
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

TP-PARSEC: A Task Parallel PARSEC Benchmark Suite

An Huynh1,a) Christian Helm1,b) Shintaro Iwasaki1,c) Wataru Endo1,d)

Byambajav Namsraijav1,e) Kenjiro Taura1,f)

Received: April 2, 2018, Accepted: August 24, 2018

Abstract: The original PARSEC benchmark suite consists of a diverse and representative set of benchmark applica-
tions which are useful in evaluating shared-memory multicore architectures. However, it supports only three program-
ming models: Pthreads (SPMD), OpenMP (parallel for), TBB (parallel for, pipeline), lacking support for emerging and
widespread task parallel programming models. In this work, we present a task-parallelized PARSEC (TP-PARSEC)
in which we have added translations for five different task parallel programming models (Cilk Plus, MassiveThreads,
OpenMP Tasks, Qthreads, TBB). Task parallelism enables a more intuitive description of parallel algorithms compared
with the direct threading SPMD approach, and ensures a better load balance on a large number of processor cores with
the proven work stealing scheduling technique. TP-PARSEC is not only useful for task parallel system developers to
analyze their runtime systems with a wide range of workloads from diverse areas, but also enables them to compare
performance differences between systems. TP-PARSEC is integrated with a task-centric performance analysis and
visualization tool which effectively helps users understand the performance, pinpoint performance bottlenecks, and
especially analyze performance differences between systems.

Keywords: benchmark suite, task parallelism, programming models, performance analysis, scheduling delay

1. Introduction

Multicore processors have been widespread, with increasingly
many cores integrated on a processor chip. These higher core
counts have put pressure on the software layer; more threads
mean more contentions, more synchronizations, more inter-chip
traffic, longer memory accesses, etc.; programmers need to be
more careful in order to keep their parallel programs efficient.
Task parallel programming models are a popular approach in
shared-memory parallel programming. With task parallelism,
programmers do not need to be aware of low-level details in the
systems, e.g., how many threads there are, then manually crafting
and scheduling the program’s workload to the number of threads.
A specialized runtime task scheduler in a task parallel program-
ming model handles those things for users. The users are pre-
sented with a unified interface of task, they just need to focus on
the program’s logics to extract parallelism and denote them as
tasks. Task parallel runtime systems will map these logical tasks
onto available processor cores automatically and dynamically at
runtime. This dynamic scheduling is the basis for hiding latencies
and tolerating noise.

Task parallel programming models are promising to deliver
both programmability and performance to a wider audience.
However, there is still lots of work to do to improve their per-

1 The University of Tokyo, Hongo, Bunkyo, Tokyo 113–8654, Japan
a) huynh@eidos.ic.i.u-tokyo.ac.jp
b) christian@eidos.ic.i.u-tokyo.ac.jp
c) iwasaki@eidos.ic.i.u-tokyo.ac.jp
d) wendo@eidos.ic.i.u-tokyo.ac.jp
e) byambajav@eidos.ic.i.u-tokyo.ac.jp
f) tau@eidos.ic.i.u-tokyo.ac.jp

formance. They need good benchmarks in order to be developed
in proper directions. A popular benchmark for task parallelism
is the Barcelona OpenMP Tasks Suite (BOTS) [1], but it includes
only basic divide-and-conquer computations such as fibonacci,
nqueens, merge sort, matrix multiplication. Recursive algorithms
are important, and task parallelism is well-suited to expressing
recursions. However, evaluating task parallel programming mod-
els with mainstream workloads is also important to demonstrate
their applicability in real-world applications.

The Princeton Application Repository for Shared-Memory
Computers (PARSEC) [2] is a popular benchmark suite that con-
tains representative workloads from a wide range of areas such
as image recognition, financial analytics, physics simulation, and
data mining. It has been extensively used in researches of mul-
ticore shared-memory systems. PARSEC is shipped with sup-
port for POSIX Threads (Pthreads), OpenMP, and Intel Threading
Building Blocks (TBB); benchmarks in PARSEC are mainly pro-
grammed with the SPMD (single program multiple data) model
based on Pthreads, parallel for loop models based on OpenMP,
TBB, and pipeline models based on Pthreads, TBB. They lack the
support for task parallel programming models. That is why we
have task-parallelized PARSEC, and presented a new benchmark
suite TP-PARSEC (Task Parallel PARSEC *1) which adds sup-
port for task parallelism based on five task parallel programming
models (Cilk Plus, MassiveThreads, OpenMP Tasks, Qthreads,
TBB). On one hand, TP-PARSEC extends the original PARSEC
with emerging task parallel programming models. On the other
hand, TP-PARSEC brings a new set of state-of-the-art realistic
workloads to system developers for them to evaluate the imple-

*1 https://github.com/massivethreads/tp-parsec

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 1 Programming models of each version of each benchmark. A blank cell indicates the version does
not exist.

App Computation Pthreads model OpenMP model TBB model Task models

blackscholes
for (100 runs)

{ 1 for loop } SPMD omp parallel for tbb::parallel for pfor

bodytrack
for (261 steps)

{ 5 for loops } manual task queue omp parallel for
tbb::pipeline
tbb::parallel for

pipeline tasks
pfor

canneal
for (6000 steps)

{ 1 for loop } SPMD leaf tasks

dedup
for (streaming)

{ pipeline } manual pipeline pipeline tasks

facesim
for (100 steps)

{21 for loops} (SPMD) manual task queue (SPMD) leaf tasks

ferret
for (3500 queries)

{ pipeline } manual pipeline tbb::pipeline pfor

fluidanimate
for (500 steps)

{ 1 for loop } SPMD tbb::task pfor

freqmine 7 for loops omp parallel for pfor

raytrace
for (200 steps)

{ recursive rendering } manual task queue recursive tasks

streamcluster
for (streaming)

