
A motion planning method for mobile robot
considering rotational motion in area coverage task

Yano Taiki1,a) Takase Hideki1 Takagi Kazuyoshi1 Takagi Naofumi1

Abstract: In recent years, utilization of mobile robot in area coverage tasks has been studied. In the case of area
coverage by a single robot, it is possible to obtain a traveling route for covering the entire workspace by constructing a
spanning tree on a grid graph representing the workspace. The tour route obtained by the above method is the shortest
one in terms of the route length. However, it is not optimal in terms of time efficiency when we consider the rotation
behavior of the robot. In this research, we focus on the rotational motion on the route. We propose a method for
constructing the spanning trees on the lattice graph to derive the optimal time efficient path. Proposed method further
searches the optimal tree using compressed representation of the graphs considering rotational motion.

Keywords: mobile robot, path planning, spanning tree

1. Introduction
In recent years, utilization of mobile robot having high mo-

bility has been studied. There are many applications performed
by mobile robot such as floor cleaning, security patrol, facility
maintenance, and agricultural support. In such examples, mobile
robot has to visit all points of target workspace while performing
the work. Such works are called area coverage tasks. Also, the
problem of finding a route in the area coverage task is called the
area coverage problem.

Various studies have been carried out to derive the shortest path
in the area coverage problem. These studies focus on coverage
rate of the area and less duplication of the path. In particular, in
the area coverage problem by a single robot, it is known that one
of the shortest paths can be obtained by considering a spanning
tree on the lattice graph representing the target workspace[1].
Complete coverage without duplication is achieved by this path.

On the other hand, when considering the actual traveling time
of the robot on the path, it is insufficient to consider the coverage
rate and less duplication of the path. Actually, due to the rota-
tional motion on the path, there is a difference in the traveling
time even among the paths having the same length. Therefore, in
order to obtain the path with the shortest traveling time, a prob-
lem model considering rotational motion on the path is required.
However, in a problem model using a lattice graph representation,
there is a difficulty that the number of solutions to be searched ex-
plosively increases in order to obtain an optimal solution as the
size of the graph increases. In order to accurately estimate the
actual traveling time on the path, methods that utilize a more re-
alistic problem model have been studied. In these methods, there
is a difficulty that the path length is greatly increased due to a
slightly unreached area[2]. Therefore, instead of getting a strict
optimal solution, many researches using heuristic methods has

1 Graduate School of Informatics, Kyoto University
a) emb@lab3.kuis.kyoto-u.ac.jp

been conducted[3]-[6].
The purpose of this research is to determine the optimal trav-

eling path in terms of time efficiency while maintaining the com-
plete area coverage. In order to achieve the purpose, we propose
compressed representation of graphs focusing on rotational mo-
tion and a fast search algorithm for the optimal traveling path on
a two-dimensional plane for a single robot.

In the proposed algorithm, a spanning tree on a lattice graph
representing a workspace is searched in order to obtain a path
covering the entire area. In this search process, the search is per-
formed paying attention to the number of rotational motions on
the path in order to minimize traveling time. In the case of a
single robot, the path with the shortest traveling time can be ob-
tained by minimizing the number of rotational motions on the
path while maintaining the shortest path length. In addition, by
using compressed representation of graphs which can represent
multiple spanning trees with the same number of rotations and
similar tree structure, it is possible to obtain an optimal solution
with a realistic calculation time even for a large size problem.

The structure of this paper is as follows. First we introduce the
existing research in section 2 and describe the problems. Next,
in section 3, we model mathematically the area coverage prob-
lem and consider its characteristics. In section 4, we propose a
spanning tree search algorithm using the model given in section 3
and discuss the computational complexity and validity of the al-
gorithm. Section 5 will conclude the overall discussion and future
works.

2. Related Work
We introduce existing researches on area coverage tasks. In

the early studies, a method of randomly moving the robot within
the target area has been studied[7]. Since this method does not
consider the already reached area, duplication occurs in the path.
There are also methods for a single robot to obtain a path cover-
ing the entire workspace without duplication in the path[1], [8].

