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Abstract: This paper presents a Viterbi approximation of latent words language models (LWLMs) for automatic
speech recognition (ASR). The LWLMs are effective against data sparseness because of their soft-decision clustering
structure and Bayesian modeling, so LWLMs can perform robustly in multiple ASR tasks. Unfortunately, implement-
ing an LWLM to ASR is difficult because of its computation complexity. In our previous work, we implemented an
n-gram approximation of LWLM for ASR by sampling words according to a stochastic process and training word
n-gram LMs. However, the previous approach cannot take into account a latent word sequence behind a recognition
hypothesis. Our solution is the Viterbi approximation that simultaneously decodes both the recognition hypothesis and
the latent word sequence. The Viterbi approximation is implemented as a two-pass ASR decoding in which the latent
word sequence is estimated from a decoded recognition hypothesis using Gibbs sampling. Experiments show the ef-
fectiveness of the Viterbi approximation in an n-best rescoring framework. In addition, we investigate the relationship
of the n-gram approximation and the Viterbi approximation.

Keywords: latent words language model, Viterbi approximation, Gibbs sampling, automatic speech recognition, n-
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1. Introduction

Language models (LMs) are necessary for various natural lan-
guage processing tasks such as automatic speech recognition
(ASR). One of the most common problems faced by LMs is data
sparseness [1], [2], [3]. In ASR tasks, large amounts of domain-
matched training data sets are not available because the data set
must be obtained by manually transcribing speech. Therefore,
LMs are often required to robustly predict the probability of un-
observed linguistic phenomena even though the domain-matched
training data is limited.

To mitigate the data sparseness problem, several techniques
have been proposed. The most traditional technique is smooth-
ing in n-gram modeling [4]. Various smoothing methods that
improve LMs probability estimation have been studied for n-
gram LMs [4], [5]. Another solution is based on dimension-
ality reduction. Class-based n-gram LMs [6] and decision tree
LMs [7] are based on word classification, and neural network
based LMs are based on learning the distributed representation
of words [8], [9], [10], [11].

In order to achieve further domain robust language modeling,
this paper focuses on latent words LMs (LWLMs) since they
can flexibly perform both smoothing and dimensionality reduc-
tion [12]. LWLMs have latent variables which are called latent
words. Remarkably, LWLM has a soft clustering structure in
common with Bayesian hidden Markov models (HMMs) [13],
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[14] and the Bayesian class-based LMs [15], [16]. In contrast to
these models, LWLM has a vast latent variable space whose size
is equivalent to the vocabulary size of the training data. These
flexible attributes help us to efficiently realize the smoothing
and the dimensionality reduction. Therefore, it can be expected
that LWLM robustly covers multiple domains in ASR. In addi-
tion, flexible mixture modeling in the latent variable space can
be achieved by using multiple LWLMs [17], [18] while conven-
tional class-based n-gram observed word space mixture modeling
can only be performed by the Bayesian HMMs and the Bayesian
class-based LMs. However, some approximation is inevitable for
ASR implementation because these attributes seriously increase
computation complexity.

One approximation method is an n-gram approximation, in
which n-gram LM is trained from words sampled according to a
stochastic process of the LWLM [19], [20]. The n-gram approxi-
mation can perform in a one-pass ASR decoder and shows effec-
tiveness in multiple ASR tasks. However, the n-gram approxima-
tion cannot take into account latent words behind a recognition
hypothesis because the approximation is based on a simple back-
off n-gram structure. Actually, the n-gram approximation ignores
an important concept which every observed word in a text has a
latent word.

In order to directly take into account the latent words, this pa-
per presents the Viterbi approximation of LWLMs. The Viterbi
approximation simultaneously decodes a recognition hypothesis
and its optimal latent word sequence using a joint probability be-
tween the two sequences. This technique is usually used in hid-
den Markov models (HMMs), and it is known that the perfor-
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mance is comparable to that obtained when taking account of all
possible latent variable assignments [21]. It can be expected that
the Viterbi approximation of LWLMs will provide further ASR
improvements.

It is known that the Viterbi algorithm is a formal technique to
compute the joint probability of an observed word sequence and
its optimal latent variable sequence [22]. However, there are innu-
merable combinations of the recognition hypothesis and its latent
word assignment in LWLMs. In fact, the computation complexity
to determine the optimal latent assignment via the Viterbi algo-
rithm is O(|C|n); where |C| is the size of the latent word space and
n is the n-gram order for the latent word modeling. It is difficult
to apply the Viterbi algorithm to the LWLMs because the size of
the latent word space corresponds to the vocabulary size and the
n-gram order is usually over two.