{ 9 for loops } SPMD
tbb::parallel for
tbb::task

pfor
(SPMD) leaf tasks

swaptions 1 for loop SPMD tbb::parallel for pfor

mentations of different task parallel programming models.
The performance of a task parallel programming model de-

pends substantially on its runtime task scheduler. Different run-
time systems may expose largely varying performance even when
executing the same program because of their differences in, e.g.,
scheduling policies, load balancing algorithms. For example, in
facesim, MassiveThreads’ speedup is ∼63% better than Cilk Plus;
in canneal, Qthreads performs ∼22% better than TBB does until
24 cores, but from 28 cores Qthreads suddenly degrades, resulting
in ∼42% lower performance than TBB’s. By supporting multiple
models/runtime systems, TP-PARSEC becomes a useful bench-
mark suite that enables system developers to compare their sys-
tem with others, analyze performance differences, and improve
their implementation. TP-PARSEC unifies different primitives of
multiple models at the preprocessed macro level, which conve-
niently simplifies the conversion process to many models.

In order to support users effectively in analyzing these perfor-
mance differences, we have integrated into TP-PARSEC a task-
centric performance tool DAGViz [3], [4] which can contrast per-
formance differences between systems with a novel scheduling
delay analysis and spot responsible places on DAG visualizations.

The rest of the paper is structured as follows: Section 2 will
discuss the background of this work, Section 3 will describe our
proposed TP-PARSEC benchmark suite, Section 4 will evaluate
speedups and demonstrate some performance tunings using our
performance tool, Section 5 is related work, and the conclusion
and future work are in Section 6.

2. Background

2.1 PARSEC
The original PARSEC benchmark suite developed by Prince-

ton University [2] is a large benchmark suite consisting of 13
parallel applications and kernels which are representative work-
loads in various areas: computer vision (bodytrack), animation
physics (facesim, fluidanimate, raytrace), computational finance
(blackscholes, swaptions), chip engineering (canneal), storage
systems (dedup), search engines (ferret), data mining (freqmine,

streamcluster), and media processing (vips, x264). They contain
state-of-the-art algorithms for solving their specific problems in
the fields.

These benchmarks are provided with three parallel imple-
mentations based on three multithreading libraries: Pthreads [5],
OpenMP [6], and TBB [7] (summarized in Table 1). Most of
Pthreads versions are implemented with the SPMD model in
which the data space (e.g., loop iterations) is divided equally
among available threads; whereas, dedup and ferret use manual

pipeline models which are implemented manually upon threads;
facesim and raytrace use manual task queues implemented upon
threads. Besides a Pthreads version, some benchmarks also
have an OpenMP version (blackscholes, bodytrack, freqmine)
or a TBB version (blackscholes, bodytrack, ferret, fluidanimate,
streamcluster, swaptions). OpenMP versions use OpenMP’s
parallel loop model (omp parallel for directive). TBB ver-
sions use either TBB’s parallel loop model (tbb::parallel for),
pipeline model (tbb::pipeline), or its low-level tasking interface
(tbb::task).

2.2 Task Parallel Programming Models
In task parallel programming models, a task is a logical unit

of concurrency which can be created arbitrarily at any point in
the program, and are dynamically scheduled on available proces-
sor cores at runtime by the runtime system’s task scheduler. As
tasks can be created at arbitrary points, typical parallelism pat-
terns such as for loops and recursions can be expressed easily by
tasks. Dynamic and automatic load balancing does not only re-
lieve programmers from manual scheduling burdens, but also is
the key to hiding latencies and runtime noise. Thus, task paral-
lelism is promising to deliver both performance and productivity.

Many task parallel programming models exist. They have dif-
ferent concepts for scheduling and load balancing; and they differ
substantially in their design and implementation. Therefore, it
is important to support multiple models in a benchmark suite in-
tended for task parallelism. Our TP-PARSEC currently supports
five different task parallel programming models: (1) Cilk Plus [8]

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 2 Corresponding task parallel primitives in specific models.

Cilk Plus OpenMP MassiveThreads Qthreads TBB
create task cilk spawn #pragma omp task myth create() qthread fork() tbb::task group::run()
wait tasks cilk sync #pragma omp taskwait myth join() qthread readFF() tbb::task group::wait()

is a language extension of C/C++ with two simple keywords for
expressing task parallelism (cilk spawn, cilk sync); (2) Mas-
siveThreads [9], [10] is a lightweight thread library, and like Cilk
Plus, uses the work-first work stealing strategy for scheduling
tasks; (3) OpenMP [6] is a widely-used framework for shared-
memory parallel programming (task parallelism has been intro-
duced in OpenMP from version 3.0); (4) Qthreads [11], [12] is
also a lightweight thread library, with a locality-aware scheduler;
(5) TBB [7] is a commercial threading library equipped with a
wide range of ready-made parallel patterns and algorithms.

3. TP-PARSEC

TP-PARSEC is based on the core package of PARSEC 3.0 (lat-
est version as of February 2018), excluding input datasets which
can be downloaded separately from the PARSEC website.

3.1 A Unified Task Parallel API
By defining a thin generic macro-based wrapper covering all

five underlying models, we could simplify our conversion. We
just need to write the code once using the generic primitives, then
the program can be preprocessed automatically into supported
underlying systems. The wrapper includes two basic primitives:
create task for creating a task, and wait tasks for synchro-
nizing tasks (of the current scope). These primitives are translated
to the corresponding API of specific models (Table 2) during the
preprocessing stage of the compilation.

In addition, we also introduce the pfor (parallel for) primi-
tive which divides the for loop’s iterations recursively into two
halves and creates two tasks executing them at each recursive
level. pfor uses the above create task and wait tasks prim-
itives to spawn tasks. It also accepts an input grain size value
which indicates at what point the recursive division should stop
and the leaf computation should be executed on the current set of
iterations. This grain size notion is similar to the chunk size op-
tion in the “schedule” clause of OpenMP’s parallel for directive
and the grain size parameter in TBB’s tbb::parallel for template.

