
Overview of an Adaptive Approach for Implementing
RTOS in Hardware

TetsuoMiyauchi1,a) Kiyofumi Tanaka1,b)

Abstract: In recent years, along with a growth of IoT (Internet of Things), many embedded devices are equipped
with processors/controllers, where a real-time OS (RTOS) is accommodated to make full use of complicated functions
of the devices. It is desired that RTOS runs fast with as small memory usage as possible since it is overhead from an
application program’s viewpoint. Therefore, it is expected that providing hardware for a part of RTOS processing re-
duces memory usage while it makes the processing fast. Under the circumstances where several examples of hardware
implementations of RTOS are found, we implement functions of the µITRON specification in FPGA hardware.
In addition, we propose an approach to adapting it to applications’ requirement.

Keywords: RTOS,adaptive approach,µITRON,FPGA

1. Introduction
Along with the popularization of IoT (Internet of Things), mi-

croprocessors are more than ever being embedded in lots of ap-
pliances, which have complicated functions with communication.
In order to implement microprocessors in various things, cost is
one of the most important factors. For reducing the cost, it is
desirable that processing resources which software and hardware
use should be reduced as much as possible while functions to be
provided and performance are maintained.

From the viewpoint of embedded system development, RTOS
(Real-Time Operating System) is commonly used to make devel-
oping a system with strict time constraint more efficient.

Nevertheless, as an RTOS kernel itself is just overhead for an
application program, the smaller footprints of an RTOS kernel
mean the better implementation and it is desirable that execution
time is short enough.

It is expected that implementing RTOS functions in hardware
can make it possible to reduce software code size and shorten
system call execution time. In our approach, RTOS kernel func-
tions for µITRON4.0 specification are implemented in an FPGA.
Compared with a full software RTOS, we aim at reducing soft-
ware code size and execution time.

While there are several studies for implementing RTOS func-
tions in hardware ([1], [2],[3],[4]), characteristics of our approach
are: building RTOS functions, removing error checking functions
in RTOS system calls if possible and deleting hardware functions
for unused system calls. We show that this approach can be im-
plemented in an FPGA and evaluate the number of hardware re-
sources used in an FPGA, software code sizes, and execution time
for system calls, when the system is adapted to an application pro-
gram so that unused functions are eliminated.

1 Japan Advanced Institute of Science and Technology, Asahidai 1-1,
Nomi, Ishikawa, 923–1292, Japan

a) t-miyauc@jaist.ac.jp
b) kiyofumi@jaist.ac.jp

Fig. 1 Processor structure with RTOS hardware.

2. Implementation
2.1 Hardware Structure

Hardware structure which we have implemented is explained
below. We have implemented principal functions of the
µITRON4.0[5] standard profile specification. Figure 1 shows a
structure of a processor core and RTOS hardware circuit we im-
plemented.

RTOS hardware proposed in this paper consists of not only
primitive functions but also all functions including error checking
in system calls. Therefore, compared with software-only RTOS
implementation, execution time of an RTOS system call can be
reduced and the software code size can be decreased.

Figure 2 shows an RTOS hardware structure. In this figure, the
part of the “RTOS Hardware Core” is the fundamental functions
related to TCB (Task Control Block) queue operations.

An RTOS hardware operation command and data are delivered
to the “RTOS Hardware Wrapper” part by a software program in
a processor. RTOS hardware operation command is designated
with a memory address of a memory reference instruction and an
RTOS hardware operation is decided with a pair of an address
and data.

2.2 Software Structure
The software reads from or writes to a specific address to use

hardware. Figure 3 is a flow in the software-side processing for
act tsk(). Other system call functions follow a similar flow.

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 40

Fig. 2 RTOS Hardware Structure.

Fig. 3 Systemcall Software flow.

3. Evaluation
The processor core and RTOS hardware described in the pre-

vious section are implemented in an FPGA, Xilinx Spartan-6
(XC6SLX16CSG324C) [7] with the evaluation board of Digilent
NEXYS3. The processor core runs at 50MHz in the FPGA and
executes MIPS instruction set [6].

Table 1 and Table 2 show the number of resources occupied
by the processor core and RTOS hardware and minimum pe-
riod/maximum clock frequency for the configuration with er-
ror checking including five tasks, four semaphores and three
event flags, and with/without error checking, with five tasks, four
semaphore and no eventflags, respectively.

