 to the corresponding
transitive system.

Let M be a mixed graph and w : V(M) ∪ E(M) → R+

be a weight function. We define a coefficient function to be
γ = (α, α−, α+, β) that consists of functions

α : E(M)→ R+,
α+, α− : E⃗(M)→ R+, and

β : V(M) ∪ E(M)→ R+.

We call γ monotone if 1 ≥ α(e) ≥ β(e) for each undirected edge
e ∈ E(M), 1 ≥ α+(e) ≥ β(e), 1 ≥ α−(e) ≥ β(e) for each directed

edge e ∈ E⃗(M); and 1 ≥ β(v) for each vertex v ∈ V(M). We
call a tuple (M, w, γ) a system, and define a meta-weight function
ω : 2V × (V(M) ∪ E(M)) → R+ to the system so that, for each
subset X ⊆ V(M), ωX : V(M) ∪ E(M)→ R+ is given by

ωX(v) =

 w(v) if v ∈ X,
β(v)w(v) if v ∈ V(M) \ X,

ωX(e) =



w(e) if e ∈ E(X, X),
α(e)w(e) if e ∈ E(X,V(M) \ X),
α+(e)w(e) if e ∈ E⃗(X,V(M) \ X),
α−(e)w(e) if e ∈ E⃗(V(M) \ X, X),
β(e)w(e) if e ∈ E(V \ X,V \ X).

We call a system (M, w, γ) monotone if γ is monotone.
Lemma 8 For a monotone system (M, w, γ), the correspond-

ing meta-weight function ω : 2V × (V(M) ∪ E(M)) → R+ is
monotone.

For a system (M, w, γ) on a mixed graph M with n vertices and
m edges and a real k ≥ 0, let τ(n,m, k) and σ(n,m, k) denote the
time and space complexities for testing if µ(u, v; X) < k holds or
not for two vertices u, v ∈ V(M) and a subset X ⊆ V(M).

Lemma 9 For a monotone tuple (M, w, γ), let ω be the corre-
sponding monotone meta-weight function.
(i) τ(n,m, k) = O(mn log n) and σ(n,m, k) = O(n + m); and
(ii) Let X ⊆ Y ⊆ V(M) be non-empty subsets such that ωX(X) ≥

k and µ(u, u′; Y) ≥ k for all vertices u, u′ ∈ X. Given a
vertex t ∈ Y \ X, whether there is a vertex u ∈ X such
that µ(u, t; Y) < k or not can be tested in τ(n,m, k) time and
σ(n,m, k) space.

We denote by C(M, w, γ, k) the family of k-connected sets in a
system (M, w, γ). We consider how to construct oracles L1 and
L2 to the system. For two non-empty subsets X ⊆ Y ⊆ V(M), let
Cmax(Y) denote the family of maximal subsets X ∈ C(M, w, γ, k)
such that X ⊆ Y , and let Ck(X; Y) denote a maximal set X∗ ∈
Cmax(Y) such that X ⊆ X∗; and Ck(X; Y) ≜ ∅ if no such set X∗

exists.
Lemma 10 For a monotone system (M, w, γ), let ω denote

the corresponding monotone meta-weight function. Let X ⊆ Y ⊆
V(M) be non-empty subsets such that ωX(X) ≥ k. Then
(i) Ck(X; Y) is uniquely determined;
(ii) If there are vertices u ∈ X and v ∈ Y such that µ(u, v; Y) < k,

then v < X∗;
(iii) Assume that µ(u, v; Y) ≥ k for all vertices u ∈ X and v ∈ Y\X.

Then Ck(X; Y) = Y if µ(u, u′; Y) ≥ k for all vertices u, u′ ∈ X;
and Ck(X; Y) = ∅ otherwise; and

(iv) Finding Ck(X; Y) can be done in O(|Y |2τ(n,m, k)) time and
O(σ(n,m, k) + |Y |) space.

By the lemma, oracle L1(X; Y) to a monotone system (M, w, γ)
runs in θ1,t = O(|Y |2τ(n,m, k)) time and θ1,s = O(σ(n,m, k) + |Y |)
space.