3.2 Task-parallelizing PARSEC
In this section, we describe the computation model of each

benchmark, how it is implemented in the original Pthreads,
OpenMP, and TBB versions, and how we translated it into task
versions. We have translated 11 out of 13 benchmarks exclud-
ing vips and x264, which have large code base, because of lim-
ited time. We assume the native input set (the largest one), when
talking about specific numbers of, e.g., elements, loop iterations,
input images. We use N to denote the problem size, and P to de-
note the number of threads. The grain size (work granularity) of
the SPMD model is N/P because the SPMD model divides data
space (N) into P equal parts for P threads to execute. A sum-
mary of programming models used in each benchmark is shown
in Table 1. A summary of the grain size set for each benchmark

Table 3 Work granularity of each version of each benchmark.

App Pthreads OpenMP TBB Task
blackscholes N/P def. def. 10000

bodytrack 4 − 32 1 − 32 def. 16
canneal N/P 100
dedup ø ø

facesim N/P N/P
ferret ø ø 1

fluidanimate N/P N/(P × 8) 1
freqmine def., 1 1
raytrace 32 8

streamcluster N/P N/P 50, N/P
swaptions N/P 1 1

(N/P: coarse-grained like SPMD; def.: default; ø: none)

is shown in Table 3.
3.2.1 Blackscholes

Blackscholes is a workload in computational finance, and it cal-
culates prices of a portfolio with the Black-Scholes partial dif-
ferential equation. This benchmark has a simple programming
model: there is only one flat for loop iterating over ten mil-
lion (107) options (which is repeated 100 times). Because loop
iterations are independent from each other and load-balanced,
blackscholes can easily be loop-parallelized, and it has actually
been loop-parallelized with OpenMP’s parallel for directive in its
OpenMP version and TBB’s parallel for template in its TBB ver-
sion. In the Pthreads version, the loop iterations are divided and
distributed equally among participating threads (SPMD model).
In task versions, we do similarly by simply applying pfor in
place of the parallel for primitives of OpenMP or TBB, and the
loop is hierarchically divided into fine-grained tasks, with grain
size 10,000. How this grain size was chosen is discussed in Sec-
tion 4.
3.2.2 Bodytrack

Bodytrack is a computer vision workload which recognizes a
human body and tracks its movement through a sequence of im-
ages input from observation cameras. At each frame, multiple im-
ages from multiple cameras capture a scene of a person from dif-
ferent angles, and the person moves from frame to frame. Body-

track recognizes poses of the human body in the input images,
marks these poses and returns annotated images.

At a time step (frame), the benchmark processes 4 input im-
ages through three stages: read images in, process images, and
write the processed images out. In the parallel implementations
(Pthreads, OpenMP, TBB), five for loops in the second stage are
parallelized; other than that the program executes sequentially
stage after stage, and frame after frame. The Pthreads version em-
ploys a manual thread pool imlementation (WorkerGroup) which
creates P worker threads and makes them wait on a condition vari-
able until there are jobs available. The worker threads compete
with each other through a mutex lock to acquire the next part to
execute until all iterations are processed. The OpenMP and TBB
versions use their parallel for primitives for all five loops. The
TBB version additionally employs a pipeline model on the pro-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 1 Bodytrack’s general computation flows.

gram’s three stages.
In our first implementation of task versions, we only paral-

lelized the five for loops (with pfor) just like the OpenMP ver-
sion, without any pipeline. However, we then realized, by our per-
formance tool, that read and write stages are considerably long,
and run sequentially in long serial intervals, making other threads
wait wastefully. Therefore, in order to improve the performance
we have changed the parallelization model a little bit by overlap-
ping computation (process stages) and communication (read and
write stages) across three consecutive frames (to retain stage de-
pendencies). Although three stages in a frame are serially depen-
dent, and process stage is exclusive between frames, write stage
of the current frame is independent from process stage of the next
frame, and two of them are independent from read stage of the
next next frame. Hence, it is possible to overlap process stage of
frame t with write stage of frame t − 1 and read stage of frame
t+1. This overlapping could be done easily with task parallelism:

for (i = frames [0 → 259]) {

create_task(Input(i+1));
create_task(Compute(i));
create_task(Output(i-1));
wait_tasks;

}

We have made each stage a separate task and run three tasks
process(t), write(t-1), and read(t+1) in parallel (Fig. 1). By mak-
ing this change we could reduce serial intervals considerably. The
performance improvement is discussed in Section 4.
3.2.3 Canneal

Canneal is a kernel that optimizes the routing cost of a chip
design. It uses a simulated annealing algorithm. During execu-
tion it goes through 6,000 temperature steps. At each temperature
step, 15,000 moves are made and tested. Each move picks a ran-
dom element, exchanges its position, and evaluates whether it is
beneficial for the optimization goal. After all moves at a step
are completed, the global temperature for the simulated anneal-
ing is adjusted. The temperature steps need to be processed one
by one in order to incrementally adjust the global temperature.
Only Pthreads version is available for canneal in PARSEC, no
OpenMP and TBB implementations are provided. Ptheads ver-
sion divides 15,000 moves equally for participating threads. Our
task versions divide these moves into fine-grained tasks, each of
which processes 100 moves. Since an element could potentially
be modified by multiple tasks at the same time, protection is nec-
essary. A library that provides lock-free access is used. It uses
data race recovery instead of avoidance. This is kept the same in
task versions.
3.2.4 Dedup

