
Reinforcing Total Bandwidth Server with Multivalued WCET

Amr Ashmawy1,a) Kiyofumi Tanaka1,b)

Abstract: As real-time embedded systems get more diverse and complicated, systems with different types
of tasks (e.g., periodic and aperiodic tasks) are getting prevalent. In such systems, guaranteeing schedu-
lability is important for hard periodic tasks while keeping response times of soft aperiodic requests short
enough. Total Bandwidth Server (TBS) is one of the promising scheduling algorithms for hybrid task
sets which include both periodic and aperiodic tasks. Basically, TBS follows the Earliest Deadline First
algorithm, where tasks with earlier deadlines are prioritized for scheduling. This implies a promising op-
portunity for shortening response times of chosen tasks by assigning earlier deadlines. This paper describes
a technique, stepwise deadline update, that moves deadlines earlier in the context of TBS. In this tech-
nique, a job execution is divided into two or more sub instances and each is given an individual deadline.
The deadlines are calculated based on estimated execution times instead of a simple worst-case execution
time (WCET). Considering that task’s actual execution time is in most cases shorter than its WCET,
that potentially improves such tasks responsiveness. For the estimated execution times of each task, this
paper introduces multivalued WCET, a collection of possible and representative execution times of that
task. The estimated execution times are obtained by static code analysis and abstract symbolic execution.
The simulation-based evaluation shows that stepwise deadline update technique with multivalued WCET
reduces average response times of aperiodic tasks. When the processor utilization is high, the reduction
rate of aperiodic response times reaches 51.1% compared to traditional TBS, with negligible scheduling
overhead.

Keywords: real-time scheduling, Total Bandwidth Server, response time, worst-case execution time
(WCET), multivalued WCET

1. Introduction
With growing demands for highly functional electronic

devices and automation systems, it is getting common in
real-time embedded systems that different types or criti-
calities of tasks compose a system. Thus real-time schedul-
ing gains growing importance in order to meet the differ-
ent real-time requirements [1], [2], [3]. To achieve the re-
quired real-time processing in such a system, sophisticated
scheduling algorithms must be used to target both hard
and soft (or non real-time) tasks while guaranteeing the
schedulability of the hard tasks and at the same time ex-
hibit short response times for the soft (or non real-time)
tasks.
The schedulability is satisfied when all hard tasks meet

their deadlines. Therefore, hard tasks have to be peri-
odically (or at least sporadically) invoked and executed,
and assumed to spend their worst-case execution times
(WCETs) in schedulability analyses for safety concerns.
On the other hand, soft (or non real-time) tasks with less
tight timing requirements can run on aperiodic invocations
as long as they do not influence the schedulability of hard
tasks. Total Bandwidth Server (TBS) [4] is one of the
scheduling algorithms for both hard and soft (or non real-

1 School of Information Science, Japan Advanced Institute of
Science and technology, Nomi, Ishikawa 923–1211, Japan

a) a.ashmawy@jaist.ac.jp
b) kiyofumi@jaist.ac.jp

time) tasks, which provides reasonable response times for
aperiodic tasks. Hard (periodic) tasks’ schedulability is
preserved unless soft (aperiodic) executions were found to
exceed the corresponding WCETs. TBS is based on the
earliest deadline first (EDF) algorithm [5] and therefore
has the characteristic that a processor can be utilized up
to 100% while maintaining schedulability. This study is
based strongly on TBS and explores enhanced techniques
to improve TBS.
Considering the complexity of current processors and

application programs it is difficult to exactly estimate
WCETs [6]. Moreover, the worst-case execution path in
a program is in many cases impossible to find along the
possibly infinite branches and loop structures. Addition-
ally, enormous number of input patterns makes the search
space virtually unbounded [7]. Consequently, for safety,
WCETs must be pessimistically over-estimated and prob-
ably higher than the actual possible execution times. This
gap decreases the effectiveness of scheduling algorithms
when making scheduling decisions based on tasks’ exe-
cution times; Shortest Job First (SJF) – Shortest Re-
maining Time First (SRTF) [8]. Similarly, unnecessarily
long WCETs worsen responsiveness to aperiodic requests
in TBS, since the long WCETs leads to long deadlines.
Therefore, considering the difficulty in obtaining exact
WCETs, a safe scheduling technique is desired whose per-
formance dosesn’t depend on WCETs.
The aim of this work is to improve TBS in terms of re-

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 13



sponse times of aperiodic tasks. The improvements are
achieved by a technique, stepwise deadline update which
we proposed in the previous work [9], [10], [11]. This tech-
nique tries to give a job a deadline which is not based
on WCET but on two or more estimated execution times
shorter than WCET. The shorter estimated execution time
leads to earlier deadline and earlier scheduling of the job.
However, how to estimate the execution times was out of
the scope of the previous work. In this paper, we pro-
pose a series of techniques for estimating two or more ex-
ecution times, called multivalued WCET. The execution
times (multivalued WCET) are obtained by static code
analysis and abstract symbolic execution then applied to
the stepwise deadline update technique.
This paper consists of six sections. Section 2 describes

related work for scheduling algorithms for task sets with
hard/periodic and soft(or non real-time)/aperiodic tasks
as well as WCET analysis. Section 3 describes an extended
TBS with stepwise deadline update and virtual release ad-
vancing, for reducing response times of aperiodic tasks.
Then, in Section 4, a method of obtaining multivalued
WCET is proposed. The proposed technique is evaluated
in Section 5. Finally, Section 6 concludes the paper with
summary and future work.