To overcome this problem, we implement the Viterbi approxi-
mation as a two-pass process using Gibbs sampling. In the pro-
cess, several recognition hypotheses are preliminarily decoded in
a first pass, and then each optimal latent word assignment is de-
coded in a second pass. This enables us to handle a joint prob-
ability between the recognition hypothesis and the optimal la-
tent word assignment. The Gibbs sampling is used to approxi-
mately find the best latent word assignment [23], [24], [25]. The
Gibbs sampling is a simple and widely used method for gener-
ating random samples from a joint distribution over several vari-
ables. Gibbs sampling can reduce the computation complexity
from O(|C|n) to O(|C|), so Viterbi approximation can be conducted
more rapidly than is possible with the formal Viterbi algorithm.

This paper is an extended study of our previous work [26]. In
this paper, we detail the definition of the Viterbi approximation
more precisely and extend our evaluation to not only ASR evalua-
tion presented in the previous work but also perplexity evaluation
using Penn treebank corpus [27] so as to compare our proposed
method with many previous studies in terms of perplexity. Fur-
thermore, we compare the LWLM based ASR with state-of-the-
art RNN language modeling [9], [10].

This paper is organized as follows. Section 2 details LWLMs
and the n-gram approximation for implementing the LWLMs to
ASR. Section 3 explains the definition of the Viterbi approxima-
tion and a method to compute the joint probability of a recog-
nition hypothesis and its optimal latent word assignment. Sec-
tions 4 and 5 describe a perplexity evaluation and an ASR evalu-
ation, respectively. Section 6 concludes this paper.

2. Latent Words Language Models

2.1 Definition
Latent words LMs (LWLMs) are generative models that set a

latent variable for every observed word [12], [19], [20]. A graphic
rendering of LWLM is shown in Fig. 1. The gray circles denote
observed words and the white circles denote latent variables.

In the generative process of LWLM, a latent variable, called
latent word ht, is generated depending on the transition probabil-
ity distribution given context lt = ht−n+1, . . . , ht−1, where n is an
n-gram order. Next, observed word wt is generated depending on
the emission probability distribution given latent word ht, i.e.,

Fig. 1 Model structure of LWLMs.

ht ∼ P(ht |lt,Θlw), (1)

wt ∼ P(wt |ht,Θlw), (2)

where Θlw is a model parameter of LWLM. Here, P(ht |lt,Θlw) is
expressed as an n-gram model for latent words, and P(wt |ht,Θlw)
models the dependency between the observed word and the latent
word.

An important property of LWLMs is that the latent word is
expressed as a specific word that can be selected from an entire
vocabulary V. Thus, the number of latent words is the same as
the vocabulary size |V|. This is the reason the latent variable is
called a latent word.

2.2 Bayesian LWLMs
LWLMs are often modeled by the Bayesian inference. The

Bayesian LWLM produces the following generative probability
for observed words w = w1, · · · , wT as:

P(w) =
∫ ∑

h

P(w|h,Θlw)P(h|Θlw)P(Θlw)dΘlw, (3)

where h = h1, · · · , hT is a latent word assignment. This equation
can be detailed as:

P(w) =
∫ T∏

t=1

∑
h

P(wt |ht,Θlw)P(ht |lt,Θlw)P(Θlw)dΘlw.

(4)

The Bayesian approach takes account of all possible model pa-
rameters. As the integral with respect to Θlw is analytically in-
tractable, a sampling technique is used as a feasible approxima-
tion. Equation (3) is approximated as:

P(w) � 1
M

M∑
m=1

P(w|Θm
lw), (5)

P(w|Θm
lw) =

T∏
t=1

∑
h

P(wt |ht,Θ
m
lw)P(ht |lt,Θm

lw), (6)

where Θm
lw

means the m-th point estimated model parameter. The
generative probability can be approximated using M instances of
Θm
lw

. In fact, the ensemble of several models (M > 1) is effective
for LMs such as random class based LMs [28] and random forest
LMs [29].