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 21

In these methods, the workspace is modeled as a lattice graph.
Especially, the method in [1]: Spanning Tree Coverage (STC)

can obtain the shortest path by considering the spanning trees on
the lattice graph. However, since this method does not take into
account the rotational motion on the path, it is not always pos-
sible to obtain an optimal route in terms of time efficiency. The
method in paper [2] aimed at minimizing the rotational motion
on the path. In this method, it is difficult to obtain an optimal so-
lution since it uses a problem model that is more realistic than a
grid graph and there is a trade-off relation between the coverage
rate and the path length.

There are methods of finding the routes of multiple robots by
applying STC[9], [10]. In paper [10], it is shown that an area
coverage problem by multiple robots is NP complete. Therefore,
these methods are heuristic methods, and it is not always possible
to obtain optimal solutions.

Attempts to heuristically search solutions using genetic algo-
rithms have also been conducted for either a single robot or mul-
tiple robots[3]-[6].

The existing researches described above provide methods of
deriving a complete coverage path passing through all the areas
in the workspace for the single robot area coverage problem. In
these researches, methods of finding a path with the shortest path
length has been proposed. In case of considering time efficiency
or power efficiency, heuristic methods has been proposed rather
than a method for guaranteeing the optimal solution. In the case
of multiple robots, it is possible to derive a path covering the en-
tire workspace by the applying STC. In addition, it is shown that
an area coverage problem in the case of multiple robots is NP
complete, and methods using genetic algorithms have been pro-
posed. However, with these methods, there is a possibility that
the time required for the search becomes impractical or there is a
possibility that the solution is not optimum.

3. Area Coverage Problem Considering Rota-
tional Motion

In this section, we define the area coverage problem by a sin-
gle robot. Then we give a mathematical model of the problem
and explain its characteristics.

3.1 Area Coverage Task
First, the following five assumptions about the target space of

the area coverage task are given.
• The target space can be divided into equal-sized square cells.
• The square cells are arranged in a lattice pattern.
• The target space is connected, and there is always a route

between two arbitrary cells.
• Square cells can be divided into four equal-sized subcells.
• The size of the subcell is the size that the robot can cover in

a unit time.
This means that the target workspace can be represented as a

lattice graph by considering the center of each square cell as a
vertex. In addition, it shows that we can obtain a shortest path
passing through the whole space from the spanning trees on the
lattice graph. Fig. 1 shows an example of target workspace. The
example workspace contains 36 square cells. 6 square cells are

：A square cell composed

 of four subcells

：A blocked area

：Vertex of lattice graph

：Edge of lattice graph

Fig. 1 Example of the problem.

blocked by obstacles, and 30 square cells are free. These cells
correspond to vertices of lattice graph. There are edges only be-
tween vertices correspnding to adjacent free square cells.

Next, the following two motions are given as the behavior of
the target robot: 90 degrees rotation and rectilinear movement.
The rotational motion performed by the robot is 90 degrees rota-
tion to the right or left without rectilinear movement. The rectilin-
ear movement performed by the robot is an operation of moving
straight a certain unit distance. This distance is equal to the length
of a robot and also the distance between two adjacent subcells. In
addition, the time required to perform a unit of rotational motion
is shorter than the time required to perform a unit of rectilinear
movement.

Under these assumptions, the area coverage problem is defined
as a problem of finding a closed path passing through all subcells
for given target workspace.

The optimal solution in this problem is the traveling path that
gives the minimum coverage time. In this paper, the coverage
time represents the time required to complete the area coverage
task. The coverage time is determined by the number of recti-
linear movements and the number of rotational motions on the
path.

3.2 Formulation of The Problem
The area coverage problem described in Section 3.1 is mod-

eled as a graph problem to obtain a spanning tree on a given lat-
tice graph. First, notation of constants and variables are given
as shown in Table 1. The problem model is given as follows by
using the defined notation.
• Instance: Lattice Glaph G = (V, E)
• Solution: Spanning Tree T = (V, Et)
• Optimization Goal: min{Cost(T)}
Each of the instances, solution and optimization goal are de-

scribed in detail below.
The instance of problem is the grid graph G reflecting the ter-

Table 1 Definition of constants and variable symbols.

Notation Definition
G Input graph. G = (V, E)
V Set of vertices.
E Set of edges.
T Spanning tree. T = (V, Et), Et ⊆ E

Cost(T) Cost(T) = 4CS ||V || +CRRT
CS Unit amount of the cost for rectilinear movement by robot.
CR Unit amount of the cost for 90 degree rotation movement

by robot.
RT Sum of the number of 90 degree rotation movement

in a path corresponding to tree T .