Dedup is a kernel that compresses an input data stream.
Pthreads version uses a manual pipeline model implemented on

top of threads in which each input data chunk is processed se-
quentially through five stages: fragment → refine → deduplica-

tion→ compress→ reorder, each stage is associated with a pool
of threads. Different numbers of threads are deployed for each
stage: 1 thread for fragment, n threads for refine, n threads for
deduplication, n threads for compress, and 1 thread for reorder (1
→ n→ n→ n→ 1) (n is the number of threads specified via the
management script’s “-n” option). Fragment stages reading data
in and reorder stages writing data out are serially dependent. In
task versions, we make each chunk with its middle three stages as
a task; the root task executes fragment stages serially: reads data
in and creates a task for each chunk to execute refine, deduplica-

tion, compress of that chunk; after every 27 chunks, the root task
synchronizes these 27 child tasks, then creates a task for execut-
ing serially 27 reorder stages of these 27 chunks which have just
been processed. This reorder child task is run in parallel with the
next 27 compute child tasks. The number 27 was chosen empiri-
cally based on our experiments, it provides a good enough gran-
ularity for reorder tasks to be run in parallel with other compute
tasks.
3.2.5 Facesim

Facesim computes a realistic animation of a human face by
simulating a time sequence of muscle activation. The important
data structure is a statically partitioned mesh. Multiple processes
are applied to this mesh in every frame that is simulated: (1) ap-
plying Newton-Raphson method to solve a nonlinear system of
equations, (2) iterating over all tetrahedra of the mesh to calcu-
late the force contribution of each node (3) using the conjugate
gradient algorithm to solve a linear equation system.

Pthreads version parallelized in total 21 loops in the program
code; in the native input run, with 100 frames (time steps), these
loops were invoked in total 61,601 times. These loops gener-
ally apply specific kinds of operations on the whole mesh data
structure, e.g., clearing array, copying array, array addition. The
mesh has been organized at the program’s beginning so that it is
readily broken into a fixed number of sub-meshes equal to the
number of threads. That is why facesim can only run with a
power-of-2 number of threads. Pthreads version uses a manu-
ally implemented task queue (TaskQ) in order to schedule work
(tasks) onto threads. When one of the processing operations is to
be applied on the mesh, tasks are created to operate on every sub-
mesh. The number of tasks equals the number of sub-meshes
and the number of threads. TaskQ’s scheduler simply assigns
newly created tasks to threads in a round-robin fashion which
is less efficient than the work stealing method usually deployed
in a genuine task parallel programming model. TaskQ provides
two main functions: TaskQ.Add Task() for adding a task to
the queue, and TaskQ.Wait For Completion() for synchro-
nizing created tasks. We have translated facesim to task paral-
lelism simply by replacing the calls to TaskQ.Add Task() with
create task, and the calls to TaskQ.Wait For Completion()
with wait tasks. Tasks of the program are then scheduled by a
genuine work stealing scheduler of the supported models instead
of TaskQ.
3.2.6 Ferret

Ferret is a content-based similarity search tool of feature-rich

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

data such as audios, videos, images; in this benchmark it is con-
figured as an image similarity search workload. It inputs 3,500
query images for each of which it finds (up to 50) similar images
from an image database containing vectorized data of 59,695 im-
ages. Ferret is provided with two versions Pthreads and TBB. In
these versions, the benchmark is organized as a pipeline model
handling a series of 3,500 input images. The pipeline consists of
6 stages: load → segment → extract → index → rank → out-

put. Each image goes through these stages one by one. There is
a difference in the number of threads used in Pthreads and TBB
versions. Pthreads version, like in dedup, deploys different num-
bers of threads for stages: 1 for the first and last stages, n for other
stages in the middle of the pipeline (1→ n→ n→ n→ n→ 1);
whereas TBB version deploys exactly n threads which are shared
among all stages during the program execution.

Task versions also deploy exact n threads. In task versions,
we remove the pipeline and exploit the data parallelism among a
specific number (100) of input images. For every 100 input im-
ages, we apply pfor to recursively create tasks processing them.
In order to make images able to be processed in parallel, it is
necessary to resolve the exclusiveness of the output stage which
modifies the global data structure. We have detached it out of the
tasks processing images; we do output stages of all processed im-
ages serially at the end of the program. These outputs just write
a small amount of text to file, so they actually run quickly and
do not leave any noticeably long serial interval at the end of the
execution.
3.2.7 Fluidanimate

Fluidanimate is a stencil computation which operates on a 3-
dimensional grid (mesh) through 500 steps; the grid at each step is
computed based on its state at the previous step. Pthreads version
divides the grid into a number of identical blocks, which is equal
to the number of threads, by splitting uniformly along x-axis and
z-axis (keeping y dimension the same). TBB version further di-
vides a block into 8 sub-blocks by splitting further along the z-
axis, and uses tbb::task interface to create tasks each of which
works on one sub-block. In task versions, we still divide the grid
into identical blocks along x-axis and z-axis like in Pthreads ver-
sion, but these blocks are now more fine-grained (grain size 1).
One task works on one block. We use pfor to create these tasks
hierarchically rather than using a flat loop creating all tasks at
once. The benefit of this hierarchical division is that it enables
closer tasks to be more likely executed by the same thread, hence
exploiting better locality.
3.2.8 Freqmine

Freqmine is a program that detects frequent patterns in a trans-
action database and uses association rule mining which is very
common in data mining applications. Freqmine uses an array-
based version of the Frequent Pattern-Growth method. In the
original PARSEC, only OpenMP version is provided, containing
7 parallel for loops. The algorithm in general consists of three
steps. The first one is to build the FP-tree header. In this step,
the database is scanned and a table with frequency information
is built. It is implemented with 1 parallel loop. The second step
performs another scan of the database; it consists of 4 parallel
loops. The third step is the actual data mining. Multiple FP-trees

are constructed from the existing tree using 2 parallel loops. In
task versions, we just replace OpenMP’s parallel for directives
with pfor primitives. We set the grain size as 1 for all 7 pfor(s),
though in OpenMP version some loops were set with 1 and some
were not set (the default is OpenMP implementation-dependent,
and usually the coarse-grained one: N/P).
3.2.9 Raytrace

Raytrace is a well-known rendering algorithm, it synthesizes
an image by simulating the camera, light sources, objects, and
tracing all light rays from every pixel in the image to determine if
it can reach back to any of the light sources. In this benchmark,
200 continuous frames are rendered, and each has a resolution
of 1,920 × 1,080 pixels. Pthreads version exploits a manual task
queue just like in facesim, but it is another task queue implemen-
tation (MultiThreadedTaskQueue). Each task handles an area of
32 × 32 pixels (or smaller) of the full image, so there are in total
around 60 × 34 = 2,040 tasks created. Although the task queue
implementation is quite complicated, participating threads basi-
cally compete with each other through a mutex lock to acquire
each avaialable task to execute. The threads acquire lowest tasks
to execute first, then proceed to higher tasks along the x-axis, then
the y-axis.