For a system (M, w, γ), we define a k-core of a subset Y ⊆ V(M)
to be a subset Z of Y such that ωZ(Z) ≥ k and any proper subset
Z′ of Z satisfies ωZ′ (Z′) < k.

Lemma 11 Let (M, w, γ) be a monotone system, and Y be a
subset of V(M). For the family K of all k-cores of Y , it holds
that Cmax(Y) =

∪
Z∈K {Ck(Z; Y)} and |Cmax(Y)| ≤ |K|. Given K ,

c⃝ 2019 Information Processing Society of Japan 6

Vol.2019-AL-172 No.1
2019/3/5

IPSJ SIG Technical Report

Cmax(Y) can be obtained in O(|K|(|Y |2τ(n,m, k)+ |Y | log |K|)) time
and O(σ(n,m, k) + |K| · |Y |) space.

By the lemma, oracle L2(Y) to a monotone system (M, w, γ)
runs in θ2,t = O(|K|(|Y |2τ(n,m, k) + |Y | log |K|)) time and θ2,s =
O(σ(n,m, k) + |K| · |Y |) space, where we assume that the family
K of k-cores of Y is given as input.

5.3 Edge- and Vertex-Connectivity in Digraph and Graph
Let G be an unweighted digraph or undirected graph with n

vertices and m edges. Let s, t ∈ V(G) be two vertices in G. Let
λ(s, t; G) denote the minimum size |F| of a subset F ⊆ E(G) so
that the graph G − F obtained from G by removing edges in F
has no directed (resp., undirected) path from s to t. Let κ(s, t; G)
denote the minimum size |S | of a subset S ⊆ E(G)∪ (V(G)\{s, t})
to be removed from G so that the graph G − S obtained from G
by removing vertices and edges in S has no directed (resp., undi-
rected) path from s to t, where such a minimum subset S can be
chosen so that S \ E({s}, {t}) ⊆ V(G). By Menger’s theorem [8],
λ(s, t; G) (resp., κ(s, t; G)) is equal to the maximum number of
edge-disjoint (resp., internally disjoint) paths from s to t. We
can test whether λ(s, t; G) ≥ k (resp., κ(s, t; G) ≥ k) or not in
O(min{k, n}m) (resp., O(min{k, n1/2}m)) time [1], [2]. A graph G
is called k-edge-connected if |V(G)| ≥ 1 and λ(u, v; G) ≥ k for any
two vertices u, v ∈ X. A graph G is called k-vertex-connected if
|V(G)| ≥ k + 1 and κ(u, v; G) ≥ k for any two vertices u, v ∈ X. In
the following, we show two examples of transitive systems based
on graph connectivity.
5.3.1 Connected Set in the Entire Graph

Given a digraph or graph G, we define “k-connected set” based
on the connectivity of the entire graph G. Let us call a subset
X ⊆ V(G) k-edge-connected if |X| = 1 or for any two vertices
u, v ∈ X, λ(u, v; G) ≥ k. Let Ck,edge denote the family of k-edge-
connected sets in G. Let us call a subset X ⊆ V(G) k-vertex-
connected if |X| ≥ k or for any two vertices u, v ∈ X, κ(u, v; G) ≥ k.
Let Ck,vertex denote the family of k-vertex-connected sets in G.

Lemma 12 Let G be a digraph or undirected graph and k ≥ 0
be an integer. Then:
(i) The family C = Ck,edge is transitive. For each non-empty sub-

set Y ⊆ V(G), it holds |Cmax(Y)| ≤ |Y |, oracles L1(X; Y) and
L2(Y) run in O(n2) time and space after an O(n2 min{k, n}m)-
time and O(n2)-space preprocessing; and

(ii) The family C = Ck,vertex is transitive. For each non-
empty subset Y ⊆ V(G), it holds |Cmax(Y)| ≤

(|Y |
k

)
, ora-

cle L1(X; Y) runs in O(n2) time and O(n2) space, and ora-
cle L2(Y) runs in O(|Y |kn2) time and O(|Y |kn) space, after an
O(n2 min{k, n1/2}m)-time and O(n2)-space preprocessing.

Using Theorem 1 and Lemma 12, we have the following theo-
rem on the time delay and the space complexity of enumeration
of connectors that are k-edge-connected or k-vertex-connected.