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 22

: Traveling path

Fig. 2 Examples of the solution for the problem of Fig. 1 and the robot trav-
eling path.

4 2 2 0 2 4

Number of rotation motions

Fig. 3 Classification of vertices on lattice.

rain data of the target area as shown by the red line and the black
square in Fig. 1. The vertices of the lattice graph correspond to the
square cells on the target area. The edges represent the connec-
tion between square cells, and edges exist only between square
cells that can pass through.

The solution of this problem is a spanning tree of the graph. As
shown in Fig. 2, it is possible to derive the traveling path of the
robot along the circumference of the spanning tree. Therefore,
if a spanning tree can be obtained on the graph, it is possible to
derive a traveling path covering the entire target area.

The optimization goal of this problem is minimizing the cost
of the spanning tree obtained as a solution. The cost of a tree
is calculated as the sum of two costs, a cost proportional to the
number of vertices (4CS ||V ||) and a cost proportional to the num-
ber of rotations on the robot path (CRRT). The former cost is
corresponding to the length of the traveling path. Since one ver-
tex in the spanning tree corresponds to four subcells on the robot
path, four times the number of vertices is given as a value corre-
sponding to the path length. The latter cost is corresponding to
the number of rotations performed by the robot on the path. The
rotaion is defined with a 90 degrees rotation as the unit. The num-
ber of rotations around each vertex is determined by the degree
of the vertex and the connection pattern of the edge. Fig. 3 shows
all patterns of vertex degrees and edge connections. From left to
right in the figure, the vertex of degree 0 to 4 are displayed. For
each vertex, the robot path is shown with dotted lines, and the
rotations are shown as red corners. As shown in the figure, the
number of rotations is 0 to 4 depending on the pattern of degree
and edge connections.

3.3 Characteristics of The Problem
Consider the number of solutions to the problem described in

Section 3.2. First, consider a lattice graph with n ∗ n vertices
as an input. In [11], the number of spanning trees of the lattice
graph with n ∗ n vertices is approximated as exp(n2ZL) when ZL

is a finite nonzero constant. Therefore, the number of spanning
trees increases exponentially as the size of the target workspace

8

4

4

0

6

4

6

4

4

2

4

2

4

4

6

6

4

4

6

2

-4/+4 -2/+2 ±0 +2/-2 +4/-4

edge addition/deletion cost

4

4

2

2

4

4

4

4

2

4

4

6

2

4

4

6

0

4

2

6

4

8

：edge deletion

：edge addition

Fig. 4 Classification of edges on lattice.

:Equivalent edges for graph
 connectivity and rotation cost

Fig. 5 Choices of edges with cost +2/−2.

increases and search for a optimal tree becomes difficult.
Next, let us consider the types of edges of the lattice graph. The

edges can be classified depending on the types of the two vertices
connected by the edge. Let us consider the amount of change in
the rotation cost caused by addition or deletion of the edges to
the lattice graph. The edge classification by the cost is shown in
Fig. 4. In the figure, edges are classified into 5 types according to
the edge addition/deletion cost: −4/+4, −2/+2, 0/0, +2/−2, and
+4/−4. Each entry represents edge addtion/deletion between two
states: the state where the edge does not exist between 2 vertices
and the state where the edge exists between 2 vertices. In the fig-
ure, the absent state is placed in the upper side and the present
state is placed in the lower side. The numbers displayed next to
each state represent the rotation cost of the 2 vertices in the state.
The addition cost and deletion cost are the difference between the
numbers for the absent state and the present state.

Next, let us consider the characteristics of edges in terms of
the rotation cost and graph connectivity. Fig. 5 shows the combi-
nations of edges that can be replaced with addition and deletion
of edges while preserving the connectivity of the graph and the
number of rotations. The solid lines represent existing edge and
the dotted lines are the possible replacements of the existing edge
of the same color. It is possible to construct several trees with
same rotation cost by selecting edges in the tree. Therefore, it
is considered that these combinations of edges can be omitted in
searching for an optimal tree.

In addition, combinations of edges shown in red or blue in
Fig. 5 can include edges with +4/−4, +2/−2, or +0/−0 rotation
cost. Since these edges have negative deletion costs, they should
not present in a spanning tree with the smallest rotation cost.
When at least one edge is necessary to maintain graph connec-
tivity, the search space is reduced by considering the each combi-
nation as one group without selecting an edge.