In task versions, we create more finer-grained tasks. Each task
now handles a smaller area of 8 × 8 pixels, hence there are 16
times as many as tasks created (around 240×135 = 32,400 tasks)
than there are in Pthreads version. These leaf tasks are not cre-
ated all at once, but recursively. At each recursive stage, the 2-
dimensional frame (1,920 × 1,080) is split along the longer di-
mension until it reaches the size of 8 × 8 pixels. Similarly to
fluidanimate, it is more likely to achieve a better locality with this
recursive division.

In this benchmark, 200 frames were identical, but in real ap-
plications these frames can be continuous pictures of the objects,
camera, or light sources that move. Therefore, these frames are
serially dependent, and need to be processed sequentially, not in
parallel. That is why the data parallelism between frames are not
exploited in the benchmark.
3.2.10 Streamcluster

Streamcluster is a kernel solving the clustering problem com-
monly seen in data mining workloads. In this benchmark, there
are in total 106 input points which are divided into 5 blocks, each
of which contains 2 × 105 points and is input to the program as
simulated streaming data. A small subset of points are selected as
local centers for each block and these subsets are cumulated (up
to 500 points) after each block is processed. After finishing all
blocks, these selected local centers are clustered again in order to
select a predefined smaller number of final centers (10–20 points).
There are 9 parallel for loops which operate on the array of 2×105

points of a block. Pthreads version applies SPMD model, di-
viding loop iterations into equal parts for available threads (each
has N/P = 2 × 105 ÷ 36 ≈ 5,556 iterations). TBB version ap-
plies tbb::parallel for pattern to 4 loops (with grain size N/P),
and applies tbb::task interface to the other 5 loops. It creates
exactly P tbb::task(s) for P threads (so grain size N/P). There-
fore, TBB version basically uses the SPMD model. In task ver-
sions, we follow TBB version’s model, and apply pfor in place

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

of tbb::parallel for, create task in place of tbb::task. How-
ever, we set the grain size for pfor(s) at a low value 50, in order
to make fine-grained tasks.
3.2.11 Swaptions

Swaptions computes the prices of a portfolio of swaptions us-
ing Monte Carlo (MC) simulation. Its parallelization model is as
simple as that of blackscholes; there is only one parallel for loop.
Swaptions is provided with Pthreads and TBB versions. Pthreads
version applies SPMD model, dividing the loop into equal parts
for available threads (grain size N/P). TBB version applies its
parallel for pattern with grain size 1. In task versions, we also
apply pfor with grain size 1. One note is that swaptions code is
currently not auto-vectorized at compile time by both gcc and icc,
whereas blackscholes code is auto-vectorized by icc (not gcc).
There are three reasons why icc can auto-vectorize blackscholes

but swaptions: (1) swaptions’ compute functions are scattered in
multiple source files, (2) the for loop in swaptions has multiple
exits, (3) swaptions’ data arrays are not aligned yet.

3.3 Performance Analysis Tool
TP-PARSEC is integrated with a task-centric performance

analysis and visualization tool [3], [4]. The tool has two parts: a
tracer and a visualizer. The tracer (DAG Recorder) captures a di-
rected acyclic graph (DAG) of tasks from an execution (of a task
version), and the visualizer (DAGViz) visualizes the trace to help
users understand performance and pinpoint bottlenecks. DAGViz
enables users to explore the trace through multiple kinds of in-
teractive visualizations such as a network graph (DAG) which
represents the logical task structure of the program, timelines of
threads, or a parallelism profile which is a time series of runnable
and running parallelism during the execution. Timelines and par-
allelism profile visualizations we show in this paper are provided
by DAGViz [4]. Parallelism profile allows users to get an overall
understanding of the performance, then DAG and timelines visu-
alizations enable users to zoom into any spot of the whole large
DAG of the execution and inspect in detail any task that caused
the problem.

Moreover, the tool provides a novel statistical metric which
helps users quickly acquire a first impression on how well the
program scales: the breakdown of the cumulative execution time
into four categories of work, delay, no-work-sched, and no-work-

app (cumul. exe. time = elapsed time× threads = work+ delay+
no-work-sched + no-work-app) which is the scheduling delay
analysis described in our previous work [3]. Work is the total
time that all threads spend executing the program code. Delay is
the time during which a thread is not executing the program code
and there is at least a ready task in the system that is waiting to
be executed, a delay is caused by the runtime scheduler for not
matching up the free thread and the ready task fast enough. No-
work (= no-work-sched + no-work-app) is also the time during
which a thread is not executing the program code, but there is
no ready task in the system at that time to feed that thread. No-
work is actually not caused solely by the program’s algorithm for
not creating enough parallelism, but also caused by the scheduler
for, e.g., not resuming a critical parent task (that can spawn more
parallelism for idle threads) fast enough. So no-work-sched is

that part of no-work caused by the scheduler, and no-work-app is
the other part caused by the lack of parallelism in the program’s
algorithm. Delay can be considered as a measurement of schedul-
ing overhead (e.g., task creation, synchronization, work stealing).
No-work-app can be considered as a measurement for the impact
of serial regions remaining in the parallel program’s code.