LWLM has a similar structure to the standard class based n-
gram model. The latent word corresponds, approximately, to the
class of the standard class based n-gram model [6]. LWLM has a
soft word clustering structure that differs from a simple hard word
clustering structure in the standard class based n-gram model. In
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the hard word clustering structure, one word belongs to only one
class. In the soft word clustering structure, on the other hand, one
word belongs to multiple classes. Strictly speaking, each word
belongs to all classes in LWLM. In addition, LWLM has a vast
class space, about as large as the vocabulary, while the number of
classes in the standard class based n-gram model is often defined
as several hundreds or thousands.

2.3 Training
LWLMs are trained from a training data set W. In LWLM

training, the latent word assignment H behindW have to be in-
ferred. In fact, multiple latent word assignmentsH1, · · · ,HM are
estimated for the Bayesian modeling. Once a latent word assign-
ment Hm is defined, P(wt |ht,Θ

m
lw

) and P(ht |lt,Θm
lw

) can be calcu-
lated.

To estimate the latent word assignments, Gibbs sampling is
suitable. Gibbs sampling samples a new value for the latent word
in accordance with its distribution and places it at position t in
H . The conditional probability distribution of possible values for
latent word ht is given by:

P(ht |W,H−t) ∝ P(wt |ht,Θlw,−t)
t+n−1∏

j=t

P(h j|l j,Θlw,−t), (7)

where H−t represents all latent words except for ht and n is the
n-gram order for the latent word modeling. In the sampling pro-
cedure, P(ht |lt,Θlw,−t) and P(wt |ht,Θlw,−t) can be calculated from
W andH−t.

The transition probability distribution and the emission proba-
bility distribution are calculated on the basis of their prior distri-
butions. For the transition probability distribution, this paper uses
a prior hierarchical Pitman-Yor. P(ht |lt,Θlw) is given as:

P(ht |lt,Θlw) = P(ht |lt,H), (8)

P(ht |lt,H) =
c(ht, lt) − d|lt |s(ht, lt)

θ|lt | + c(lt)

+
θ|lt | + d|lt |s(lt)
θ|lt | + c(lt)

P(ht |π(lt),H), (9)

where π(lt) is the shortened context obtained by removing the ear-
liest word from lt. c(ht, lt) and c(lt) are counts calculated from a
latent word assignmentH . s(ht, lt) and s(lt) are calculated from a
seating arrangement defined by the Chinese restaurant franchise
representation of the Pitman-Yor process [30]. d|lt | and θ|lt | are
discount and strength parameters of the Pitman-Yor process, re-
spectively. Moreover, a Dirichlet prior is used for the emission
probability distribution [31]. P(wt |ht,Θlw) is given as:

P(wt |ht,Θlw) = P(wt |ht,W,H), (10)

P(wt |ht,W,H) =
c(wt, ht) + αP(wt)

c(ht) + α
, (11)

where P(wt) is the maximum likelihood estimation value of un-
igram probability in the training data set W. c(wt, ht) and c(ht)
are counts calculated fromW and latent word assignment H . A
hyper parameter α can be optimized via a validation data set.

2.4 N-gram Approximation
The n-gram approximation of LWLMs is to convert LWLMs

into the back-off n-gram structure. A basic concept is to con-
struct a smoothed n-gram LM that can generate similar words to
those generated from LWLM. Thus, the approximated LWLM
P(w|Θlwng) has the following properties:

wlw ∼ P(w|Θ1
lw, · · · ,ΘM

lw), (12)

wlwng ∼ P(w|Θlwng), (13)

wlw � wlwng, (14)

where wlw is an observed word sequence generated from the
LWLM, and wlwng is an observed word sequence generated from
the approximated LWLM with back-off n-gram structure. The
approximated LWLM can be constructed from words generated
from the LWLM. In fact, any back-off n-gram structure, includ-
ing hierarchical Pitman-Yor LMs (HPYLMs) [30], can be used
for the approximation.

As LWLM is a generative model, it can generate latent words
and observed words based on random sampling. Therefore, a lot
of observed words can be easily sampled, and the smoothed n-
gram LM can be constructed. Although the model size of n-gram
approximated LWLM is large, its n-gram entries can be easily
reduced by the entropy pruning technique [32].