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 23

:Combinations of edges that can exist in graphs included in

 the compressed representation.

Fig. 6 Compressed representation of graphs.

4. Proposed Algorithm
In this section, we propose a spanning tree search method for

area coverage problem by a single robot. First, we propose the
compressed representation of graphs that can reduce the amount
of computation. The representation utilize the characteristics of
the rotation cost described in the section 3.3. Next, we explain the
optimal tree search method using the features of the compressed
representation.

4.1 Compressed Representation of Graphs
In the area coverage problem, the evaluation criterion of the

solution is the sum of the rotation cost and the cost due to the
number of vertices. Since the number of vertices included in the
spanning tree is always equal to the number of vertices of the
input graph and CR is smaller than CS , the parameter to be con-
sidered in optimizing the solution is the sum of the number of
rotations. Therefore, let us consider the compressed representa-
tion F = (V, E f) corresponding to a certain tree T . E f is subset
of Et, and also the addition cost of e ∈ E f is less than 0. The
compressed representation F is obtained by repeating the elimi-
nation of the edge with 0 or less deletion cost on T . The edges on
the compressed representation are only edges with less than 0 ad-
dition cost. The rotation cost of the compressed representation is
determined by considering the types of each vertex in F accord-
ing to Fig. 3 or considering sum of the addition cost of existing
edges in F according to Fig. 4. In addition, it is possible for one
compressed representation to represent multiple trees.

An example of a compressed representation is shown in Fig. 6.
Removing edges with 0 or less deletion cost from the left span-
ning tree gives a compressed representation shown by black edges
and vertices on the right side. This representation expresses
3 ∗ 3 ∗ 2 ∗ 2 ∗ 2 = 72 spanning trees by selection of existing
edges in the each combination of edges indicated by the dotted
lines and the arrow.

Here we consider the direction of each vertex in terms of the
shape of the edge connection on the compressed representation.
A vertex whose degree is 2 and whose two edges are connected
vertically is a vertical vertex and a vertex whose two edges are
connected horizontally is a horizontal vertex. All other vertices
are multi direction vertices having both vertical and horizontal
directions. Consider the horizontal or vertical regions composed
of adjacent vertices with the same direction. The multi direc-

:replacement region/horizontal region

:vertical region

Fig. 7 Example of region replacement.

Algorithm 1 Algorithm to derive a spanning tree with the mini-
mum rotation cost.
Input: lattice graph G = (V, E)
Output: spanning tree with the minimum rotation cost T
1: L⇐ Get Lines(G)
2: while L , null do
3: l′ ⇐ l ∈ L
4: L⇐ L − {l′}
5: d ⇐ Direction(l′)
6: (R, cost, reg num)⇐ SearchChangeRegion(l′, d)
7: if (cost < 0) or (cost = 0 and reg num < 0) then
8: G ⇐ ChangeDirection(G,R, d)
9: L⇐ Get Lines(G)

10: end if
11: end while
12: T ⇐ ConnectRegs(G)

tion vertices overlap with the horizontal region and the vertical
region. Let the length in the horizontal or vertical direction of
horizontal/vertical region respectively be the length of the region
and the width in the perpendicular direction be the width of the
region. Let us consider the difference between the compressed
representation with the minimum rotation cost and the current
compressed representation as a set of vertices whose directions
are not matched. In the algorithm of the next section, the oper-
ation to obtain the compressed representation with the minimum
rotation cost is considered as an operation to replace the vertex
direction of the partial region on the compressed representation.
The rotation cost of the compressed representation is determined
by the number of line segments constituted by the connecting
edges and the vertices in the same direction and the connection
edges between the regions. The selection of the replacement re-
gion is performed so as to decrease the number of line segments
on the compressed representation while paying attention to the
connection edges between the region. An example of region re-
placement is shown in Fig. 7. By replacing the vertex direction in
the region, the edges existing in the region change, and the shape
of the connection in the overlapping part of the region changes.
In addition, in Fig. 7, the number of line segments which affect
the rotation cost has been reduced from 7 to 6 by replacement.
The number of rotations has decreased from 22 to 12. The algo-
rithm described in the section 4.2 searches for solutions using the
features of this compressed representation.