3.4 Improved Central Management Script
The original PARSEC is equipped with a handy central man-

agement script (parsec/bin/parsecmgmt) which allows users to
do all things through it: from compiling, cleaning, to running
the benchmarks with different configurations, different inputs,
different numbers of threads. We have extended the script to
parsecmgmt2 which does not only maintain all things that par-

secmgmt can do, but also supports new configurations for the
newly added task parallel versions. The names of new configura-
tions follow the existing PARSEC naming pattern: {compiler}-
{type}-{extension}; compiler can be “gcc” or “icc”, same as
before; type is not only “pthreads”, “openmp”, “tbb”, same
as before, but also “task cilkplus”, “task mth”, “task omp”,
“task qth”, “task tbb” which are task versions based on Cilk
Plus, OpenMP, MassiveThreads, Qthreads, and TBB respec-
tively; extension can be none or “hooks”, same as before, and
now additionally “dr” which indicates to compile and run with
DAG Recorder tracer. For example, re-compiling and run-
ning two benchmarks blackscholes and bodytrack with icc, Mas-
siveThreads, DAG Recorder, native input, and 36 threads can now
be done with only one command below:

tp-parsec/bin $./parsecmgmt2 -a uninstall build

run -p blackscholes bodytrack -c icc-task_mth-

dr -i native -n 36

4. Evaluation

We evaluated TP-PARSEC on a 36-core dual-socket Haswell
system equipped with two Intel Xeon E5-2699 v3 2.30 GHz. It
has 768 GB of memory and runs Ubuntu 16.04.2 with kernel ver-
sion 4.40-64. We use Intel C++ Compiler (icc) 17.0.1, Mas-
siveThreads 0.97, Qthreads 1.11, TBB (2017 Update 1) in this
evaluation. We measure times of the region of interest (ROI) in
each benchmark, excluding the uninteresting initialization and fi-
nalization at the beginning and the end of each one. These regions
of interest are the actual parallelized parts of each benchmark, and
predefined in PARSEC. All benchmarks are executed using the
largest input set (native). The speedup results of 11 benchmarks
with all original versions and task versions are shown in Fig. 2.
In general, the task versions perform equivalently and sometimes
better than the original versions.

We have adjusted actual threads used in dedup and ferret. With
the specified number of threads n, dedup and ferret actually de-
ploy n threads for each of their pipeline stages (except first and
last ones). In their speedup figures (Fig. 2 (d), Fig. 2 (f)), we have
adjusted their thread counts to the actual number of threads cre-
ated, i.e., 3 × n + 2 for dedup, and 4 × n + 2 for ferret.

4.1 Set Grain Size with Delay Metric (Blackscholes)
One common pitfall of task parallelism is that too many fine-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 2 Speedups of all versions of all benchmarks in TP-PARSEC.

Fig. 3 Blackscholes: task omp’s breakdowns and speedups with multiple grain sizes.

grained tasks created incur a very large overhead. When first
translating blackscholes, we were not very aware of the number
of iterations of the loop and workload of each iteration, and we
set the grain size of pfor at a random value 40. It turned out 40
was too tiny for blackscholes, causing the benchmark to perform

poorly. At first we had no clue to explain this bad speedup, then
the cumulative execution time breakdown produced by the per-
formance tool (Fig. 3 (a)) helped reveal the reason clearly: a huge
delay incurred in task versions (we show the results of task omp
because it has the largest delay, and other systems incur around a

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 4 Bodytrack: ver. 2 improves substantially over ver. 1 by overlapping I/O tasks with computation
tasks. Gray areas represent unexpanded computation nodes whose start time and end time are
known at this level of detail, but workers on which their sub-graphs of tasks were executed are not.

half of it). We right away noticed the grain size and tried to ad-
just it to a better value. We first changed it to the same value as in
Pthreads version’s SPMD model: 277,778 (=

⌈
107

36

⌉
) which was

iterations divided by the number of threads (N/P). Figure 3 (c)
shows the breakdown with this grain size; delay was reduced
considerably; however, no-work-app has also increased. This in-
crease of no-work-app is the result of coarse-grained tasks, so
we decreased the grain size. After trying with many values, we
got the best results at around 10,000, whose breakdown is shown
in Fig. 3 (b): minimal delay, minimal no-work-app. Figure 3 (d)
shows the speedups of original versions together with task omp
version at three different grain sizes. This is a demonstration of
the severe affect that task granularity may have on the perfor-
mance, and our performance tool, specifically the scheduling de-
lay metrics, helps effectively in signaling it.

4.2 Overlap I/O and Computation with Tasks (Bodytrack)
We first implemented task versions similarly to OpenMP ver-

sion: no parallelism other than the five parallel loops (ver. 1).
The speedup results were similar to that of the original ver-
sions, at around 8x (Fig. 4 (c)); the execution time breakdown
had large no-work-app (Fig. 4 (a)) due to long serial execution
intervals which can be observed in the timelines and parallelism
profile visualizations in Fig. 4 (d). Realizing the critical impact
of serial read and write stages, we have tried to overlap them
with the computation (process stages), as described in the pre-
vious section (ver. 2). After overlapping, the result is fantastic:
speedups increase 2.5 times up to around 20x (Fig. 2 (b)); no-
work-app reduces considerably (Fig. 4 (b)); the overlapped read

and write stages can even be seen visibly in the timelines visual-
ization (Fig. 4 (e)).

Dedup suffers from the same problem with large no-work-app

Fig. 5 Dedup has a long serial interval at the end of the execution due to file
I/O (flushing memory buffer to file).