3. Viterbi Approximation of LWLMs

3.1 Definition
The Viterbi approximation of LWLMs uses the joint probabil-

ity of a word sequence w = w1, · · · , wT and its optimal latent
word assignment h̄ = h̄1, · · · , h̄T . The joint probability is called
the Viterbi probability. The Viterbi probability P(w, h̄) is defined
as:

P(w, h̄) = max
h

P(w, h), (15)

= max
h

1
M

M∑
m=1

P(w|h,Θm
lw)P(h|Θm

lw). (16)

The probability is also denoted as:

P(w, h̄) = max
h

1
M

T∏
t=1

M∑
m=1

P(wt |h̄t,Θ
m
lw)P(h̄t | l̄t,Θm

lw), (17)

where lt = h̄t−n+1, · · · , h̄t−1. Note that a perplexity calculated
from the Viterbi probability is called a Viterbi perplexity. The
Viterbi perplexity which utilizes the joint probability of the word
sequence and the optimal latent word sequence does not exactly
correspond to word perplexity although the Viterbi perplexity can
be used for evaluating availability to estimate word sequences.

In ASR, the Viterbi approximation can be defined as a problem
of the Viterbi ASR decoding. The Viterbi ASR decoding simulta-
neously decodes the recognition hypothesis ŵ and its latent word
assignment ĥ using a joint probability P(w, h). This probabilistic
decision problem is defined as:

(ŵ, ĥ) = arg max
(w,h)∈S

P(x|w)P(w, h), (18)

where S is the search space. x is an input speech signal, and
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P(x|w) is an acoustic model.
The Viterbi ASR decoding is impractical to implement as a

one-pass ASR process because innumerable combinations of the
recognition hypothesis and its latent word assignment have to be
taken into consideration. Therefore, this paper implements the
Viterbi ASR decoding as a two-process. By using the Viterbi
probability, the ASR decoding can be defined as:

ŵ, ĥ = arg max
(w,h̄)∈L

P(x|w)P(w, h̄), (19)

= arg max
(w,h̄)∈L

{log P(x|w) + log P(w, h̄)}, (20)

where L denotes the limited search space. The limited search
space is produced by a first decoding pass in which several recog-
nition hypotheses are preliminarily decoded using the standard n-
gram LM. Thus S is regarded as a recognition hypotheses list
generated in the first pass. Then, each optimal latent word as-
signment is estimated from the recognition hypothesis in a sec-
ond pass. In the two pass process, only the Viterbi probability of
each recognition hypothesis is calculated. This computation cost
is much smaller than that of an intuitive one-pass process. In ad-
dition, in the two-pass process, the n-gram probability in the first
decoding pass and the Viterbi probability calculated in the second
decoding pass can be mixed. In this paper, L corresponds to n-
best lists, so the two-pass process is achieved by n-best rescoring.

3.2 Viterbi Probability Computation
3.2.1 Viterbi Algorithm

The Viterbi algorithm simultaneously solves the problems of
finding the optimal latent word assignment h̄ of an observed word
sequence w and computing the Viterbi probability based on dy-
namic programming methods. The Viterbi probability can, based
on the Viterbi algorithm, be obtained as:

P(w, h̄) = max
lL+1

M∑
m=1

δ(lL+1,Θ
m
lw). (21)

where δ(lt+1,Θ
m
lw

) is the joint probability of observing w1, · · · , wt

together with sequence lt+1 = ht−n+2, · · · , ht. It is defined recur-
sively as:

δ(lt+1,Θ
m
lw) = P(wt |ht,Θ

m
lw)δ( l̄t,Θm

lw)P(ht | l̄t,Θm
lw), (22)

where l̄t = h̄t−n+1, ht−n+2, · · · , ht−1. h̄t−n+1 is the optimal latent
word through lt+1. h̄t−n+1 is determined as:

h̄t−n+1 = arg max
ht−n+1

M∑
m=1

P(wt |ht,Θ
m
lw)δ(lt,Θm

lw)P(ht |lt,Θm
lw).

(23)

The computation complexity via the Viterbi algorithm is equal
to that of the forward algorithm, that is O(|V|n). As noted previ-
ously, it is difficult to use the Viterbi algorithm directly in LWLM.
3.2.2 Gibbs Sampling Based Computation

This paper computes the Viterbi probability by finding the op-
timal latent word assignment h̄ from w using the Gibbs sampling.
The optimal latent word assignment h̄ is, with regard to w, ob-
tained as:

h̄ = arg max
h

P(h|w), (24)

= arg max
h

1
M

M∑
m=1

P(w|h,Θm
lw)P(h|Θm

lw), (25)

= arg max
h

1
M

T∏
t=1

M∑
m=1

P(wt |ht,Θ
m
lw)P(ht |lt,Θm

lw). (26)