2. Related Work
2.1 Scheduling Algorithms for Both Periodic and Aperi-

odic Tasks
There are various scheduling algorithms for task sets

consisting of periodic and aperiodic tasks. They are
categorized to fixed-priority servers and dynamic-priority
servers. Fixed-priority servers are based on rate mono-
tonic (RM) scheduling [5], which has the merit that higher-
priority periodic tasks with shorter-periods tend to have
lower jitters and shorter response times. Representative
examples are Deferrable Server [12], Priority Exchange
[12], Sporadic Server [13], and Slack Stealing [14]. On the
other hand, dynamic-priority servers are based on the EDF
algorithm. EDF possesses a the capability to make a pro-
cessor utilization reaches almost 100% while maintaining
schedulability. Dynamic Priority Exchange [4], Dynamic
Sporadic Server [4], TBS, Earliest Deadline Late Server [4],
and Constant Bandwidth Server (CBS) [15] are examples
of dynamic-priority servers. Scheduling algorithms han-
dling such mixed tasks’ sets try to make the response times
for aperiodic requests shorter while guaranteeing schedula-
bility by adding complexity. Considering the significance
of the higher utilization bound, this paper targets EDF-
based server algorithms.
There is another strategy, slack reclaiming, for im-

proving responsiveness of jobs. Based on [16], there are
two types of slack reclaiming; reclaiming within a server
(as Constant Bandwidth Server) and reclaiming between
servers [14], [17], [18]*1. In both cases, when some jobs

*1 Strictly, Slack Stealing [14] is a method of utilizing slack times

finish earlier than their WCETs, the slack time (or unused
bandwidth) is utilized by other soft or non real-time task
executions. This means slack time can be utilized only af-
ter the (early) completion of the prior jobs. In contrast,
in the stepwise deadline update, it is detected/predicted
that the execution of a target task would be completed
earlier. Then a corresponding earlier deadline is assigned
so that the target task can use its own future. This tech-
nique is regarded as one kind of reclaiming within a server
and therefore discussion with comparison to reclaiming be-
tween servers is left beyond the scope of this paper.

2.2 Total Bandwidth Server (TBS)
Resource reservation is a general technique for real-

time systems where aperiodic tasks are executed only in
some reserved bandwidth and avoid influencing hard tasks’
schedulability [3], [19]. TBS is one of the resource reser-
vation methods, a scheduling algorithm for a mixture of
hard periodic and non real-time aperiodic tasks*2. TBS
provides fair response times for aperiodic tasks while keep-
ing its implementation complexity moderate [4], [20]. Up

usually refers to the processor utilization factor by all hard
periodic tasks and Us the bandwidth or the processor uti-
lization factor of the server. It has already been proven
that a task set is schedulable if and only if Up +Us ≤ 1 [4].
There are other algorithms derived from TBS. [21] pro-

posed a method for firm (not hard) periodic tasks and soft
(or non real-time) aperiodic tasks. This method aims to
achieve short response times by sacrificing completeness of
periodic task executions. On the other hand, this paper
targets techniques of shortening response times of aperi-
odic jobs and at the same time ensuring the integrity of
hard periodic tasks’ executions.

2.3 Improved TBS
In another TBS enhancement, after a deadline is given

by TBS, the finishing time of the target task is pre-
computed by summing up its WCET with the WCETs of
other higher-priority tasks and then the deadline is fixed in
advance of the execution [21], [22]. This way the response
time for aperiodic tasks can potentially be improved in
mixed tasks’ sets without jeopardizing the safety of the
periodic tasks thus schedulability. The estimation of the
finishing time and the update of the deadline are repeated
until the deadline converges (TB*). This is based on EDF
optimality that a task set is scheduled feasibly by EDF if
any other algorithm can make the task set feasible [23].
This technique forces considerable complexity for the iter-
ative calculation of the finishing times, thus TB(n) limits
the number of iterations to some n. Such added complexity
posses considerable overhead that our proposed solution

obtained by postponing hard tasks’ execution, not by earlier
finishing.

*2 A server in TBS basically targets non real-time tasks. How-
ever, it can handle soft tasks as well as non real-time tasks.
Therefore, this paper does not distinguish between soft and
non real-time tasks.

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 14



manages to reduce.

2.4 Constant Bandwidth Server (CBS)
CBS is another scheduling algorithm intended for mixed

tasks’ sets with comparable complexity to TBS. Unlike
TBS, CBS does not expect fixed execution times which
makes it suitable for multimedia applications with a bud-
get for aperiodic tasks. CBS has a server period phase
varying depending on requests’ arrival timing. A common
deadline is repeatedly updated together with the server pe-
riod and budget for all aperiodic jobs regardless their exe-
cution times. According to the literature [15], CBS is sum-
marized as follows. A CBS has the server period (Ts), the
maximum budget (Qs), the server bandwidth (Us = Qs/Ts),
the current budget (cs), and, at each instant, the common
deadline (ds,k).
CBS has the merit that slack reclaiming within the

server is naturally performed since the budget is decreased
according to the actually spent execution times of jobs. If
a subsequent job’s execution fits the remaining budget, it
benefits from the current common deadline. In addition,
when the budget is exhausted but the execution is not
completed, the budget is replenished by borrowing from
the future job*3. However, the deadline depends on the
server period, not on individual jobs’ execution time, which
might not provide an optimal deadline for each job. On
the other hand, the technique in this paper can give each
job an optimal deadline according to the actual execution
time.