(Fig. 5 (a)). It does not scale above 5.5x even when executed on
full 36 cores (Fig. 2 (d)). Its timelines visualization in Fig. 5 (b)
shows a very long serial interval at the end of its execution. An
inspection into the code region according to the task of that se-
rial interval has revealed the responsible instruction: file-closing
function close(). When a file descriptor is closed, its buffer in
memory actually gets flushed to disk. Dedup modified a very
large buffer, so the flush takes a long time. In this situation it can
be said that dedup’s performance is bound by the disk’s band-
width.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

4.3 Genuine Task Parallel Schedulers Perform Better than
Manual Task Queues (Bodytrack, Facesim, Raytrace)

Pthreads versions of bodytrack, facesim, and raytrace bun-
dle manually implemented task queues which basically pool a
number of worker threads and assign any computation work dis-
patched from the main thread to them. These manual task queues
simply (1) make worker threads compete via a mutex lock to get
an available task or (2) assign tasks directly to worker threads
based on a simple round-robin manner. In task versions, we
have replaced these manual task queues with specialized and op-
timized task schedulers in the proper task parallel programming
models. Therefore, these three benchmarks are direct show-
cases for demonstrating the efficiency of task parallel program-
ming models over manual self-implementations. In bodytrack,
Qthreads and MassiveThreads-based task versions perform better
than the original versions (Fig. 4 (c)); in facesim, all task versions
perform better than the original version (Fig. 2 (e)); in raytrace,
all task versions except task omp perform better than the origi-
nal version (Fig. 2 (i)). A genuine task parallel runtime system
usually uses the work stealing technique to balance load among
workers. Each worker stores ready tasks in a double-ended queue
(deque) of which the local worker pushes and pops from one end,
and remote workers try stealing from the other end, hence reduc-
ing thread contentions that interfere with computation progress.
Recursive task creations in task versions (e.g., pfor) may also
have contributed partly to the efficiency thanks to its possibly bet-
ter locality.

4.4 Characterize Performance Differences with Scheduling
Delay Analysis

In some benchmarks, task versions perform similarly with each
other, speedup differences are just around 10–20% (e.g., dedup,
bodytrack, fluidanimate). However, in some other benchmarks,
task versions perform very differently, e.g., 42% difference in ray-

trace, 56% difference in blackscholes, or up to 63% difference in
facesim. Especially in canneal, Qthreads performs (∼22%) better
than TBB does until 24 cores, but from 28 cores, its speedup sud-
denly degrades, falling to ∼42% slower than TBB’s (Fig. 2). Fig-
ure 6 contrasts the differences of MassiveThreads vs. Cilk Plus in

Fig. 6 Performance variation between task versions in facesim and canneal.

facesim, and TBB vs. Qthreads in canneal. Cilk Plus incurs larger
no-work-sched and no-work-app compared with MassiveThreads
most likely because of its slower work stealing speed which was
also pointed out in SparseLU benchmark in Ref. [3]. Qthreads in-
curs much larger work (work stretch) compared with TBB, which
indicates a worsen locality of the computation execution. It is
possibly because the locality-aware Qthreads scheduler has mis-
interpreted something when executing on larger core counts in
this canneal benchmark. A more detailed discussion on differ-
ences between runtime implementations is out of the scope of
this paper, but planned in our future work.

5. Related Work

Barcelona OpenMP Tasks Suite (BOTS) [1] is a popular task
parallel benchmark suite which consists of 10 applications. Most
of the applications are simple divide-and-conquer algorithms par-
allelized only by OpenMP Tasks. They are not representative of
realistic applications and do not support other task parallel pro-
gramming models.

PARSECSs [13] ports 10 PARSEC benchmarks to the OmpSs
model and its runtime system (based on OpenMP 4.0 Tasks).
PARSECSs achieved equivalent scalability improvements by us-
ing OpenMP’s tasks and dataflow model. The implementation is
limited to only one runtime system, and the support for original
versions has been removed from the suite (to attain a reduction
in lines of code) which makes it less than a complete benchmark
suite. TP-PARSEC is not only a showcase to demonstrate the ad-
vantages of task parallelism over SPMD, manual pipelines, and
manual task queues; but also is intended as a full-fledged bench-
mark suite for general usage.

Lee et al. [14] have ported three of the PARSEC applications
to a pipelined task parallel model. They use a novel extension of
the Cilk language to express pipeline parallelism.

Various papers characterize PARSEC benchmarks and intro-
duce optimizations over them. Majo et al. [15] introduced op-
timizations regarding NUMA and prefetching for three of the
PARSEC benchmarks. Southern et al. [16] did a scalability anal-
ysis of PARSEC benchmarks based on input sizes. Barrow-
Williams et al. [17] examined data sharing patterns. Bhadauria
et al. [18] evaluated PARSEC benchmarks using hardware per-
formance counters. A vectorized version of PARSEC is intro-
duced and characterized using hardware performance counters by
Cebrian et al. [19]. The PARSEC paper [2] includes a hardware-
centric analysis of the benchmarks such as working set size, cache
miss rates, shared data, cache traffic, and off-chip traffic, but it
is based on simulations, not real machines. We analyzed TP-
PARSEC on a large multicore machine with a built-in DAG-based
performance tool which puts the focus on tasks and performance
differences between systems.

6. Conclusion

We have presented TP-PARSEC–a benchmark suite extended
from PARSEC with support for multiple task parallel program-
ming models and integrated with a powerful task-centric perfor-
mance analysis and visualization tool. TP-PARSEC maintains all
good aspects of PARSEC: a large set of emerging workloads in di-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

verse areas, state-of-the-art techniques and algorithms in those ar-
eas, good support for research with a central management script.
TP-PARSEC is intended to be a useful benchmark suite for task
parallel programming model developers to study task parallel ap-
plications and analyze performance differences between runtime
task schedulers. TP-PARSEC is also useful for system architects
to study their systems with widespread task parallel programming
models together with emerging application workloads.

Acknowledgments This work was in part supported by
Grant-in-Aid for Scientific Research (A) 16H01715.

References

[1] Duran González, A., Teruel, X., Ferrer, R., Martorell Bofill, X. and
Ayguadé Parra, E.: Barcelona openmp tasks suite: A set of bench-
marks targeting the exploitation of task parallelism in openmp, 38th
International Conference on Parallel Processing, pp.124–131 (2009).