Theorem 3 Let (G, I, σ) be an instance and k ≥ 0 be an inte-
ger, where G = (V, E) is either a digraph or an undirected graph,
n = |V |, m = |E|, and q = |I|.
(i) We can enumerate all connectors that are k-edge-connected

in O(q2n3) time delay and in O(qn + n3) space, after an
O(n2 min{k, n}m)-time and O(n2)-space preprocessing.

(ii) We can enumerate all connectors that are k-vertex-connected
in O(q2nk+2) time delay and in O(qn + nk+2) space, after an
O(n2 min{k, n1/2}m)-time and O(n2)-space preprocessing.

5.3.2 Connected Set in Induced Graph
Given a digraph or graph G, we define a “k-connected set” X

based on the connectivity of the induced graph G[X]. Now con-
sider the family Cin

k,edge (resp., Cin
k,vertex) of subsets X ∈ V(G) such

that the induced graph G[X] is k-edge-connected (resp., k-vertex-
connected).

Lemma 13 Let G be a digraph or undirected graph and k ≥ 0
be an integer. Then:
(i) The family C = Cin

k,edge is transitive. For each non-empty
subset Y ⊆ V(G), it holds |Cmax(Y)| ≤ |Y |, oracle L1(X; Y)
runs in O(|Y |2(n2 + min{k, n}m)) time and O(n2) space, and
L2(Y) runs in O(|Y |3(n2 +min{k, n}m)) time and O(n2) space;
and

(ii) The family C = Cin
k,vertex is transitive. For each non-empty

subset Y ⊆ V(G), it holds |Cmax(Y)| ≤
(|Y |

k

)
, oracle oracle

L1(X; Y) runs in O(|Y |2(n2 + min{k, n1/2}m)) time and O(n2)
space, and oracle L2(Y) runs in O(|Y |k+2(n2 +min{k, n1/2}m))
time and O(|Y |kn) space.

Again, using Theorem 1 and Lemma 12, we have the following
theorem on the time delay and the space complexity of enumer-
ation of connectors such that the induced subgraphs are k-edge-
connected or k-vertex-connected.

Theorem 4 Let (G, I, σ) be an instance and k ≥ 0 be an inte-
ger, where G = (V, E) is either a digraph or an undirected graph,
n = |V |, m = |E|, and q = |I|.
(i) We can enumerate all connectors such that the induced sub-

graphs are k-edge-connected in O
(
q2n3(n2 + min{k, n}m)

)
time delay and in O(qn + n3) space.

(ii) We can enumerate all connectors such that the
induced subgraphs are k-vertex-connected in
O
(
q2nk+2(n2+min{k, n1/2}m)

)
time delay and in O(qn+nk+2)

space.

6. Concluding Remarks
In this paper, we have considered the connector enumeration

problem in a general setting. We treated the problem on what we
call a transitive system and proposed an algorithm for enumerat-
ing all solutions in the system (Algorithms 3 and 4 in Section 4).
The algorithm requires two oracles L1 and L2, and the time delay
is O
(
qθ2,t + q2(n + θ1,t)δ(V⟨k⟩)

)
, whereas the space complexity is

O
(
(q + n + θ1,s + θ2,s)n

)
, as we stated in Theorem 1. As a con-

sequence of the theorem, we have complexity results on enumer-
ating connectors that satisfy several connectivity conditions. We
summarize the results in Table 1. For future work, we investigate
the possibility of improvement of the complexities for respective
cases.

References
[1] Ahuja, R. K., Magnanti, T. L. and Orlin, J. B.: Optimization, Hand-

books in Management Science and Operations Research, Vol. 1, chap-
ter Network Flows (IV), pp. 211–369, North-Holland (1989).