2.5 WCET Analysis and Abstract Symbolic Execution
Estimation of the upper bound WCET is essential to

guarantee schedulability of real-time tasks. The nature of
real-time applications must be highly predictable and re-
sponsive using simpler code structures. While obtaining
such WCET is impossible in general tasks, it is feasible for
real-time systems due to the peculiar nature of real-time
tasks. Still WCET estimation is quite a complicated task
and highly dependent on the target hardware [24], [25].
An estimated single-valued WCET is not as useful as

a customizable or multivalued WCET. Running WCET
analysis several times to get more than one value is ex-
tremely prohibitive. Other alternatives fall under the gen-
eral idea of a (customizable) parametric WCET function
built at compile (analysis) time to provide different WCET
estimations at run-time given input (control) values [26].
Such parametric WCET functions can only be used for
research and impractically small code sizes.
Unlike the related work mentioned above, the WCET

analysis we propose provides a new alternative to obtain
multivalued WCET. The values are obtained without the
need for such parametric function or running WCET anal-
ysis several times. Concolic execution technique is here
adapted from software validation and error detection re-

*3 This is called “borrowing from the future” in [18].

search [27]. Concolic execution (explained below) is an ex-
tension of symbolic abstract execution techniques, which
is also known as symbolic execution for short [28]. Simple
symbolic execution was used in previous WCET analysis,
although it was restricted to small problems and code size.
The complexity of the constraints generated during analyz-
ing and tracing the code is infeasible with most constraint
solvers [29].
Both symbolic and concolic execution have been long

used in software testing [27] The former is preferred to
maintain test completeness, but restricted to small simple
code. On the other hand, concolic execution is preferred to
tackle much bigger program sizes, obfuscated code struc-
tures and data ambiguity, maintaining only soundness and
sacrificing completeness. Concolic execution is the com-
bination of both concrete execution and abstract sym-
bolic execution [30].Concrete execution can be considered
as profiling of instrumented code to trace and guide and
execution. The tracing and guiding is used to force the
execution into the different possible paths and test those
paths for possible occurrences of errors.

3. Stepwise Deadline Update
In our previous ATBS research, a technique to provide

some thing like multivalued WCET was hinted without
details. This section and the next one describe details of
TBS modification, stepwise deadline update and multival-
ued WCET.

3.1 Definition of stepwise deadline update
In the stepwise deadline update, a job is divided into

two or more sub instances. Let Jk be the k-th aperiodic
job. Jk is divided into sub instances, J1

k , J
2
k , J

3
k , . . .. The

first sub instance, J1
k , corresponds to the execution from

the beginning of Jk to the time when C1
k has been elapsed.

Then Ji
k is the execution from ∑i−1

j=1 C j
k to ∑i

j=1 C j
k. Here,

Ci
k is the estimated execution time for Ji

k. If Jk finishes in∑i
j=1 C j

k, Ji+1
k and the following sub instances do not exist.

When the arrival time of the k-th aperiodic request is rk,
each sub instance, Ji

k, is given the deadline, di
k, as:

d1
k = max(rk, dk−1) +

C1
k

Us
(1)

di
k = di−1

k +
Ci

k

Us
(i > 1) (2)

3.2 Example of stepwise deadline update
Figure 1 (1) and (2) depict examples of the original

TBS and TBS with the stepwise deadline update, respec-
tively. There is a periodic task, τ1, which has a pe-
riod of T1 = 6, execution time of C1 = 4, and utiliza-
tion of U1 = C1/T1 = 2/3 = Up. The TBS bandwidth is
Us = 1 − Up = 1/3. The aperiodic request released at t = 2
has CWCET

1 = 6. The actual execution time of this aperi-
odic job can be from 1 to 6 units of time. As in Figure 1
(1), the original TBS produces response times of 3, 4, 9,
10, 15, or 16 units of time for the corresponding execution

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 15



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

τ1

T1 = 6
C1 = 4
U1 = 2/3

Aperiodic
request
Us = 1/3

Response time

Response time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

τ1

T1 = 6
C1 = 4
U1 = 2/3

Aperiodic
request
Us = 1/3

3 4 7 10 11 16

3 4 9 10 15 16

61 =WCETC

61 =WCETC

1
1d 2

1d 3
1d 4

1d

(1) Original Total Bandwidth Server

(2) Total Bandwidth Server with Stepwise Deadline Update

14
1 =C23

1 =C12
1 =C21

1 =C

t

t

t

t

Fig. 1: Example of stepwise deadline update.

time. On the other hand, in Figure 1 (2), the stepwise
deadline update technique divides the aperiodic job into
four sub instances, J1

1 , J2
1 , J3

1 , and J4
1 , and estimates the

execution times of C1
1 = 2, C2

1 = 1, C3
1 = 2, and C4

1 = 1
for them. The corresponding deadlines are calculated as
d1

1 = 8, d2
1 = 11, d3

1 = 17, and d4
1 = 20. Depending on the

actual execution time, the response time becomes 3, 4, 7,
10, 11, or 16 units of time. In this example, the response
time is shortened when the actual execution time is 3 or 5
units of time,compared to the original TBS.
The effectiveness of the stepwise deadline update de-

pends on the estimated execution times. In the above ex-
ample, if C1

1 had been estimated as one unit of time, d1
1

would have become t = 5 and the job execution would have
started immediately at the arrival time and the response
time would have been one unit of time.