4.2 Search Algorithm for Spanning Tree with Minimum Ro-
tation Cost

The proposed algorithm performs a search for replacement re-
gion for each line segment on the lattice graph. If this replace-

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 24

Algorithm 2 Algorithm for deriving the replacement region with
the largest decrease in rotation cost
Input: l: line segment and d: direction of l
Output:

region: the replacement region that maximizes turn cost reduction, cost:
decrease in cost of rotation, and reg num: decrease in the number of
connected graphs

1: region⇐ l
2: tmp reg⇐ region
3: cost ⇐ 0
4: tmp cost ⇐ 0
5: reg num⇐ 0
6: tmp r num⇐ 0
7: loop
8: next vertices⇐ NextVertices(tmp reg, d)
9: if next vertices = null then

10: break
11: end if
12: (add vertex, add cost, add r num)

⇐ MinAddCost(tmp reg, next vertices, l, d)
13: tmp reg⇐ tmp reg ∪ {add vertex}
14: tmp cost ⇐ tmp cost + add cost
15: tmp r num⇐ tmp r num + add r num
16: if (tmp cost < cost) or

(tmp cost = cost and tmp r num < reg num) then
17: region⇐ tmp reg
18: cost ⇐ tmp cost
19: reg num⇐ tmp r num
20: end if
21: end loop

ment region decreases the rotation cost or reduces the number of
connected graphs while preserving the rotation cost, the algoritm
is performed to sequentially replace the direciont of discovered
region.

Algorithm 1 shows an algorithm for finding the spanning tree
with the minimum rotation cost from the input graph G. The sym-
bols used in the algorithm L is the set of segments on the lattice
graph, l′ is the vertex set representing one line segment, d is the
variable representing the direction of a vertex, R is a set of ver-
tices representing the replacement region. In the first line of the
proposed algorithm, we first acquire L by the function Get Lines.
Get Lines is a function that simply returns the set of all vertical
line segments and horizontal line segments in the graph. Next,
line 3-4 extracts l′ from L. In line 5 we get the direction d of l′

by the function Direction which returns the direction of the line
segment. In line 6, the replacement region search is performed
in a direction orthogonal to d for the given line segment l′ by the
function SearchChangeRegion shown in algoritm 2. Details of
the search will be described later.

In line 7, it is first judged whether the amount of change in ro-
tation cost due to region replacement is smaller than 0, or whether
the amount of change is 0 and the number of connected graphs is
decreasing. If these conditions are satisfied, the processes of line
8 and 9 are performed. In line 8, the function ChangeDirection
replaces the direction of the vertices in the replacement region
with the direction orthogonal to d and remove or add edges to
match the shape of edge connectivity with the vertex directions.

:candidates of replacement region for red line segment in (1)

(1) (2) (3) (4) (5)

(10)(9)(8)(7)(6)

Fig. 8 Example of replacement region search.

In this replacement of the vertex direction, the vertex correspond-
ing to the end point of the line segment in the region may overlap
the adjacent region, so it is set as the vertex in both the vertical
and horizontal directions. However, when there are multiple ad-
jacent line segments consisting of one vertex, these vertices are
collectively taken as the line segment in the d direction. Also,
all edges extending from the vertex other than the end point of
the line segment to the outside of the region are removed from
the graph because the deletion cost is all less than 0. The above
operations are repeated until set L becomes empty. Finally, we
obtain a spanning tree from the compressed representation by the
function ConnectRegs. If the compressed representation F is dis-
connected at this stage, additional costs of adding edges between
disconnected graphs are always 0 or positive. Therefore, add the
edge with +0 presence cost until the number of connected com-
ponents no longer decreases. At this point, if there is still an dis-
connected graph, add the edge with +2 addition cost, then add the
edge with +4 addition cost until the number of connected compo-
nents no longer decreases. By this processing, a connected graph
is obtained. Finally, closed paths in the graph are eliminated.
Now, since the deletion cost of the edges constituting the closed
path is 0 or positive, by removing edges with deletion cost 0 and
eliminating the closed path, a spanning tree with the minimum
rotation cost can be obtained.