Table 1 FPGA Resources (Full)

of Used Usage (%)
Resources Resources
Register 2076 11%
LUT 4699 51%
Slice 1444 63%
Minimum period 19.972ns
Maximum frequency 50.07MHz

Table 2 FPGA Resources (Semaphore w/ and w/o Error Check)

w/ Error Check w/o Error Check
of Used Usage (%) # of Used Usage (%)

Resources Resources Resources
Register 1431 7% 1405 7%
LUT 3601 39% 3538 38%
Slice 1111 48% 1085 47%
Minimum period 18.583ns 17.655ns
Maximum frequency 53.813MHz 56.641MHz

Table 3 shows the sizes of binary codes of system calls and
common routines. “Soft Only” means the software-implemented
RTOS kernel. “With Hard” means the proposed implementation
where the main processing for the RTOS kernel is preformed by
the hardware. Since the main processing is hidden by the RTOS
hardware, the size of the software-side system call is reduced.
From the table, it is confirmed that the hardware implementation
reduces the code sizes of all system calls and common functions.

Execution time for each system call is shown in Table 4. Since
execution of system calls can involve task switching, the table
includes execution times with task switching and without it.

Table 3 RTOS Kernel Software Size (bytes)

Systemcall Soft Only With Hard Hard/Soft
act tsk 416 256 61.5%
chg pri 1008 272 27.0%
ter tsk 1248 640 51.3 %
rel wai 720 288 40.0%
sig sem 528 304 57.6%
wai sem 672 336 50.0%
pol sem 304 256 84.2%
set flg 704 368 52.3%
wai flg 864 464 53.7%
pol flg 432 336 77.8%
Soft Kernel 1280 0 0%
Common Routine 1184 1152 97.3%
Total 9360 4672 49.9%

Table 4 Execution Time for System Calls (µsec@50MHz)

Systemcall Task switch Soft (µsec) Hard (µsec)
sig sem × 2.3 2.0
sig sem ◦ 6.5 3.9
wai sem × 1.8 1.8
wai sem ◦ 7.0 3.7
pol sem × 1.8 1.5
set flg × 2.4 2.1
set flg ◦ 8.2 4.2
wai flg × 2.4 2.3
wai flg ◦ 7.5 4.1
pol flg × 2.4 2.1
Average w/o switch 2.2 2.0

w/ switch 7.3 4.0

4. Conclusion
We presented the hardware implementation of an RTOS kernel

based on µITRON 4.0, where functions of system calls includ-
ing error checking are built in FPGA hardware resources. In the
system, the RTOS kernel functions are invoked via memory ref-
erence instructions of a processor core with the MIPS instruction
set. The hardware-implemented RTOS functions are selectable
not only on a function basis but on a finer-unit basis, e.g., error-
checking code fragment, which enables the system to adapt to the
application codes and reduce the usage of hardware resources.

In the evaluation, it is confirmed that the hardware implemen-
tation proposed in this paper can simplify the software processing
and reduce the size of software as well as the execution times. In
addition, the results show that the proposed strategy can further
reduce the hardware amount according to the application program
by providing only functions/mechanisms required by it.

References
[1] A.B. Lange, K.H. Andersen, U.P. Schultz, A.S. Sorensen: HartOS – a

Hardware Implemented RTOS for Hard Real-Time Applications, 11th
IFAC, IEEE International Conference on Programmable Devices and
Embedded Systems, Volume 45, Issue 7, pp. 207–213, 2012.

[2] N. Maruyama, T. Ishihara, H. Yasuura, An RTOS in Hardware for
Energy Efficient Software-based TCP/IP Processing, IEEE 8th Sym-
posium on Application Specific Processors (SASP), 2010.

[3] H. Mori, K. Sakamaki, H. Shigematsu, Hardware Implementation of
a real-time operating system for embedded control systems, Tokyo
Metropolitan Industrial Technology Bulletin of Study No.8, pp55–58,
2005. (In Japanese)

[4] T. Nakano, A. Utama, M. Itabashi, A. Shiomi, M. Imai, VLSI Imple-
mentation and Evaluation of a Real-Time Operating System, IEICE
Trans. Inf.&Syst. (Japanese Edition) Vol.J78-D1 No.8, pp.679–686,
1995 (In Japanese)

[5] µITRON4.0 Specification Ver.4.01.00, ITRON Committee, TRON
ASSOCIATION.

[6] MIPS R⃝ Architecture For Programmers, Volume II-A: The
MIPS32 R⃝ Instruction Set.

[7] ”Spartan6” [Online] Available http://www.xilinx.com/

products/silicondevices/fpga/spartan-6.html

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 41