3.3 Estimation of execution times of sub instances
To apply the stepwise deadline update technique to TBS,

estimated values of execution times, Ci
k, for sub instances

are prepared. Since how to estimate execution times can
be considered separate from the definition of the step-
wise deadline update technique, various kinds of estima-
tion methods can be applied. In this paper, we apply mul-
tivalued WCET proposed in Section 4. The multivalued
WCET can be expected to be close to actual execution
times since it is obtained by analyzing and concolically
executing a target application code and extracting repre-
sentative execution paths in the code.
After an aperiodic job is divided into two or more sub

instances, this enhanced technique leads to the same be-
havior as the original TBS. That is, the two or more sub
instances are regarded as instances that occur simultane-
ously and independently (but are clearly ordered), each
with its ownWCETs Ci

k. Then the original TBS would give
each sub instance the same deadline value as the one cal-
culated by equation 1 and equation 2. Therefore, schedu-
lability of the stepwise deadline update is the same as the
original TBS, which is that a task set is schedulable if and

only if Up + Us ≤ 1.

3.4 Implementation complexity and run-time overhead
In TBS with the stepwise deadline update algorithm,

aperiodic job’s execution is divided into more than one
sub instances. However, operating systems should man-
age a task with a single information set, task control block
(TCB). This is realized by resetting up the deadline and
reinserting the TCB in the ready queue every time the es-
timated execution time for the current sub instance has
elapsed but the job did not finished, which is the only dif-
ference from the original TBS. To find that the execution
has reached the estimated execution time, the scheduler
should be executed every tick timing. This is achieved by
calling the scheduler when timer interrupts occur, which
is a natural procedure that operating systems commonly
follow.
The deadline calculations defined in equation 1 and

equation 2 include division. The overhead can be alle-
viated by using constants or statically prepared values for
Ci

k and performing only an addition. Since Us is a con-
stant, the second term in the right side of the equations
becomes constant.

3.5 Qualitative comparison with CBS
The aim of the stepwise deadline update is to provide ap-

propriate deadlines to tasks with varying execution times
while keeping the schedulability, which is the same as the
aim of CBS. The difference is mainly in how to estimate
execution times. In CBS, it can be said that any task’s
execution time is considered fixed (maximum budget Qs).
On the other hand, in the stepwise deadline update, sub
instances are given individual estimated execution times.
If the estimated execution times for all sub instances are
set to some (same) fixed value, the stepwise deadline up-
date is essentially the same as CBS.

4. Multivalued WCET
4.1 Proposed Framework
The overall framework for multivalued WCETs is shown

in Figure 2 and explained in more details below and in the
following figures.
4.1.1 Stages 1–3: Traditional structural static WCET

analysis stages
The code to be analyzed is first input to the lower

three stages of the framework, similar to regular structural
WCET analyzers. In those three stages the code is checked
exhaustively using regular static WCET analyzer tech-
niques to get a single WCET estimation value according
to the models surveyed in related literature [7]. Low level
timing analysis of the system obtained with some measur-
ing executions is performed and then combined with the
enriched CFG from the earlier control-flow analysis of the
first stage. Implicit path enumeration technique (IPET) is
preferred for the binding rather than tree or path binding
methods, which is an extended solution of an integer linear

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 16



Fig. 2: Multivalued WCET framework.

programming (ILP) model of the code [7].
4.1.2 Stage 4: Perform – Code Instrumentation
To estimate the execution times of the other shorter

paths, separate analysis of those paths is needed. That
analysis can run in parallel together with the stages men-
tioned above. The cost of traditional WCET analysis
prohibits running it several times. The search space is
also prohibitively large to explore exhaustively. Efforts
to obtain several execution time estimations for the same
code under different execution scenarios are quite lim-
ited. Those different execution scenarios considered here
could possibly run through execution paths other than the
longest path (worst case) but might include it.
Unlike parametric WCET and such previous efforts, this

research uses concolic execution techniques already used in
software testing and validation. The number of values ob-
tained from concolic execution can be controlled depending
on the accuracy needed. The binary of the analyzed code
is run under the control of a concolic simulator. The con-
colic simulator forces the execution of the binary through
different paths of the CFG. In this stage, the simulator
starts by analyzing the code and/or CFG and then per-
forms code instrumentation to insert collectors for tracing
and profiling.
4.1.3 Stage 5: Measure – PET values
After each run of the generated binary the trace is an-

alyzed to find the values of the control variables and the
corresponding execution path. The simulator uses a con-
straint solver to calculate other values of the control vari-
ables so it can direct next execution into a different path.
The simulator then starts a new run to get the next trace
information. This stage is repeated a number of times de-
pending on the accuracy needed. The trace includes extra
information about the path begin followed to obtain the
execution time recorded. The execution time recorded is
referred to as Path Execution Time (PET). The recorded
path information can be encoded and used at run-time for
further improving the run-time scheduling.
Naturally the recorded PET values would be lower than

the WCET estimation obtained from stage 3. Even if the
longest path was the one just encountered, static WCET