The Gibbs sampling technique can be used in order to find the ap-
proximately optimal latent word assignment more rapidly. First,
several latent words assignments are sampled on the basis of
Gibbs sampling. A conditional probability distribution of the pos-
sible values for latent word ht is defined as:

P(ht |w, h−t) ∝
M∑

m=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩P(wt |ht,Θ
m
lw)

t+n−1∏
j=t

P(h j|l j,Θ
m
lw)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (27)

where h−t is a latent word assignment except for ht. By the sam-
pling, I samples of latent words assignments h1, · · · , hI are ob-
tained. The Viterbi probability is calculated by finding the opti-
mal one:

P(w, h̄) � max
h∈{h1 ,··· ,hI }

1
M

T∏
t=1

M∑
m=1

P(wt |ht,Θ
m
lw)P(ht |lt,Θm

lw).

(28)

The computation complexity based on Gibbs sampling is O(|V|),
so the approximately optimal latent words assignment can be
found much more rapidly than is possible with the formal Viterbi
algorithm.

3.3 Interpolation with N-gram Probability
In ASR implementation, both n-gram probability in a first de-

coding pass and Viterbi probability calculated in a second decod-
ing pass can be used. Their combination is based on a linear
interpolation of both probabilities. In this case, the interpolated
probability P(w, h̄|Θmix) is defined as:

P(w, h̄|Θmix) =
T∏

t=1

P(wt, h̄t |ut, l̄t,Θmix), (29)

where P(wt, h̄t |ut, l̄t,Θmix) is defined as:

P(wt, h̄t |ut, l̄t,Θmix) = λP(wt |ut,Θng)

+ (1 − λ) 1
M

M∑
m=1

P(wt |h̄t,Θ
m
lw)P(h̄t | l̄t,Θm

lw), (30)

where P(wt |ut,Θng) which represents the generative probabil-
ity of wt given by context words ut = wt−n+1, · · · , wt−1 is
calculated by the n-gram LM in a first decoding pass, and
λ is an interpolation weight. Note that Θmix corresponds to
{Θng,Θ1

lw
, · · · ,ΘM

lw
, λ}. Strict Viterbi decoding can be performed

when the interpolation weight is 0.0. On the other hand, stan-
dard decoding can be performed when the interpolation weight
is 1.0. The interpolation weight can be optimized by minimizing
the joint probability using a validation data set via the expectation
maximization algorithm. In this paper, the interpolated probabil-
ities are also used to calculate perplexity.

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

4. Experiment 1: Perplexity Evaluation

4.1 Setups
The first experiments used the Penn Treebank corpus [27], in

which sections 0–20 were used as a training data set (Train), sec-
tions 21 and 22 were used as a validation data set (Valid), and
sections 23 and 24 were used as a test data set (Test A). These
selections match those of many previous studies, so we can fairly
compare our proposed method with various methods in terms of
perplexity. In addition, human-human discussion text data set
(Test B) were prepared for evaluations in a domain different from
that of the training data set. Each vocabulary was limited to 10K
words and there were no out-of-vocabulary (OOV) words. Ta-
ble 1 details number of words in each data set.

In this evaluation, the following LMs were constructed.
• MKN5: Word-based 5-gram LM with modified Kneser-Ney

smoothing constructed from training data set [4].
• HPY5: Word-based 5-gram HPYLM constructed from the

training data set [5]. For the training, 200 iterations were
used for burn-in, and 10 sets of samples were collected.

• RNN: Word-based RNNLM constructed from training data
set [9]. The hidden layer size was set as 200 by referring
to a preliminary experiment.

• LW-NA: Word-based 5-gram HPYLM constructed from data
generated on the basis of 5-gram LWLM (LW) constructed
from the training data set [20]. LW was constructed from the
training data set. For training, 500 iterations were used for
burn-in, and 10 samples were collected. The generated data
size was one billion words which was determined in con-
sideration of previous work [20]. We pruned n-gram entries
as to be comparable computation complexity to HPY5 using
entropy based pruning [32].

• LW-VA: Viterbi approximation of the LWLM. The LWLM
corresponds to that in LW-NA. To calculate the Viterbi prob-
ability, 100 samples of latent words assignments were ob-
tained using Gibbs sampling.

In addition, several mixed models constructed by linearly interpo-
lating the above LMs were employed. The mixture weights and
other hyper parameters were optimized using a validation data
set.

