
DeepSaucer: Verification Environment for Deep Neural
Networks

Naoto Sato1,a) Hironobu Kuruma1 Masanori Kaneko1 Yuichiroh Nakagawa1

Hideto Ogawa1 Thai Son Hoang2 Michael Butler2

Abstract: In recent years, a number of methods for verifying DNNs have been developed. Because the approaches
of the methods differ and have their own limitations, we think that a number of verification methods should be applied
to a developed DNN. To apply a number of methods to the DNN, it is necessary to translate either the implemen-
tation of the DNN or the verification method so that one runs in the same environment as the other. Since those
translations are time-consuming, a utility tool, named DeepSaucer, which helps to retain and reuse implementations
of DNNs, verification methods, and their environments, is proposed. In DeepSaucer, code snippets for loading DNNs,
running verification methods, and creating their environments are retained and reused as software assets in order to
reduce the cost of verifying DNNs. The feasibility of DeepSaucer is confirmed by implementing it on the basis of
Anaconda R©, which provides a virtual environment for loading a DNN and running a verification method. In addition,
the effectiveness of DeepSaucer is demonstrated by an use case example.

1. Introduction
Machine-learning technologies are being gradually introduced

in various industrial fields. Among them, deep neural networks
(DNNs) are being popularly applied. If DNNs are used in safety-
critical applications, their behaviors should be carefully verified
from several perspectives. In recent years, a number of methods
for verifying DNNs have been developed. For example, meta-
morphic testing [1] is one useful way to evaluate the execution
results of DNNs in the case that a test oracle does not exist. In
metamorphic testing, metamorphic relations (which are necessary
properties of a DNN in relation to multiple input values and their
expected output values) are used as pseudo oracles. As another
example, neuron-coverage testing [2] [3] [4] focuses on activa-
tion of neurons in a DNN. Test cases are collected or generated
so as to activate neurons that were not activated in the previous
testing. One of the advantages of neuron-coverage testing is that
it can be applied systematically; that is, it is not necessary to find
certain properties (like metamorphic relations) depending on the
specification of the DNN . Moreover, some work on formal ver-
ification of DNNs by using SMT (satisfiability modulo theories)
or LP (linear programming) solvers have been reported [5][6].
[7] The basic notion of formal verification of DNNs is encoding
a DNN and its necessary property as a logical formula with the
theory of real arithmetic. Solving that formula indicates whether
the property is satisfied.

The authors do not believe that one method is enough for as-
suring the behavior of DNNs because the approaches of each

1 Research & Development Group, Hitachi, Ltd.
2 School of Electronics and Computer Science, University of Southampton
a) naoto.sato.je@hitachi.com

method are different and have limitations. Therefore, we think
that a number of verification methods should be applied to a de-
veloped DNN. However, implementation of these methods often
depends on the implementation environment, such as versions of
Python (e.g., Python2 and Python3), the machine-learning frame-
work (e.g., TensorflowTM and Chainer R©), and the package li-
braries. Moreover, the DNN to be verified should be loaded in
the same environment as that of the verification method. Thus, to
apply a number of methods to the DNN, it is necessary to translate
either the implementation of the DNN or the verification method
so that one runs in the same environment as that of the other. As
well as DNNs, the datasets used for testing must also be trans-
formed to be consistent with the implementation of the DNN and
the verification method.

Since those translations and transformations are time-
consuming, it would be useful if the implementations could
be retained and reused for future development. Therefore, we
provide a utility tool named DeepSaucer, which helps to retain
and reuse implementations of DNNs, verification methods,
datasets, and their environments.

2. Concepts
When a trained model of a DNN (simply called ‘model’

hereafter) is verified, code including procedures for loading the
trained model, loading the dataset to be used for verification, and
running a verification function are usually developed together.
Among the procedures, those for loading the dataset and running
the verification function can be reused for checking a different
model. In addition, the procedure for loading the model can be
reused for checking the same model with a different dataset or
with a different verification function. Therefore, DeepSaucer re-

 ウィンターワークショップ2019・イン・福島飯坂

 ©2019 Information Processing Society of Japan

 IPSJ/SIGSE Winter Workshop 2019 in Fukushima-Iizaka

 7

tains code snippets of these procedures separately as software as-
sets. In this way, it promotes reuse of the procedures and makes
it possible to reduce the cost of the verification.

Moreover, to execute certain code snippets, it is necessary to
set up corresponding environments. For example, if version 1.9
of TensorflowTM is required to run those code snippets, but ver-
sion 1.8 is installed in the current environment, it is necessary to
upgrade to 1.9, and resolve conflicts if they occur. Therefore, as
for DeepSaucer, scripts to automatically set up environments for
the code snippets are also retained and reused as software assets.
It is thus possible to reduce the cost of building the required envi-
ronment. The key concepts of DeepSaucer are listed as follows:
(1) Code snippets of loading trained models, loading datasets,

and running verification functions are retained and reused as
software assets in order to reduce cost of verifying DNNs

(2) Scripts to create environments automatically are also re-
tained and reused to prevent the environmental requirements
from being ambiguous or insufficient and to reduce cost of
building required environments.