provides a safe overestimation of the actual WCET. If re-
quired, the path corresponding to the estimated WCET
can be used to guide the simulator. This can avoid re-
calculating the longest path by the simulator or explor-
ing similar paths with minor differences. A more accurate
estimation of WCET can also be obtained, after taking
into account all the other possible environment factors, as
memory hierarchy and sharing contention.
4.1.4 Stage 6: Generate – WCET/PET table
A number of the collected PET values are selected as

representative paths of the code, together with the WCET.
Simply, the obtained PET values could be quantized with
some accuracy to aggregate similar PET values. A more
sophisticated selector utilizes the histogram of the PET
values. The local maximal points are selected up to the
predefined number of PET values required. Wavelet-like
selector can also be useful to get ranges of high occurrence
rather than values of high occurrence.
The selected PET values are to be packed together with

the WCET estimation from stage 1 to 3 and passed down
with the normal binary generated from the code with-
out instrumentation. The table is simply referred to as
WCET/PET table, which is utilized by the scheduler with
stepwise deadline update in this work.

4.2 Simulator
Figure 3 shows the environment for generating

WCET/PET table. The modified jCUTE [31] simulator
first applies the soot library to perform code instrumen-
tation at control flow points (conditional statements) for
tracing. The instrumented code obtained is fed into a
normal compiler to get a machine dependent binary. The
simulator starts a loop to run the binary a number of
times. Every time the binary is given values for the input
(control) variables.
The simulator checks the trace generated to find the

explored path in the previous run and the generated con-
ditions through that path. The solution obtained from
lp solve [32] is then used to force the next execution to a
different path. The control flow points and variables are
chosen in a depth-first recursion for changing the values of
one or more of those variables.
The simulator keeps track of the branches tree to record

the paths (branches) already investigated not to repeat
paths. The simulator detects when the whole branch tree
has been covered and exits. The simulator also exits af-
ter covering a fixed number of paths or after a predeter-
mined time, to avoid getting lost in enormous or infinite
CFG trees. Experiments showed that most of the exam-
ples with 20 paths or more were found to have above 1000
paths. A reasonable number of paths (100) is chosen to
be able to get a suitable sample to extract representative
PET. Currently the extra control information about the
branch directions and variables traversed in the explored
path are overlooked but stored for future extensions, shown
in green in the code of Figure 3. The simulator ends up by

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 17



Fig. 3: Modified jCute Simulation Tool Environment.

extracting a list of PET values from the execution trace,
shown in red.

4.3 Filtering PET lists
Following the simulator, the obtained PET list is usually

quite long and not useful. First the PET values in the list
are quantized to filter minor time measuring anomalies.
The histogram of filtered values is then constructed, and
the PET values with the highest occurrences are selected
as the representative PET values. Alternatively a wavelet
filter can be used to find PET ranges of high density rather
than simple peaks. The average of those periods would be
selected as the representative PET.
Either way the selected representative PET values are

combined with WCET in the WCET/PET table to be the
multivalued WCET. The table will be packed with the
code binary (without instrumentation) and kept in the
Task Control Block (TCB) during execution.

5. Evaluation
In this section, the proposed technique which uses mul-

tivalued WCET information is compared with TBS, CBS,
and the improved TBS in terms of aperiodic responsiveness
and scheduling overheads through simulations. In the sim-
ulation, synthetically generated periodic tasks are used.
On the other hand, aperiodic tasks are supposed to have
execution times which are obtained from the source code
analysis.

5.1 Benchmark applications
Table 1 shows the benchmark application programs that

are regarded as aperiodic tasks in our evaluation. The
source codes of the benchmark programs are from three
different projects: Mälardalen Real-Time Research Centre
[33], Embedded System Research Group [34] and jCUTE
[31].
Each source code was run by jCUTE to maximum of 100

times. Some benchmarks explores all the possible paths
below 100 and quits. Most of those that reach 100 paths
without quitting were found to have over 10,000 paths.
Thus, only 100 executions were chosen to get represen-
tative paths. For every benchmark the number of paths
discovered using jCUTE and the corresponding execution

times on the test platform are reported.
The PETs obtained are quantized to filter small vari-

ances from similar paths. Then, the representative PET
values are scaled down to one hundredth considering that
the measured values are from Java environment and each
program is fed with relatively large inputs. In simulation
for real-time scheduling, each aperiodic task is supposed
to spend the same execution time as one of the obtained
PET values according to the occurrence probability ob-
tained from the paths’ analysis.

Table 1: Benchmark programs.
Program Source Paths Description
bs [33], [34] 100 Binary search an array
BSTree [31] 100 Binary search Tree class
cnt [33] 100 Counts non-negative

numbers in matrix
DSort [31] 89 JPF Dsort class
duff [33] 100 Using Duffs device from