4.2 Results
The results based on perplexity (PPL) are shown in Table 2. In

lines (1)–(5), each LM was evaluated. In lines (6)–(11), mixed
LMs were evaluated. In addition, Fig. 2 shows PPL results where
HPY5 and LW-VA were combined using the linear interpolation.
The PPL result is the same as that obtained by HPY5 when the
mixture weight is set to 1.0 while the PPL result is the same as
that obtained by LW-VA when the mixture weight is set to 0.0.

Table 2 shows that LW-VA was relatively weaker than LW-NA.

Table 1 Data sets in experiment 1.

Domain Number of words

Train Penn Treebank 929,589
Valid Penn Treebank 70,390
Test A Penn Treebank 78,669
Test B Human-Human Discussion 50,507

This is because the Viterbi probability which takes not only an
observed word sequence but also an optimal latent word assign-
ment behind the observed word sequence into account was used
for computing PPL (Viterbi perplexity) in LW-VA. In other words,
all possible latent word assignments have to be considered to
compute a strict perplexity of the observed word sequence us-
ing LWLMs. In Valid and Test A, LW-VA is weaker than MKN5,
HPY5, and RNN. On the other hand, in Test B, LW-VA outper-
formed MKN5 and HPY5. The results suggested that the Viterbi ap-
proximation of LWLM robustly performs in out-of-domain tasks
as well as the n-gram approximation of LWLMs. In Fig. 2, the
combination of HPY5 and LW-VA based on the linear interpola-
tion improved the PPL in all data sets. This suggests that LW-VA,
in which optimal latent word assignment is taken into consid-
eration, has properties different from those in HPY5. In addi-
tion, LW-NA+LW-VA outperformed LW-NA and LW-VA. This re-
sult indicates that both the n-gram approximation and the Viterbi
approximation should be introduced for utilizing the LWLM
for ASR. In each data set, HPY5+LW-NA+LW-VA outperformed
state-of-the-art HPY5+RNN. The best results were achieved by
HPY5+LW-NA+LW-VA+RNN in each test set. This indicates that
both n-gram approximation and Viterbi approximation of LWLM
was complement with RNNLM.

Here are examples of an observed word sequence and an opti-
mal latent word sequence extracted from the validation data set.
• Observed word sequence:

consumers may want to move their telephones a little

closer to the TV set

• Optimal latent word sequence:
investors may want to make their set a lot better than the

entire set

Table 2 Perplexity results on each data set in experiment 1.

Valid Test A Test B

(1). MKN5 148.0 141.2 238.6
(2). HPY5 145.1 139.3 232.7
(3). RNN 134.4 128.9 212.9
(4). LW-NA 138.7 131.7 205.5
(5). LW-VA 148.4 142.9 224.7

(6). HPY5+RNN 111.4 107.9 180.6
(7). HPY5+LW-VA 109.2 107.0 173.1
(8). LW-NA+LW-VA 115.7 112.0 174.3
(9). HPY5+LW-NA 128.6 123.1 200.8
(10). HPY5+LW-NA+LW-VA 107.1 105.4 170.8
(11). HPY5+LW-NA+LW-VA+RNN 101.5 98.9 158.5

Fig. 2 Perplexity results of combining HPY5 and LW-VA in experiment 1.
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As described above, the optimal latent word sequence is related
to the observed word sequence. This suggests that taking into ac-
count a latent word sequence behind a recognition hypothesis is
effective for ASR.

5. Experiment 2: ASR Evaluation

5.1 Setups
The second set of experiments used the Corpus of Spontaneous

Japanese (CSJ) [33]. CSJ was divided into a training data set
(Train), a small validation data set (Valid), and a test data set (Test
A). In addition, for evaluation in out-of-domain environments, a
contact center dialog task (Test B) and a voice mail task (Test C)
were prepared. In order to perform same tokenization between
CSJ and the out-of-domain data sets, we used JTAG based mor-
pheme analyzer [34] to split sentences into words for both CSJ
and the out-of-domain data sets. The vocabulary size of the train-
ing data set was 83,536. For each data set, the number of words
and OOV rate are detailed in Table 3.

For speech recognition evaluation, an acoustic model (AM)
based on hidden Markov models with deep neural networks
(DNN-HMM) was prepared [35]. The DNN-HMM had 8 hidden
layers with 2048 nodes. The speech recognizer was a weighted
finite state transducer (WFST) decoder [36], [37].