3. Implementation
DeepSaucer is implemented on the basis of Python 3.6 pro-

vided by Anaconda R©. The architecture of DeepSaucer is shown
in Fig. 1. As code snippets mentioned in Section 2, DeepSaucer

Fig. 1 Software architecture of DeepSaucer

retains Python scripts for loading models, loading datasets for
testing, and executing verification functions. They are called
model-load script, dataset-load script, and verification script re-
spectively. A user selects one of them to be executed. A model-
load script is called by the DeepSaucer core. Typically, a model-
load script refers to a particular file containing information about
a trained model. Then, the model-load script returns a trained
DNN model to the DeepSauce core. Similarly, a dataset-load
script is called by the DeepSaucer core. The dataset-load script
returns the corresponding dataset that was transformed appropri-
ately. After running the model-load script and dataset-load script,
a verification script is called by the DeepSaucer core. The veri-
fication script executes a particular verification function with the
loaded model and dataset.

The model-load script, dataset-load script, and verification
script (hereafter, all called ‘functional scripts’) are basically ex-
pected to written in Python. However, it is allowed that a func-
tional script requires a different environment. When a func-
tional script is loaded in DeepSaucer, it is associated with an
environment-setup script by a user; consequently, an Anaconda R©

virtual environment is created, and necessary package libraries
appropriate for the corresponding functional script are installed in
that environment. The model-load script, dataset-load script, and
verification script can be selected for running the verification only
if they are associated with the same environment-setup script. Be-
fore the DeepSaucer core runs the selected functional scripts, it
calls the associated environment-setup script. It is assured that
DeepSaucer runs on Ubuntu 17.10 with Python 3.6 provided by
Anaconda R© 5.2.

4. Use case example
It is assumed that a DNN model was developed and it is

necessary to check it by several verification methods. Deep-
Saucer retains a number of verification scripts and the corre-
sponding datasets used in past projects. It is also assumed that
Chainer R© on Python 2.7 was chosen in the current project (al-
though TensorflowTM on Python 3.6 was adopted in the past
projects). In that case, verification scripts retained in DeepSaucer
is not applicable to the current model directly. Therefore, pa-
rameters (such as weight and bias) of the model developed in
Chainer R© based on Python 2.7 are first saved as a file. Second, a
model-load script that reads the saved file and returns the model
of TensorflowTM is developed on Python 3.6. Finally, by running
the existing verification scripts with the model, the model is suc-
cessfully verified. In such a situation, DeepSaucer promotes the
reuse of existing verification scripts. Moreover, since it shows a
list of verification scripts used in the past projects, which verifi-
cation scripts are reusable is easy to understand.

5. Conclusion
We have developed a utility tool, called DeepSaucer, for verify-

ing DNNs. DeepSaucer helps to retain and reuse implementations
of DNNs, verification methods, datasets, and their environments.
The feasibility of DeepSaucer is confirmed by implementing it
on the basis of Python 3.6 provided by Anaconda R©. As for fu-
ture work, the effectiveness of DeepSaucer will be evaluated in
actual developments of DNNs. Moreover, our implementation
using Anaconda R© will be compared with other implementations
based on other virtualization tools like Docker R©.

References
[1] T. Y. Chen, F.-C. Kuo, H. Liu, P. L. Poon, D. Towey, T. H. Tse, and Z.

Q. Zhou.: Metamorphic Testing: A Review of Challenges and Oppor-
tunities. ACM Computing Surveys 51,1 (2018).

[2] Y. Tian, K. Pei, S. Jana, and B. Ray.: DeepTest: Automated Testing of
Deep-Neural-Network-driven Autonomous Cars, ICSE’2018 Techni-
cal Papers (2018).

[3] K. Pei, Y. Cao, J. Yang, and S. Jana.: DeepXplore: Automated White-
box Testing of Deep Learning Systems, The 26th ACM Symposium
on Operating Systems Principles (2017)

[4] Y. Sun, X. Huang, and D. Kroening.: Testing Deep Neural Networks,
arXiv:1803.04792 (2018).

[5] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu.: Safety Verifi-
cation of Deep Neural Networks, Computer Aided Verification 2017,
Lecture Notes in Computer Science, vol 10426, pp.3-29 (2017).

[6] G. Katz, C. Barrett, D.L. Dill, K. Julian, and M.J. Kochenderfer.: Re-
luplex: An Efficient SMT Solver for Verifying Deep Neural Networks,
Computer Aided Verification 2017, pp.97-117 (2017).

[7] R. Ehlers.: Formal verification of piece-wise linear feed-forward neu-
ral networks. Automated Technology for Verification and Analysis
2017 (2017).

ウィンターワークショップ2019・イン・福島飯坂

 ©2019 Information Processing Society of Japan

IPSJ/SIGSE Winter Workshop 2019 in Fukushima-Iizaka

 8