Jargon file to copy an array
fft1 [33], [34] 100 Fast Fourier Transform
BinTreeBare [31] 100 Binary Tree
NS [31] 100 Network messaging
XACML- [31] 13 XACML policy for teacher
Policy student grading
ShortestPath [31] 100 Shortest path calculation
Sort [31] 100 Sort an array of processes

for scheduler
TMN [31] 27 ITU-T TMN guard-key

management

5.2 Aperiodic responsiveness
Periodic task sets are synthetically generated by using

probabilistic distributions for their periods and execution
times. The total processor utilization factors (Up) by peri-
odic tasks are 60% to 95% at 5% intervals. Each periodic
task has its period which is decided by uniform distribution
between 1 and 100 ticks. Its WCET and actual execution
time are equal and obtained by uniform distribution be-
tween 1 and 1/3 of the periods.
The total utilization by aperiodic tasks is around 5% in

the observation period (100,000 ticks). All the aperiodic
servers are supposed to have the utilization of Us = 1−Up.
The WCET of each aperiodic task is the longest path
obtained from the analysis times a safety factor of 1.5.
Each job of an aperiodic task has its actual execution time
decided based on the representative PETs and their oc-
currence probability. The arrival intervals are decided by
Poisson distribution with the average of (WCET/0.05). For

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 18



each Up, all combinations of 10 periodic task sets and 10
aperiodic task sets (total 100 task sets) are simulated and
the average value of aperiodic response times is shown.
For the estimated execution times in the stepwise dead-

line update technique, we applied two options. First is
to assign the average execution time to C1

k and WCET to
C2

k , which corresponds to our previous work in [10]. The
other is the proposed technique in this paper where C1

k

is the shortest PET among the representative PETs ob-
tained, C2

k is the next shortest one, and so on. For CBS,
the maximum server budget, Qs, is set to the average ex-
ecution time of all the jobs of the target aperiodic task.
The server period becomes Ts = ⌈Qs/Us⌉.
The original TBS (TBS), our previous technique

(ATBS), the proposed solution with multivalued WCET
(ATBS+MWCET), Improved TBS (TB*), and CBS are
compared. For space considerations, only some selected
results are shown in Figure 4. For all the benchmarks
except XACMLPolicy and TMN, the proposed method
(ATBS+MWCET) gives the best average response times.
Although TB* is an optimal method among TBS-based
techniques, its optimality is guaranteed only for tasks
that always spend their WCETs. For XACMLPolicy and
TMN, the actual execution times are in most cases near
to WCETs. Therefore, TB* exhibits the best results
for these benchmarks. On the whole, when Up is 95%,
ATBS+MWCET reduces the average response time up to
51.2%, 47.9%, and 26.2% compared to TBS, TB*, and
CBS, respectively.

5.3 Scheduling overhead
Scheduling overhead for all the evaluated algorithms are

estimated from information obtained during the simula-
tion runs above. The number of cycles taken for overhead
operations are calculated separately based on simulation
summing deadline updates (based on the proposed multi-
valued WCET) and also queue manipulations. Latencies
of arithmetic, logical, memory references and control op-
erations are based on Cortex-A9 [35], [36]. It is assumed
that the processor’s clock frequency is 100MHz and the
tick length is 1 millisecond.
Table 2 shows the maximum overhead per tick indicat-

ing how much the scheduling process occupies in a tick
period with Up = 90%. The overhead in TBS, ATBS,
ATBS+MWCET, and CBS are negligible, less than 0.1%.
It is clear that TB* generates much more overhead than
the others. As a whole, the proposed method exhibits
shorter average response times with small overhead.

6. Conclusion
This paper proposes improving responsiveness in TBS

with multivalued WCET and applying it to the stepwise
deadline update technique. This gives a deadline to each
job (sub)instance tailored to its actual execution time, in-
stead of a simple single value WCET. The result shown
expedited shorter response times.

Table 2: Scheduling overheads (%) for Up = 90%.
Program TBS ATBS ATBS+ TB* CBS

MWCET
bs 0.023 0.025 0.024 7.2 0.013
BSTree 0.022 0.024 0.024 6.1 0.013
cnt 0.023 0.024 0.024 4.5 0.015
DSort 0.023 0.024 0.024 5.7 0.015
duff 0.023 0.024 0.024 4.3 0.012
fft1 0.022 0.023 0.023 5.7 0.012
BinTreeBare 0.023 0.024 0.024 5.8 0.014
NS 0.022 0.024 0.024 5.6 0.014
XACMLPolicy 0.023 0.025 0.025 4.3 0.016
ShortestPath 0.023 0.025 0.025 5.4 0.015
Sort 0.023 0.025 0.025 5.4 0.014
TMN 0.023 0.025 0.025 4.2 0.016

The simulation based evaluation with information ob-
tained from analyzing actual programs codes showed that
the proposed technique certainly reduces average response
times of aperiodic tasks compared to TBS, improved TBS,
and CBS with negligible scheduling overhead.
In the combination of stepwise deadline update and mul-

tivalued WCET, we simply applied the PET values in-
creasingly. In the future, we will try different strategies to
reflect the occurrence probability obtained from the paths’
analysis. More important, combining the proposed multi-
valued WCET with multicore scheduling algorithms for
real-time systems will be investigated.

References
[1] de Niz, D., Lakshmanan, K. and Rajkumar, R.: On the

Scheduling of Mixed-Criticality Real-Time Task Sets, Pro-
ceedings of Real-Time Systems Symposium, IEEE Computer
Society, pp. 291–300 (2009).

[2] Baruah, S., Li, H. and Stougie, L.: Towards the design
of certifiable mixed-criticality systems, Proceedings of Real-
Time and Embedded Technology and Application Sympo-
sium, IEEE Computer Society, pp. 13–22 (2010).

[3] Buttazzo, G. C.: Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications, Springer,
3rd. edition (2011).