In this evaluation, the following LMs were prepared.
• MKN3: Word-based 3-gram LM with modified Kneser-Ney

smoothing constructed from training data set [4].
• HPY3: Word-based 3-gram HPYLM constructed from the

training data set [5]. For the training, 200 iterations were
used for burn-in, and collected 10 samples.

• RNN: Class-based RNNLM with 500 hidden nodes and 500
classes constructed from the training data set [10].

• LW-NA: Word-based 3-gram HPYLM constructed from data
generated on the basis of 3-gram LWLM (LW) constructed
from the training data set [20]. For training LW, 500 it-
erations were used for burn-in, and 10 samples were col-
lected. The generated data size was one billion words which
was determined in consideration of our previous work [20].
We pruned n-gram entries as to be comparable computation
complexity to HPY3 using entropy based pruning [32].

• LW-VA: Viterbi approximation of LW. To calculate the Viterbi
probability, 100 samples of latent words assignments were
obtained using Gibbs sampling.

For two-pass decoding process using LW-VA or RNN, 1000-best
hypotheses were generated in the first pass. Several parameters
such as hyper parameters, the mixture weight and LM score fac-
tors were optimized for the validation data set.

5.2 Results
Table 4 shows the PPL results for each condition. In lines

Table 3 Data sets in experiment 2.

Domain Number of words OOV rate (%)

Train Lecture 7,317,392 -
Valid Lecture 28,046 0.72
Test A Lecture 27,907 0.51
Test B Contact center 24,665 3.66
Test C Voice mail 21,044 4.41

(1)–(5), each LM was evaluated. In lines (6)–(9), mixed LMs
were evaluated. In addition, combinations of HPY3 and LW-VA
(HPY3+LW-VA) were examined in terms of the PPL. The PPL re-
sults in which the mixture weight was varied are shown in Fig. 3.
The PPL result is the same as that obtained by HPY3 when the
mixture weight is set to 1.0 while the PPL result is the same as
that obtained by LW-VA when the mixture weight is set to 0.0.

In Table 4, LW-VAwas relatively not so good compared with the
other condition in in-domain tasks. On the other hand, LW-NA and
LW-VA were superior to MKN3, HPY3 and RNN in out-of-domain
tasks. This shows that both the n-gram approximation and the
Viterbi approximation of LWLM robustly handle speech domains
different from that of the training data set. Moreover, in Test C,
LW-VA outperformed LW-NA in spite of using the Viterbi proba-
bility. Figure 3 shows that the combination of HPY3 and LW-VA
based on the linear interpolation can improve the PPL in all data
sets.

In particular, the improvements in out-of-domain tasks were
remarkable. The best PPL results were achieved by HPY3+RNN in
in-domain tasks and HPY3+LW-NA+LW-VA in out-of-domain tasks.
This indicates that LWLM based ASR approach is effective for
out-of-domain tasks while RNNLM is powerful modeling in in-
domain tasks.

Next, Table 5 shows word error rate (WER) results for the val-
idation data set and each of the test sets. In the first pass, four
n-gram LMs were examined. In the second pass, RNN and LW-VA
were mixed with the first pass by n-best rescoring. Note that LM
in the first pass was not utilized for the n-best rescoring in line (4).

Line (1) where MKN3 was employed were our baseline re-
sults. WER results in in-domain data sets (CSJ) were relatively
lower than the state-of-the-art ASR systems for the CSJ. The re-

Table 4 Perplexity results on each data set in experiment 2.

Setup Valid Test A Test B Test C
(In-domain) (Out-of-domain)

(1). MKN3 81.38 69.36 167.61 189.93
(2). HPY3 79.32 67.50 158.13 175.63
(3). RNN 69.49 60.78 145.05 158.57
(4). LW-NA 79.64 66.93 141.34 147.87
(5). LW-VA 86.84 74.50 142.49 133.97
(6). HPY3+RNN 64.01 55.84 122.52 142.62
(7). HPY3+LW-NA 72.86 62.05 134.65 141.23
(8). HPY3+LW-VA 66.95 57.78 106.73 102.34
(9). HPY3+LW-NA+LW-VA 65.72 56.05 102.21 100.36

Fig. 3 Perplexity results of combining HPY3 and LW-VA in experiment 2.

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Table 5 Word error rate [%] results on each data sets in experiment 2.