Next, the processing of function SearchChangeRegion shown
in algorithm 2 is described in detail. Function SearchChang-
eRegion selects the vertex to be included in the replacement area
from the vertices existing in the direction orthogonal to the given
line segment l. Therefore, in line 8, the function NextVertices
obtains the set of vertices next vertices adjoining the current re-
placement region tmp reg in the direction orthogonal to the direc-
tion d. From next vertices, the algorithm select a vertex with the
largest decrease of rotation cost by adding vertex to the replace-
ment region. The function MinAddCost in line 12 is a function
for selecting the additional vertex. The change in the rotation cost
when the vertex is included in the replacement region is deter-
mined by the direction of the eight neighbor vertices. At this time,
the multiple direction vertices outside the replacement region is
handled as the vertex of direction d. This makes it possible to
perform a search using the features of compressed representation
on the general lattice graph. Also, if there are multiple vertices
whose rotation cost reduction amounts are equal, vertex nearer
to the line segment l is selected. This makes it possible to deter-
mine the minimum necessary replacement region. An example of

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 25

searching a replacement region is shown in Fig. 8. In this exam-
ple, the search is started from the red line segment in (1). The
above processing is repeated until next vertices becomes empty.
In each iteration, the replacement region with the largest amount
of decrease in rotation cost and the largest decrease in the num-
ber of connected graphs is stored in the process of lines 16-20.
Region, cost and reg num at the end of the loop express the re-
gion where the reduction amount of rotation cost is the largest,
the reduction amount of rotation cost, and the decrease amount of
the number of connected graphs, respectively. As a result, (8) is
selected as a replacement region.

4.3 Time Complexity of the Algorithm
The proposed algorithm always finishes calculation for any in-

put. Throughout this algorithm, there is no process to increase the
rotation cost. Also, the number of connected components does
not increase in a section where there is no change in rotation cost
in algorithm processing. Therefore, a loop of processes in which
the rotation cost or the number of connected components are not
increasing. Therefore, this algorithm always finishes calculation.

Next, we consider the computational complexity of the algo-
rithm. For each process in the algorithm, let us consider the max-
imum repetition of the process independently. It can be thought
that the algoritm consists of three hierarchical processes and the
function ConnectRegs is executed only once at the end. The three
hierarchical processes are process A for searching a replacement
region for a line segment, process B for applying process A to
each line segment in set L, and process C for updating L and
executing process B each time region replacement is performed.
Consider the maximum number of calculation steps for each pro-
cess on the subgraph of the lattice graph with the number of ver-
tices n ∗ n. For processing A, the worst case is the case of finding
the region by adding n − 1 edges to each n vertex of a line seg-
ment. Therefore, the maximum number of steps is n2 − n. Next,
process B is repeated up to the number of elements in set L, which
is the number of line segments on the graph. It is always smaller
than 2n2, which is the case that one vertex is regarded as a hor-
izontal line segment and a vertical line segment with 0 length.
Therefore, maximum number of calculation steps of process B
is O(n2). Finally, execution count of process C is the number of
region replacements performed in the algorithm. The maximum
number of regions that can exist simultaneously on the n∗n graph
is n ∗ n, and the region once replaced is never returned to the state
before replacement. Therefore, The number of region replace-
ment is at most a constant multiple of the number of regions.
Thus, the maximum number of steps of process C is O(n2). The
total number of steps in the algorithm is obtained by multiplying
the number of steps of process A, B and C. As a result, the num-
ber of steps in the three processes is at most O(n6). With respect
to the function ConnectRegs, addition of up to n2 − 1 edges and
removal of (1/2)(n2 − n) − (n2 − 1) edges are performed in the
worst case, so the number of steps of calculation is O(n2). The
total calculation amount takes the sum of these. Therefore, this
algorithm is guaranteed to finish calculation with O(N3) for the
number of vertices N.

4.4 Optimality of the Solution
First, consider the difference S between certain compressed

representation and an optimal compressed representation giving
an optimal solution. Now, the difference between the compressed
representations is taken as a set of vertices whose directions are
different between the two. Also consider a set of vertices which
are subsets of S and which are adjacent to each other on the graph
and whose directions coincide with each other as a region RS in-
cluded in S. At this time, the following property holds.
• Regardless of the order of replacement, the compressed rep-

resentation obtained by replacing the region RS one by one is
equivalent to the compressed representation in which entire
S is replaced at once.