[4] Spuri, M. and Buttazzo, G. C.: Efficient Aperiodic Service
under Earliest Deadline Scheduling, Proceedings of Real-
Time Systems Symposium, IEEE Computer Society, pp. 2–
11 (1994).

[5] Liu, C. L. and Layland, J. W.: Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment, Jour-
nal of the Association for Computing Machinery, Vol. 20,
No. 1, pp. 46–61 (1973).

[6] Lundqvist, T. and Stenström, P.: Timing Anomalies in Dy-
namically Scheduled Microprocessors, Proceedings of Real-
Time Systems Symposium, IEEE Computer Society, pp. 12–
21 (1999).

[7] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing,
S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R.,
Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschu-
lat, J. and Stenström, P.: The Worst-Case Execution Time
Problem – Overview of Methods and Survey of Tools, ACM
Trans. Embedded Computing Systems, Vol. 7, No. 3, pp.
1–53 (2008).

[8] Silberschatz, A., Galvin, P. B. and Cagne, G.: Operating
System Concepts, John Wiley & Sons, Inc., 8th. edition
(2009).

[9] Tanaka, K.: Adaptive Total Bandwidth Server: Using Pre-
dictive Execution Time, Proceedings of 4th IFIP TC 10 Inter-
national Embedded Systems Symposium, Springer, pp. 250–
261 (2013).

[10] Tanaka, K.: Adaptive Real-Time Scheduling for Soft Tasks
with Varying Execution Times, Journal of Information Pro-
cessing, Vol. 22, No. 2, pp. 152–159 (2014).

[11] Tanaka, K.: Real-Time Scheduling for Reducing Jitters of
Periodic Tasks, Journal of Information Processing, Vol. 23,
No. 5, pp. 542–552 (2015).

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 19



�

��

��

��

��

��

��

��

	�


�

���

��� ��� ��� ��� 	�� 	�� 
�� 
��

�
�
�
��
�
�
��
�
	

�
�
	�
�
��

�
��
��
��
�

��

��� ���� ��������� ��� ����

(a) duff

�

��

��

��

��

��

��

��

	�


�

��� ��� ��� ��� 	�� 	�� 
�� 
��

�
�
�
��
�
�
��
�
	

�
�
	�
�
��

�
��
��
��
�

��

��� ���� ��������� ��� ����

(b) fft1

�

��

���

���

���

���

��� ��� ��� ��� ��� ��� 	�� 	��

�
�
�
��
�
�
��
�
	

�
�
	�
�
��

�
��
��
��
�

��


�� 
��� 
��������� 
��� 
��

(c) JcuteBinTreeBare

�

��

��

��

��

��

��

��

	�


�

���

��� ��� ��� ��� 	�� 	�� 
�� 
��

�
�
�
��
�
�
��
�
	

�
�
	�
�
��

�
��
��
��
�

��

��� ���� ��������� ��� ����

(d) cnt

�

��

���

���

���

���

��� ��� ��� ��� ��� ��� 	�� 	��

�
�
�
��
�
�
��
�
	

�
�
	�
�
��

�
��
��
��
�

��


�� 
��� 
��������� 
��� 
��

(e) NS

�

��

���

���

���

���

��� ��� ��� ��� ��� ��� 	�� 	��

�
�
�
��
�
�
��
�
	

�
�
	�
�
��

�
��
��
��
�

��


�� 
��� 
��������� 
��� 
��

(f) SampleXACMLPolicy

�

��

���

���

���

���

���

��� ��� ��� ��� 	�� 	�� 
�� 
��

�
�
�
��
�
�
��
�
	

�
�
	�
�
��

�
��
��
��
�

��

��� ���� ���������� ��� ���

(g) ShortestPath

�

��

���

���

���

���

��� ��� ��� ��� ��� ��� 	�� 	��

�
�
�
��
�
�
��
�
	

�
�
	�
�
��

�
��
��
��
�

��


�� 
��� 
��������� 
��� 
��

(h) BSTree

�

��

���

���

���

���

���

��� ��� ��� ��� 	�� 	�� 
�� 
��

�
�
�
��
�
�
��
�
	

�
�
	�
�
��

�
��
��
��
�

��

��� ���� ���������� ��� ���

(i) Sort

�

��

��

��

��

���

���

���

���

���

���

��� ��� 	�� 	�� ��� ��� 
�� 
��

�
�
�
��
�
�
��
�
	

�
�
	�
�
��

�
��
��
��
�

��

��� ���� ���������� ��� ���

(j) TMN

�

��

���

���

���

���

��� ��� ��� ��� ��� ��� 	�� 	��

�
�
�
��
�
�
��
�
	

�
�
	�
�
��

�
��
��
��
�

��


�� 
��� 
��������� 
��� 
��

(k) DSort

�

��

��

��

��

���

���

���

��� ��� 	�� 	�� ��� ��� 
�� 
��

�
�
�
��
�
�
��
�
	

�
�
	�
�
��

�
��
��
��
�

��

��� ���� ���������� ��� ���

(l) bs
Fig. 4: Average response times

[12] Lehoczky, J. P., Sha, L. and Strosnider, J. K.: Enhanced
Aperiodic Responsiveness in Hard Real-Time Environments,
Proceedings of Real-Time Systems Symposium, IEEE Com-
puter Society, pp. 261–270 (1987).