[2] Ahuja, R. K., Magnanti, T. L. and Orlin, J. B.: Network Flows: The-
ory, Algorithms, and Applications, Prentice-Hall, Englewood Cliffs,
NJ (1993).

c⃝ 2019 Information Processing Society of Japan 7

Vol.2019-AL-172 No.1
2019/3/5

IPSJ SIG Technical Report

Table 1 Complexity of enumerating connectors X that satisfy several connectivity conditions

Theorem Condition Delay Space
2 G[X] is connected O(q2(n + m)n) O((q + n + m)n)

3(i) X is k-edge-connected O(q2n3) O(qn + n3)
(preprocessing is required)

3(ii) X is k-vertex-connected O(q2nk+2) O(qn + nk+2)
(preprocessing is required)

4(i) G[X] is k-edge-connected O
(
q2n3(n2 +min{k, n}m)

)
O(qn + n3)

4(ii) G[X] is k-vertex-connected O
(
q2nk+2(n2 +min{k, n1/2}m)

)
O(qn + nk+2)

[3] Avis, D. and Fukuda, K.: Reverse search for enumeration, Discrete
Applied Mathematics, Vol. 65, No. 1, pp. 21–46 (1996).

[4] Haraguchi, K., Momoi, Y., Sherbevski, A. and Nagamochi, H.:
COOMA: A Components Overlaid Mining Algorithm for Enumerat-
ing Connected Subgraphs with Common Itemsets, Technical Report
002, Department of Applied Mathematics and Physics, Kyoto Univer-
sity (2018).

[5] Haraguchi, K., Momoi, Y., Sherbevski, A. and Nagamochi, H.:
COOMA: A Components Overlaid Mining Algorithm for Enumerat-
ing Connected Subgraphs with Common Itemsets, Proceedings of 2nd
International Workshop on Enumeration Problems and Applications
(WEPA 2018) (2018).

[6] Inokuchi, A., Washio, T. and Motoda, H.: An Apriori-Based Al-
gorithm for Mining Frequent Substructures from Graph Data, Prin-
ciples of Data Mining and Knowledge Discovery (Zighed, D. A.,
Komorowski, J. and Żytkow, J., eds.), pp. 13–23 (online), DOI:
10.1007/3-540-45372-5 2.

[7] Li, Y., Sha, C., Huang, X. and Zhang, Y.: Commu-
nity Detection in Attributed Graphs: An Embedding Ap-
proach, Proceedings of AAAI-18, (online), available from
⟨https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17142⟩
(2018).

[8] Menger, K.: Zur allegemeinen Kurventheorie, Fundamenta Mathe-
maticae, Vol. 10, pp. 96–115 (1927).

[9] Nutov, Z.: Listing minimal edge-covers of intersecting fam-
ilies with applications to connectivity problems, Discrete Ap-
plied Mathamatics, Vol. 157, No. 1, pp. 112–117 (online), DOI:
10.1016/j.dam.2008.04.026 (2009).

[10] Okuno, S.: Parallelization of Graph Mining using Backtrack Search
Algorithm, PhD Thesis, Kyoto University (2017).

[11] Okuno, S., Hiraishi, T., Nakashima, H., Yasugi, M. and Sese, J.: Re-
ducing Redundant Search in Parallel Graph Mining Using Exceptions,
2016 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), pp. 328–337 (online), available from
⟨https://doi.org/10.1109/IPDPSW.2016.136⟩ (2016).

[12] Okuno, S., Hiraishi, T., Nakashima, H., Yasugi, M. and Sese, J.: Paral-
lelization of Extracting Connected Subgraphs with Common Itemsets,
Information and Media Technologies, Vol. 9, No. 3, pp. 233–250 (on-
line), available from ⟨https://doi.org/10.11185/imt.9.233⟩ (2014).

[13] Sese, J., Seki, M. and Fukuzaki, M.: Mining Networks with Shared
Items, Proceedings of the 19th ACM International Conference on In-
formation and Knowledge Management (CIKM ’10), pp. 1681–1684
(2010).

[14] Uno, T.: Two general methods to reduce delay and change of enumer-
ation algorithms, Technical Report NII-2003-004E, NII (2003).

[15] Wasa, K.: Enumeration of Enumeration Algorithms,
CoRR, Vol. abs/1605.05102 (online), available from
⟨http://arxiv.org/abs/1605.05102⟩ (2016).

[16] Yan, X. and Han, J.: gSpan: Graph-Based Substructure Pattern Min-
ing, Proceedings of 2002 IEEE International Conference on Data
Mining (ICDM ’02), pp. 721–724 (2002).

c⃝ 2019 Information Processing Society of Japan 8

Vol.2019-AL-172 No.1
2019/3/5