[2] Bienia, C., Kumar, S., Singh, J.P. and Li, K.: The PARSEC bench-
mark suite: characterization and architectural implications, Proc. 17th
International Conference on Parallel Architectures and Compilation
Techniques, pp.72–81, ACM (2008).

[3] Huynh, A. and Taura, K.: Delay Spotter: A Tool for Spotting
Scheduler-Caused Delays in Task Parallel Runtime Systems, 2017
IEEE International Conference on Cluster Computing (CLUSTER),
pp.114–125 (online), DOI: 10.1109/CLUSTER.2017.82 (2017).

[4] Huynh, A., Thain, D., Pericàs, M. and Taura, K.: DAGViz: A DAG
Visualization Tool for Analyzing Task-parallel Program Traces, Proc.
2nd Workshop on Visual Performance Analysis, VPA ’15, pp.3:1–3:8,
ACM (online), DOI: 10.1145/2835238.2835241 (2015).

[5] Nichols, B., Buttlar, D. and Farrell, J.: Pthreads programming: A
POSIX standard for better multiprocessing, O’Reilly Media, Inc.
(1996).

[6] Dagum, L. and Menon, R.: OpenMP: An industry standard API for
shared-memory programming, IEEE Computational Science and En-
gineering, Vol.5, No.1, pp.46–55 (1998).

[7] Intel: Intel Threading Building Blocks (TBB), Intel Corp. (online),
available from 〈https://www.threadingbuildingblocks.org〉 (accessed
2018-02-09).

[8] Intel: Intel Cilk Plus, Intel Corp. (online), available from
〈https://www.cilkplus.org/〉 (accessed 2018-02-09).

[9] Nakashima, J. and Taura, K.: MassiveThreads: A thread library
for high productivity languages, Concurrent Objects and Beyond,
Springer, pp.222–238 (2014).

[10] MassiveThreads: Light weight thread library, University of Tokyo (on-
line), available from 〈https://github.com/massivethreads/massivethre-
ads〉 (accessed 2018-02-09).

[11] Wheeler, K.B., Murphy, R.C. and Thain, D.: Qthreads: An API for
programming with millions of lightweight threads, 2008 IEEE Inter-
national Symposium on Parallel and Distributed Processing, pp.1–8
(online), DOI: 10.1109/IPDPS.2008.4536359 (2008).

[12] Qthreads: Lightweight locality-aware user-level threading runtime,
Sandia National Laboratories (online), available from 〈https://github.
com/Qthreads/qthreads〉 (accessed 2018-02-09).

[13] Chasapis, D., Casas, M., Moretó, M., Vidal, R., Ayguadé, E., Labarta,
J. and Valero, M.: PARSECSs: Evaluating the impact of task paral-
lelism in the PARSEC benchmark suite, ACM Trans. Architecture and
Code Optimization (TACO), Vol.12, No.4, p.41 (2016).

[14] Lee, I.-T.A., Leiserson, C.E., Schardl, T.B., Zhang, Z. and Sukha,
J.: On-the-Fly Pipeline Parallelism, ACM Trans. Parallel Computing,
Vol.2, No.3, pp.17:1–17:42 (2015).

[15] Majo, Z. and Gross, T.R.: (Mis) understanding the NUMA memory
system performance of multithreaded workloads, 2013 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), pp.11–22,
IEEE (2013).

[16] Southern, G. and Renau, J.: Analysis of PARSEC workload scalabil-
ity, 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp.133–142, IEEE (2016).

[17] Barrow-Williams, N., Fensch, C. and Moore, S.: A communication
characterisation of Splash-2 and Parsec, IEEE International Sympo-
sium on Workload Characterization (IISWC 2009), pp.86–97, IEEE
(2009).

[18] Bhadauria, M., Weaver, V.M. and McKee, S.A.: Understanding
PARSEC performance on contemporary CMPs, IEEE International
Symposium on Workload Characterization (IISWC 2009), pp.98–107,
IEEE (2009).

[19] Cebrian, J.M., Jahre, M. and Natvig, L.: ParVec: Vectorizing the

PARSEC benchmark suite, Computing, Vol.97, No.11, pp.1077–1100
(2015).

An Huynh is a third-year Ph.D. student
at the Department of Information and
Communication Engineering, the Univer-
sity of Tokyo. He received his B.S.
and M.S. degrees from the University of
Tokyo in 2013 and 2015, respectively.
His research interests include parallel pro-
gramming and performance analysis.

Christian Helm is a Ph.D. student at the
Department of Information and Commu-
nication Engineering, the University of
Tokyo. He received his B.S. and M.S.
degrees from the University of Applied
Sciences Regensburg. His research inter-
ests include performance analysis, mem-
ory systems and parallel processing.

Shintaro Iwasaki is a Ph.D. candidate at
the University of Tokyo in Japan. He re-
ceived his B.S. and M.S. degrees from the
University of Tokyo in 2015 and 2017,
respectively. His current research inter-
ests include parallel languages, compil-
ers, runtime systems, and scheduling tech-
niques.

Wataru Endo is a Ph.D. student at the
University of Tokyo. He received his
B.S. and M.S. degrees from the University
of Tokyo in 2015 and 2017, respectively.
His current research interests include dis-
tributed memory systems, memory coher-
ence, and communication performance.

Byambajav Namsraijav completed his
Masters and undergraduate studies at the
University of Tokyo. During his Mas-
ters, his research focus was on task par-
allel computing and its performance pre-
diction. Before that, he researched about
information-centric networking security.

Kenjiro Taura is a professor at the De-
partment of Information and Communica-
tion Engineering, the University of Tokyo.
He received his B.S., M.S., and D.Sc.
degrees from the University of Tokyo in
1992, 1994, and 1997, respectively. His
major research interests are centered on
parallel/distributed computing and pro-

gramming languages. He is a member of ACM and IEEE.

c© 2019 Information Processing Society of Japan