[13] Sprunt, B., Sha, L. and Lehoczky, J.: Aperiodic Task
Scheduling for Hard-Real-Time Systems, Journal of Real-
Time Systems, Vol. 1, No. 1, pp. 27–60 (1989).

[14] Lehoczky, J. P. and Ramos-Thuel, S.: An Optimal Algorithm
for Scheduling Soft-Aperiodic Tasks in Fixed-Priority Pre-
emptive Systems, Proceedings of Real-Time Systems Sym-
posium, IEEE Computer Society, pp. 110–123 (1992).

[15] Abeni, L. and Buttazzo, G.: Integrating Multimedia Ap-
plications in Hard Real-Time Systems, Proceedings of Real-
Time Systems Symposium, IEEE Computer Society, pp. 4–
13 (1998).

[16] Davis, R., Tindell, K. and Burns, A.: Scheduling slack time
in fixed priority pre-emptive systems, Proceedings Real-Time
Systems Symposium, Raleigh Durham, NC, USA, pp. 222–
231 (1993).

[17] Caccamo, M., Buttazzo, G. and Sha, L.: Capacity Shar-
ing for Overrun Control, Proceedings of Real-Time Systems
Symposium, IEEE Computer Society, pp. 295–304 (2000).

[18] Lin, C. and Brandt, S. A.: Improving Soft Real-Time Per-
formance Through Better Slack Reclaiming, Proceedings of
Real-Time Systems Symposium, IEEE Computer Society,
pp. 410–421 (2005).

[19] Abeni, L. and Buttazzo, G.: Resource Reservation in Dy-
namic Real-Time Systems, Journal of Real-Time Systems,
Vol. 27, No. 2, pp. 123–167 (2004).

[20] Spuri, M. and Buttazzo, G.: Scheduling Aperiodic Tasks in
Dynamic Priority Systems, Journal of Real-Time Systems,
Vol. 10, No. 2, pp. 179–210 (1996).

[21] Buttazzo, G. C. and Caccamo, M.: Minimizing Aperiodic
Response Times in a Firm Real-Time Environment, IEEE
Trans. on Software Engineering, Vol. 25, No. 1, pp. 22–32
(1999).

[22] Buttazzo, G. C. and Sensini, F.: Optimal Deadline Assign-
ment for Scheduling Soft Aperiodic Tasks in Hard Real-Time
Environment, IEEE Trans. on Computers, Vol. 48, No. 10,
pp. 1035–1052 (1999).

[23] Dertouzos, M. L.: Control Robotics: The procedural Con-
trol of Physical Processes, Information Processing, Vol. 74,
pp. 807–813 (1974).

[24] Engblom, J., Ermedahl, A., Sjödin, M., Gustafsson, J. and

Hansson, H.: Worst-Case Execution-Time Analysis for Em-
bedded Real-Time Systems, International Journal on Soft-
ware Tools for Technology Transfer, Vol. 4, No. 4, pp. 437–
455 (2003).

[25] Lv, M., Zhang, Y., Deng, Q. and Zhang, J.: A Survey of
WCET Analysis of Real-Time Operating Systems, Proceed-
ings of International Conference on Embedded Software and
Systems, IEEE Computer Society, pp. 65–72 (2009).

[26] Bygde, S. and Lisper, B.: Towards an Automatic Parametric
WCET Analysis, Proceedings of International Workshop on
Worst-Case Execution Time Analysis (2008).

[27] Godefroid, P., Klarlund, N. and Sen, K.: DART: Directed
Automated Random Testing, Proceedings of ACM SIGPLAN
conference on Programming Language Design and Implemen-
tation, Vol. 40, No. 6, ACM, pp. 213–223 (2005).

[28] Ermedahl, A., Gustafsson, J. and Lisper, B.: Deriving
WCET Bounds by Abstract Execution, Proceedings of Inter-
national Workshop on Worst-Case Execution Time Analysis,
pp. 72–82 (2011).

[29] Gustafsson, J., Ermedahl, A., Sandberg, C. and Lisper, B.:
Automatic Derivation of Loop Bounds and Infeasible Paths
for WCET Analysis using Abstract Execution, Proceedings
of Real-Time Systems Symposium, IEEE Computer Society,
pp. 57–66 (2006).

[30] Cadar, C. and Sen, K.: Symbolic Execution for Software
Testing: Three Decades Later, Communications of the ACM,
Vol. 56, No. 2, pp. 82–90 (2013).

[31] : jCUTE, Open Systems Laboratory (online), available from
⟨http://osl.cs.illinois.edu/software/jcute/⟩ (accessed Jul 8,
2018).

[32] : lp solve reference guide, lp solve (online), available from
⟨http://lpsolve.sourceforge.net/⟩ (accessed Jul 8, 2018).

[33] : The Worst-Case Execution Time (WCET) analysis project,
Mälardalen Real-Time Research Centre (online), available
from ⟨http://www.mrtc.mdh.se/projects/wcet⟩ (accessed Jul
8, 2018).

[34] : Embedded System Research Group, Seoul
National University (online), available from
⟨https://cse.snu.ac.kr/en/research-group/embedded-system-
research-group⟩ (accessed Jul 8, 2018).

[35] ARM: ARM Cortex-A9 Technical Reference Manual, Revi-
sion:r4p1 (2012).

[36] ARM: Cortex-A9 Floating-Point Unit Technical Reference
Manual, Revision:r4p1 (2012).

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 20