1-pass 2-pass Valid Test A Test B Test C
(WFST based decoding) (1000-best rescoring) (In-domain) (Out-of-domain)

(1). MKN3 - 19.98 24.79 38.67 32.00

(2). HPY3 - 19.74 24.67 38.29 31.69
(3). HPY3 +RNN 18.53 23.45 37.45 30.89
(4). HPY3 LW-VA 22.46 27.55 41.03 33.45
(5). HPY3 +LW-VA 19.23 23.69 37.04 30.44

(6). LW-NA - 19.61 24.54 36.93 30.42
(7). LW-NA +LW-VA 19.14 23.82 36.28 29.73

(8). HPY3+LW-NA - 18.65 23.58 35.99 28.74
(9). HPY3+LW-NA +RNN 17.85 22.68 35.36 28.06
(10). HPY3+LW-NA +LW-VA 18.45 22.84 35.36 28.15
(11). HPY3+LW-NA +LW-VA+RNN 17.75 22.52 35.26 28.00

sults were caused by degradation of tokenizing sentences com-
pared with default ones in CSJ. In fact, we had to conduct
re-tokenization of sentences to fairly evaluate WERs of out-of-
domain data sets using LMs trained from the CSJ. In addition,
WER results in out-of-domain data sets were relatively higher
than those in in-domain data sets. This indicates that the contact
center task and the voice mail task were much different from the
CSJ. Our evaluation aims to clarify that the domain mismatch can
be mitigated by introducing LWLMs. Therefore, we did not apply
any adaptation methods to the LMs for improving the baseline of
the out-of-domain data sets.

In lines (2)–(5), HPY3 was employed in the first pass. Line (4)
where HPY3 was used to generate ASR hypotheses and LW-VA
was only used as the LM score in the second pass, show the ASR
performance was substantially degraded in all data sets compared
to line (2) although their PPL performance was comparable. This
suggested that the ASR performance of LW-VA was hardly re-
lated to its PPL performance. Actually, for improving ASR per-
formance, it is important to increase a score difference between
a correct word sequence and a misrecognized word sequence.
Therefore, we can conclude that the Viterbi probability of the cor-
rect word sequence was comparable to that of the misrecognized
word sequence.

On the other hand, in line (5), combining HPY3 and LW-VA pro-
vided a higher performance than using them singly. The WER
difference between HPY3 and HPY3+LW-VA in each test set was
statistically significant (p < 0.01). It seems that taking ac-
count of the latent word assignment of the recognition hypoth-
esis yields characteristics different from only using HPY3. In out-
of-domain tasks, HPY3+LW-VA outperformed that of HPY3+RNN
while HPY3+RNN was superior to HPY3+LW-VA. These results ver-
ify that the Viterbi approximation of LWLM can robustly perform
in out-of-domain data sets compared with RNNLM.

In lines (6)–(7), LW-NA was used in the first pass. The WER
results show combining LW-VA and LW-NA improved ASR per-
formance compared with using them singly. In terms of WER,
statistically significant performance improvements (p < 0.05)
were achieved by LW-NA+LW-VA compared to LW-NA in Test A.
This performance might be attributed to the efficiency of the pro-
posed Viterbi approximation that directly takes account of the
latent words. It indicates that the Viterbi approximation pos-
sesses properties different from those of the n-gram approxima-
tion. This confirms that both implementations should be simulta-

neously used to achieve high ASR performance.
In lines (8)–(11), HPY3+LW-NA was used in the first pass.

The WER results show HPY3+LW-NA clearly outperformed MKN3
and HPY3 in all data sets. The best LWLM-based performance
was achieved when HPY3+LW-NA was used in the first pass and
LW-VA+RNN was used in the second pass. Actually, RNNLM is
known to be good at capturing long-range context information
while the Viterbi approximation of LWLM is suitable for tak-
ing into account the validity of a latent word sequence behind a
recognition hypothesis. The results verify that the combination of
these two properties is effective for improving ASR performance
of both in-domain tasks and out-of-domain tasks.

6. Conclusions

In this paper, the Viterbi approximation of LWLMs was pro-
posed. The Viterbi approximation is implemented as a two-pass
process in which several recognition hypotheses based on stan-
dard decoding using a smoothed n-gram LM are initially created.
These hypotheses are then rescored using the joint probability
between the recognition hypothesis and the optimal latent word
assignment. The optimal latent word assignment is determined
using Gibbs sampling which runs more rapidly than the Viterbi
algorithm. Experiments showed that the Viterbi approximation
was effective when it was combined with the first pass results.
Moreover, the combination of the n-gram approximation method
and Viterbi approximation method improved ASR performance.
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