Assuming that the following property holds, the algorithm can
obtain the compressed representation that gives the optimal solu-
tion by replacing the replacement region found by the algorithm
one after another.
• The proposed replacement region search algorithm finds all

areas RS included in S .
In order to show that the solution obtained by this algorithm

is optimal, we prove the above property. The region RS is a re-
gion composed of line segments in the same direction. The search
for replacement region is performed for each line segment on the
compressed representation toward the direction orthogonal to the
line segment. Therefore, if the length of the longest line segment
in the region RS is equal to the length of the region RS , it is possi-
ble to search a range including the whole RS . In this search, when
there are k replaceable line segments within the search range, the
connection pattern with the adjacent region in which the rotation
cost is the smallest is examined for each case where the number
of replace lines is from 1 to k. Therefore, it is possible to find a
region with the largest decrease in rotation cost within the search
range.

In addition, a search is performed from a segment that is not the
longest line segment, and when a partial region of the region RS is
found as a replacement region, the remaining region is also found
as a replacement region. Likewise, when the length of the longest
segment of the region RS is different from the length of the re-
gion, a subset of the region RS is found as a replacement region,
and the remaining regions are replacement regions. Therefore,
the proposed region search algorithm can always find the region
RS , and by substituting the found replacement region one after
another, it is possible to obtain the solution with the minimum
rotation cost.

5. Conclusion
In this paper, we proposed compressed representation of graphs

and a spanning tree search algorithm for mobile robot area cover-
age task considering turns on the path. Proposed algorithm gives
an optimal area coverage path in terms of coverage time by de-
riving a spanning tree with minimum turn cost on the workspace.
In the case where the number of vertices of the lattice graph rep-
resenting the workspace is N, the algorithm has order of N3 time
complexity. Therefore, it is possible to solve the area coverage
problem within a realistic time scale using the algorithm.

For future work, we intend to perform quantitative evaluation

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 26

and propose multi-robot area coverage algoritms.
Acknowledgments This work was supported by JSPS KAK-

ENHI Grant Number 18K18024.

References
[1] Gabriely, Y. and Rimon, E.: Spanning-tree based coverage of contin-

uous areas by a mobile robot, Annals of Mathematics and Artificial
Intelligence, Vol. 31, No. 1, pp. 77–98 (2001).

[2] Bochkarev, S. and Smith, S. L.: On minimizing turns in robot cov-
erage path planning, Proc. of Int’l Conf. on Automation Science and
Engineering (CASE), pp. 1237–1242 (2016).

[3] Schfle, T. R., et al.: Coverage path planning for mobile robots using
genetic algorithm with energy optimization, 2016 International Elec-
tronics Symposium (IES), pp. 99–104 (2016).

[4] Jimenez, P. A., et al.: Optimal area covering using genetic algorithms,
Proc of Int’l Conf. on advanced intelligent mechatronics, pp. 1–5
(2007).

[5] Yakoubi, M. A. and Laskri, M. T.: The path planning of cleaner robot
for coverage region using Genetic Algorithms, Journal of Innovation
in Digital Ecosystems, Vol. 3, No. 1, pp. 37 – 43 (2016).

[6] Kapanoglu, M., et al.: A pattern-based genetic algorithm for multi-
robot coverage path planning minimizing completion time, Journal of
Intelligent Manufacturing, Vol. 23, No. 4, pp. 1035–1045 (2012).

[7] Màntaras, L., et al.: Generation of Unknown Environment Maps by
Cooperative Low-cost Robots, Proc. of the 1st Int’l Conf. on Au-
tonomous Agents, pp. 164–169 (1997).

[8] Ryu, S.-W., et al.: A search and coverage algorithm for mobile robot,
Proc. of 8th Int’l Conf. on Ubiquitous Robots and Ambient Intelligence
(URAI), pp. 815–821 (2011).

[9] Hazon, N. and Kaminka, G. A.: Redundancy, Efficiency and Robust-
ness in Multi-Robot Coverage, Proc. of Int’l Conf. on Robotics and
Automation, pp. 735–741 (2005).

[10] Zheng, X., et al.: Multi-robot forest coverage, 2005 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 3852–3857
(2005).

[11] Shrock, R. and Wu, F. Y.: Spanning trees on graphs and lattices in d di-
mensions, Journal of Physics A: Mathematical and General, Vol. 33,
No. 21, p. 3881 (2000).

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 27

